comsol presentation

12
Efficient Calculation of Phonon Thermal Conductivity for 2-D Nanocomposites with Randomly Distributed Inclusions Vidya Bachina, Gang Li Department of Mechanical Engineering Clemson University November 19, 2009 G. LI [email protected] ASME IMECE 2009 Nov 2009 1 / 12

Upload: vidya-sagar-bachina

Post on 08-Feb-2017

119 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: COMSOL Presentation

Efficient Calculation of Phonon ThermalConductivity for 2-D Nanocomposites with

Randomly Distributed Inclusions

Vidya Bachina, Gang Li

Department of Mechanical EngineeringClemson University

November 19, 2009

G. LI [email protected] ASME IMECE 2009 Nov 2009 1 / 12

Page 2: COMSOL Presentation

Outline g

I IntroductionI Numerical Effective Medium Approximation Approach

I General modelI Modified Bulk Thermal ConductivitiesI Thermal Boundary Resistance

I Numerical Results

I Conclusion

G. LI [email protected] ASME IMECE 2009 Nov 2009 2 / 12

Page 3: COMSOL Presentation

Introduction g

Thermal transport in nanocompositesHot Cold

Thermal transport

Modeling Challenges

I Multiscale

I Unique physics

Modeling Approaches

I Accuracy: Molecular Dynamics (MD) >Boltzmann Transport Equation (BTE) >Effective Medium Approximation (EMA)

I Computational cost: MD>BTE>EMA

G. LI [email protected] ASME IMECE 2009 Nov 2009 3 / 12

Page 4: COMSOL Presentation

Introduction g

Effective Medium Approximation (EMA) for Nanocomposites (Minnich andChen, APL, 2007)

I Modification of a classical EMAI Good accuracy compared to the BTE/Monte Carlo solutionsI Analytical modelI Difficult when there are multiple inclusion materials with non-uniform

sizes and shapes.

G. LI [email protected] ASME IMECE 2009 Nov 2009 4 / 12

Page 5: COMSOL Presentation

Numerical Effective Medium Approximation Approach g

I General approachmodified effective k (inclusions)

modified effective k (host)

thermal boundary resistance

G. LI [email protected] ASME IMECE 2009 Nov 2009 5 / 12

Page 6: COMSOL Presentation

Numerical Effective Medium Approximation Approach g

Modifying the bulk thermal conductivity of inclusion materials

I Model 1 (Minnich and Chen, 2007)

k =1

3CvΛ

1

Λeff=

1

Λb+

1

d

for general shapes d = 4Ac/P, Ac : cross sectional area of theinclusion; P: perimeter of the inclusion.

I Model 2 (Xue, 2006)

keff =kb

1 + 2Rk/d

Rk : Kapitza resistance

G. LI [email protected] ASME IMECE 2009 Nov 2009 6 / 12

Page 7: COMSOL Presentation

Numerical Effective Medium Approximation Approach g

Modifying the bulk thermal conductivity of inclusion materials

I Model 3 (Zhang, 2007)

keff

kb=

(1 +

kn

(1− 4kn)−1

)−1

kn > 5

keff

kb=

(1 +

kn

m

)−1

kn < 1

kn: Knudsen number, m: cross-sectional shape parameter

G. LI [email protected] ASME IMECE 2009 Nov 2009 7 / 12

Page 8: COMSOL Presentation

Numerical Effective Medium Approximation Approach g

Modifying the bulk thermal conductivity of the host material (Minnich andChen, 2007)

1

Λeff=

1

Λb+

1

Λcoll(Φ)

Φ: interface density ⇐ obtained from the mesh geometry

Thermal boundary resistance

k1eff

∂T1

∂n1= k2

eff

∂T2

∂n2= β (T1 − T2)γ

G. LI [email protected] ASME IMECE 2009 Nov 2009 8 / 12

Page 9: COMSOL Presentation

Results g

I Size effects

0 50 100 150 200 250 3005

10

15

20

25

30

35

40

45

Inclusion Size (nm)

The

rmal

Con

duct

ivity

(W

/mK

)

Model 1Model 2Model 3BTE

Si20Ge80 nanocomposite Thermal conductivity

G. LI [email protected] ASME IMECE 2009 Nov 2009 9 / 12

Page 10: COMSOL Presentation

Results g

I Shape effects

0 50 100 150 200 250 3005

10

15

20

25

30

35

40

45

Inclusion Size (nm)

The

rmal

Con

duct

ivity

(W

/mK

)

Model 1Model 2Model 3BTE

0 50 100 150 200 250 3005

10

15

20

25

30

35

40

45

Inclusion Size (nm)

The

rmal

Con

duct

ivity

(W

/mK

)

Model 1BTE

Square cross section Circular cross section

G. LI [email protected] ASME IMECE 2009 Nov 2009 10 / 12

Page 11: COMSOL Presentation

Results g

I Distribution effects

G. LI [email protected] ASME IMECE 2009 Nov 2009 11 / 12

Page 12: COMSOL Presentation

Conclusion g

I A numerical EMA method is developed for thermalconductivity analysis of nanocomposites

I Various bulk thermal conductivity modification models aretested and compared

I The numerical approach is more general and can account forthe shape, size and distribution effects of the inclusions.

G. LI [email protected] ASME IMECE 2009 Nov 2009 12 / 12