comsol multiphysicsによる金属 誘電体 金属 spectral reflectance analysis in...

20
COMSOL CONFERENCE TOKYO 2012 A-3 COMSOL Multiphysicsによる金属/誘電体/金属 (MIM)薄膜構造の可視域・分光反射特性の解析 Visible Spectral Reflectance Analysis in Metal-Insulator- Metal (MIM) Multilayer by COMSOL Multiphysics 押鐘 寧Yasushi Oshikane大阪大学 大学院工学研究科 Division of Precision Science & Technology and Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 Japan 13:40 - 14:00, Thursday 22 November, 2012, Akihabara UDX

Upload: phungkien

Post on 11-Apr-2018

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

COMSOL CONFERENCE TOKYO 2012A-3

COMSOL Multiphysicsによる金属/誘電体/金属(MIM)薄膜構造の可視域・分光反射特性の解析Visible Spectral Reflectance Analysis in Metal-Insulator-

Metal (MIM) Multilayer by COMSOL Multiphysics

押鐘 寧( Yasushi Oshikane)

大阪大学 大学院工学研究科Division of Precision Science & Technology and Applied Physics,

Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 Japan

13:40 - 14:00, Thursday 22 November, 2012, Akihabara UDX

Page 2: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

講 演 要 旨可視域での,波長幅の狭い吸収特性を有する反射型MIMフィルタの開発を行なっている.この構造は,各層の厚みが光波長以下,最小λ/10程度であるため,反射特性を誘発する光波と薄膜との電磁場相互作用,特別な条件下でのみ励起される表面プラズモン共鳴現象の理解に数値シミュレーションが欠かせない.本講演では,COMSOL Multiphysics + RF Moduleによるそうした電磁場現象の解析結果を実験結果とともに報告する.

ABSTRACTWe have started to develop a reflective metal-insulator-metal (MIM) filter with a narrow band absorption. In the MIM structure, an interaction between subwavelength multilayer and visible light, and resultant surface plasmon resonance (SPR) in specific illumination condition must be understood. Such electromagnetic field interactions have been analysed by COMSOL Multiphysics and RF Module.

Page 3: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

白色LED照明

Page 4: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

Relation between white and yellow LED spectra and several absorption dips

Page 5: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance
Page 6: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance
Page 7: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

INCIDENT LIGHT WAVE

Wavelength : 250 to 1200 nmPolarization : P and SIncident angle: 0 to 80°

MODEL STRUCTURE (2D MODEL)

1st layer : SiO22nd layer(M1): Ag 50 nm (Au)3rd layer(I) : SiO2 150 nm (CaF2,MgF2)4th layer(M2): Ag 200 nm (Au)5th layer : PML(No reflection)Dimension : H=2500 nm,W=2000 nm

Numerical model used in 2D FEM simulation for understanding of MIM absorption dip. Each domain is divided into fine triangular elements which are smaller than λ/10.

Incidence Reflec

tio

SiO2

Silver (M2)

PML

SiO2, CaF2, MgF2 (I)Silver (M1)

Refraction

Absorption

Page 8: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

Transfer matrix calculation of angular-dependent spectral reflectance in fabrication of MIM structure. The top and bottom maps show calculations for P- and S-polarized light, respectively. The grayscale ranges from black (representing 0% reflectance) to white (representing 100% reflectance).

Page 9: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

2D FEM calculations for (M (+ I (+ M))) structures corresponding to maps indicated in Fig. 2. The grayscale pattern shows the electric field |E| distribution within the structures, and red arrows indicate E vectors surrounding the thin layers. The left, middle, and right maps correspond to normal SPR, a kind of IMI, and MIM configurations, respectively. P-polarized light at 500 nm with an incident angle of 50° from surface normal impinges the sample from the upper left direction, and the incident and reflected waves form a checkered interference pattern.

②③

①SiO2 (bulk)②Ag (50 nm)③Air④Air

①SiO2 (bulk)②Ag (50 nm)③SiO2 (150 nm)④Air

①SiO2 (50 nm)②Ag (50 nm)③SiO2 (150 nm)④Ag (200 nm)

Page 10: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

Vacuum deposition system used for experiment. The system has three independent power supplies for evaporation.

(a) Photograph of deposition chamber (b) Photograph of control panel

Page 11: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

Xe arc lamp

Lens

Objective

Optical fiberCollimator lens

rotation stage G-T prism

! stage

PC

grating spectrometer

MIM

sample

Optical fiber

Prism

Setup for measurement of angular dependent spectral reflectance

Page 12: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

Experimental reflectance characteristics from sample prototypical MIM structure (Ver. 5, Glass slide/Ag (45 nm)/CaF2(150 nm@f = 1)/Ag (200 nm)/Air). The red and blue circles correspond to P- and S-polarized light, respectively. The transfer matrix data agrees well between f = 0.4 and f = 0.5, where f denotes the filling factor of the CaF2 film.

Wav

elen

gth

[nm

] 400

600

800

1000

1200

Wav

elen

gth

[nm

] 400

600

800

1000

1200

Page 13: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance
Page 14: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

SEM images of MIM structure (Ver. 16). (a) The surface of the M2 (=Ag) layer, (b) oblique observation of the peeled M2 layer, and, (c), (d) oblique observation of the interfaces between the I (=MgF2), M1 (=Ag), and substrate (= glass slide) layers.

(a) (b)

(c) (d)

M2 layer

I layer

M1 layer

substrate

I layer

substrateM1 layer

500 nm 1000 nm

5 µm 500 nm

line of sight

Page 15: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

Polarization-dependent spectral reflectance of prototypical MIM structures (Ag/MgF2/Ag). P- and S-polarized diagnostic beams were incident on a sample at an angle of 5° from the target normal. The M layers of Ver. 14 and Ver. 16 were deposited at rates of 0.1 nm/s and 10 nm/s, respectively.

100

90

80

70

60

50

40

30

20

10

0

Ref

lect

ance

[%]

900850800750700650600550500450400Wavelength(nm)

P_pol(Ver.16) S_pol(Ver.16) P_pol(Ver.14) S_pol(Ver.14)

Deposition condition for Ver.16Pressure : 5.0E-4 [Pa]Dep. rate : 10 [nm/s] for M1&M2

0.4-0.7 [nm/s] for IRotation : 20 [rpm]Inc. angle : 5 [deg]Heating : No

Output of CRTM-5000Ag(40nm)-MgF2(150.5nm)-Ag(208nm)

Page 16: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

SiO2(glass slide)

edge reflection and net reflectance of the MIM

Air

MgF2

Ag

Ag

r

1-r rMIM

1-r

R} R ! r + (1" r) #rMIM #(1" r)

rMIM = R ! r(1! r)2

rMIM = 0.998 (R = 0.96, r = 0.04)

rMIM = 0.065 (R = 0.10, r = 0.04)

(measured by spectrophotometer)

MIM

Page 17: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

Spectral reflectance for MIM structure with configuration of M1 (Ag: 25 to 50 nm)/I (SiO2: 150 nm)/M2 (Ag: 200 nm) without edge reflection of glass slide as calculated by FEM simulation. Reducing the thickness of the M1 layer causes a red shift of the absorption dip, and the depth is also affected.

Incidentangle = sin-1 sin(5[deg])NSiO2 (!)

!

"#$

%&

1.0

0.8

0.6

0.4

0.2

0.0

Ref

lect

ance

700650600550500450400

Wavelength [nm]

M1 (Ag) layer 25[nm] 30[nm] 35[nm] 40[nm] 45[nm] 50[nm]

Page 18: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

Spectral reflectance for MIM structure with configuration of M1 (Ag: 40 nm)/I (SiO2: 140 to 160 nm)/M2(Ag: 200 nm) without edge reflection of glass slide as calculated by FEM simulation. Reducing the thickness of the I layer causes a blue shift of the absorption dip, and the depth is not affected.

!! " 2.5 # !tMgF2

1.0

0.8

0.6

0.4

0.2

0.0

Ref

lect

ance

700650600550500450400

Wavelength [nm]

I (MgF2) layer 140[nm] 145[nm] 150[nm] 155[nm] 160[nm]

Page 19: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

1.0

0.8

0.6

0.4

0.2

0.0

Ref

lect

ance

700650600550500450400

Wavelength [nm]

Refractive index of I Layer N=NMgF2

x 1.02 N=NMgF2

x 1.01 NMgF2

=(No+Ne)/2 N=NMgF2

x 0.99 N=NMgF2

x 0.98

Affection of change in refractive index of I layer on absorption dip

Page 20: COMSOL Multiphysicsによる金属 誘電体 金属 Spectral Reflectance Analysis in Metal-Insulator-Metal (MIM) Multilayer by COMSOL Multiphysics ... resultant surface plasmon resonance

謝 辞本研究の遂行にあたり,(独)産業技術総合研究所 関西センター 村井健介 主任研究より研究協力をいただいております.本研究の一部は,日本学術振興会 学術研究助成基金助成金 基盤研究(C) 課題番号(24560060)の助成を受けて行なわれました.

まとめ白色LED照明による可視光通信の実現に向けて,金属/誘電体/金属(MIM)構造を有するプラズモニックアクティブフィルタの開発に着手した.

厚み方向に非対称なMIM(厚いAg/MgF2/薄いAg)構造をスライドガラス上に真空蒸着法により試作した結果,吸収ディップの半値全幅が7.5 nmのバンドカットフィルタ特性を得ることができた.今後はI層に適当な屈折率可変材料(EO材料など)を選定もしくは開発し,吸収ディップの波長方向の制御を可能としたい.

厚み方向に非対称なMIM構造について,その角度依存した分光反射特性をCOMSOL Multiphysics + RF moduleにより実験と良く対応が付く形でシミュレーション解析することができた.今後はI層における高速な屈折率変化(EO効果)などの組み込みを進めてゆきたい.