crackwidth (gergely & lutz)

Upload: medianna-novita

Post on 02-Jun-2018

240 views

Category:

Documents


3 download

TRANSCRIPT

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    1/61

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    2/61

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    3/61

    Introduction

    Ultimate Limit States Lead to collapseServiceability Limit States Disrupt use of Structures

    but do not cause collapse

    Recall:

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    4/61

    Introduction

    Types of Serviceability Limit States

    - Excessive crack width

    - Excessive deflection

    - Undesirable vibrations

    - Fatigue (ULS)

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    5/61

    Crack Width Control

    Cracks are caused by tensile stresses due to loads moments,shears, etc..

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    6/61

    Crack Width Control

    Cracks are caused by tensile stresses due to loads moments,shears, etc..

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    7/61

    Crack Width Control

    Bar crack development.

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    8/61

    Crack Width Control

    Temperature crack development

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    9/61

    Crack Width Control

    Appearance (smooth surface > 0.01 to 0.013public concern)

    Leakage (Liquid-retaining structures)

    Corrosion (cracks can speed up occurrence ofcorrosion)

    Reasons for crack width control?

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    10/61

    Crack Width Control

    Chlorides ( other corrosive substances) present

    Relative Humidity > 60 % High Ambient Temperatures (accelerates

    chemical reactions)

    Wetting and drying cycles Stray electrical currents occur in the bars.

    Corrosion more apt to occur if (steel oxidizes rust )

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    11/61

    L imits on Crack Width

    0.016 in. for interior exposure

    0.013 in. for exterior exposure

    max.. crack width =

    ACI Codes Basis

    Cracking controlled in ACI code by regulating the

    distribution of reinforcement in beams/slabs.

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    12/61

    L imits on Crack Width

    Gergely-Lutz Equation

    Crack width in units of 0.001 in.Distance from NA to bottom

    (tension) fiber, divided by

    distance to reinforcement.

    =(h-c)/(d-c)

    Service load stress in

    reinforcement in ksi

    = =

    fs=

    3cs076.0 Adf=

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    13/61

    L imits on Crack Width

    Gergely-Lutz Equation

    Distance from extreme tension

    fiber to center of reinforcement

    located closest to it, (in.)

    effective tension area of

    concrete surrounding tensionbars (w/ same centroid)

    divided by # bars. (for 1 layer

    of bars A = (2dc

    b)/n

    dc=

    A=

    3cs076.0 Adf=

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    14/61

    L imits on Crack Width

    ACI Code Eqn 10-5 ( limits magnitude of z term )

    Note: = 0.076 z

    ( =1.2 for beams)

    Interior exposure: critical crack width = 0.016 in.

    ( = 16 ) z = 175k/in

    Exterior exposure: critical crack width = 0.013 in.

    ( = 13) z = 145k/in

    3cs Adfz=

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    15/61

    L imits on Crack Width

    Tolerable Crack Widths

    Tolerable

    Crack Width

    Dry air or protective membrane - 0.016 in.

    Humidity, moist air, soil - 0.012 in.

    Deicing chemicals - 0.007 in.

    Seawater and seawater spray - 0.006 in.wetting and drying

    Water-retaining structures - 0.004 in.

    (excluding nonpressure pipes)

    Exposure Condition

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    16/61

    L imits on Crack Width

    Thin one-way slabs: Use =1.35

    z = 155 k/in (Interior Exposure)

    z = 130 k/in (Exterior Exposure)

    fs= service load stress may be taken as

    1.55average load factor

    - strength reduction

    . factor for flexure

    =

    0.90

    1.5560.0 yys

    fff

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    17/61

    Example-Crack

    Given: A beam with bw= 14 in. Gr 60 steel 4 #8

    with 2 #6 in the second layer with a #4 stirrup.

    Determine the crack width limit, z for exteriorand interior limits (145 k/in and 175 k/in.).

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    18/61

    Example-Crack

    Compute the center of the steel for the given bars.

    ) )s

    2 2

    2

    4#8 bars 2#6 bars

    4 0.79 in 2 0.44 in

    4.04 in

    A =

    =

    =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    19/61

    Example-Crack

    The locations of the center of the bars are

    b1 stirrup

    b b2

    2 b

    cover d2

    1.0 in.1.5 in. 0.5 in.2

    2.5 in.

    2.5 in. 2 2

    1.0 in. 0.75 in.2.5 in. 1.0 in.

    2 2

    4.375 in.

    dy

    d d

    y d

    =

    =

    =

    =

    =

    =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    20/61

    Example-Crack

    Compute the center of the steel for the given bars.

    ) ) ) )

    i i

    i

    2 2

    2

    2.5 in. 4 0.79 in 4.375 in. 2 0.44 in

    4.04 in

    2.91 in.

    y Ay

    A=

    =

    =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    21/61

    Example-Crack

    Compute number of equivalent bars, n. Use the

    largest bar.

    Compute the effective tension area

    2

    i2

    bar

    4.04 in 5.110.79 in

    An

    A= = =

    ) ) 22 2.91 in. 14 in.215.93 in

    5.11

    ybA

    n= = =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    22/61

    Example-Crack

    The effective service load stress is

    Compute the effective tension area

    )s y0.60 0.6 60 ksi 36 ksif f= = =

    ) ) )23 3

    s c 36 ksi 2.5 in. 15.93 in122.9 k/in.

    z f d A= =

    =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    23/61

    Example-Crack

    The limits magnitude of z term.

    122.9 k/in. < 145 k/in. - Interior exposure

    122.9 k/in. < 175 k/in. - Exterior exposure

    Crack width is

    or = 0.0112 in.

    ) )

    0.076

    0.076 1.2 122.9

    11.2

    w z=

    =

    =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    24/61

    Deflection Control

    Visual Appearance

    ( 25 ft. span 1.2 in. )

    Damage to Non-structural Elements

    - cracking of partitions

    - malfunction of doors /windows

    (1.)

    (2.)

    Reasons to Limit Deflection

    visiblegenerallyare*

    250

    1l

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    25/61

    Deflection Control

    Disruption of function

    - sensitive machinery, equipment

    - ponding of rain water on roofsDamage to Structural Elements

    - large s than serviceability problem

    - (contact w/ other members modify

    load paths)

    (3.)

    (4.)

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    26/61

    Allowable Deflections

    ACI Table 9.5(a) = min. thickness unless s are

    computed

    ACI Table 9.5(b) = max. permissible computeddeflection

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    27/61

    Allowable

    Deflections

    F lat Roofs( no damageable nonstructural elements

    supported)

    )

    180instLL

    l

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    28/61

    Allowable

    Deflections

    Floors( no damageable nonstructural elements

    supported )

    )

    180instLL

    l

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    29/61

    Allowable Deflections

    Roof or F loor elements(supported nonstructural elementslikely damaged by large s)

    480l

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    30/61

    Allowable Deflections

    Roof or F loor elements( supported nonstructural elementsnot likely to be damaged by large

    s )

    240

    l

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    31/61

    Allowable Deflections

    Deflection occurring after attachment of

    nonstructural elements

    Need to consider the specific structures

    function and characteristics.

    allow

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    32/61

    Moment of I nertia for Deflection Calculation

    For (intermediate values of EI)gtecr III

    Brandon

    derived cr

    a

    a

    cr

    gt

    a

    a

    cr

    e *1* IM

    M

    IM

    M

    I

    -

    =

    Cracking Moment =Moment of inertia of transformed cross-section

    Modulus of rupture =

    t

    gr

    y

    If

    c5.7 f

    Mcr=Igt =

    fr =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    33/61

    Moment of I nertia for Deflection Calculation

    cr

    a

    a

    crgt

    a

    a

    cre *1* I

    M

    MI

    M

    MI

    -

    =

    Distance from centroid to extreme tension fiber

    maximum moment in member at loading stage for

    which Ie( ) is being computed or at any previous

    loading stage

    Moment of inertia of concrete section neglect

    reinforcement

    yt =

    Ma =

    Ig =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    34/61

    Moment of I nertia for Deflection Calculation

    )

    3

    a

    crcrgcre

    cr

    3

    a

    crg

    3

    a

    cre

    or

    *1*

    -=

    -

    =

    M

    MIIII

    I

    M

    MI

    M

    MI

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    35/61

    Moment Vs curvature plot

    EIM

    EI

    M===

    slope

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    36/61

    Moment Vs Slope Plot

    The cracked beam starts to lose strength as the amountof cracking increases

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    37/61

    Moment of I nertia

    For normal weight concrete

    )psi33 c1.5

    cc fE =

    For wc= 90 to 155 lb/ft3

    )psi57000 cc fE =

    (ACI 8.5.1)

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    38/61

    Deflection Response of RC Beams (F lexure)

    A- Ends of Beam CrackB- Cracking at midspan

    C- Instantaneous

    deflection under serviceload

    C- long time deflection

    under service loadDand E- yielding of

    reinforcement @ ends &

    midspan

    Note: Stiffness (slope) decreases

    as cracking progresses

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    39/61

    Deflection Response of RC Beams (F lexure)

    The maximum moments for distributed load actingon an indeterminate beam are given.

    =12

    2wlM

    =

    12

    2

    wlM

    =

    24

    2

    wlM

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    40/61

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    41/61

    Uncracked Transformed Section

    Part (n) =Ej/Ei Area n*Area yi yi*(n)A

    Concrete 1 bw*h bw*h 0.5*h 0.5*bw*h2

    As n As (n-1)As d (n-1)*As*d

    As n As (n-1)As d (n-1)*As*d

    An *ii Any **

    =

    *ii

    *

    iii *

    An

    Anyy

    Note:(n-1) is to remove area

    of concrete

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    42/61

    Cracked Transformed Section

    == s

    s

    i

    ii 2nAyb

    dnAy

    yb

    A

    Ayy

    Finding the centroid of singly Reinforced RectangularSection

    022

    0

    2

    2

    ss2

    ss

    2

    ss

    2

    =-

    =-

    =

    b

    dnAy

    b

    nAy

    dnAynAyb

    dnAy

    ybynAyb

    Solve for the quadratic for y

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    43/61

    Cracked Transformed Section

    022 ss2 =-

    b

    dnAy

    b

    nAy

    Note:

    c

    s

    E

    En=

    Singly Reinforced Rectangular Section

    )2s3

    cr

    3

    1ydnAybI -=

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    44/61

    Cracked Transformed Section

    ) )0

    212212 ssss2 =-

    --

    b

    dnAAny

    b

    nAAny

    Note:

    c

    s

    E

    En=

    Doubly Reinforced Rectangular Section

    ) ) )2s2

    s

    3

    cr 1

    3

    1ydnAdyAnybI ---=

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    45/61

    Uncracked Transformed Section

    ) ) ) )

    steel

    2

    s

    2

    s

    concrete

    2

    3

    gt

    11

    212

    1

    dyAndyAn

    hybhbhI

    ----

    -=

    Note: 3g

    12

    1 bhI =

    Moment of inertia (uncracked doubly reinforced beam)

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    46/61

    Cracked Transformed Section

    Finding the centroid of doubly reinforced T-Section

    ) )

    ) )0

    212

    2122

    w

    ss

    2

    we

    w

    sswe2

    =

    --

    -

    --

    b

    dnAAntbb

    y

    b

    nAAnbbty

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    47/61

    Cracked Transformed Section

    Finding the moment of inertia fora doubly reinforced T-Section

    )

    ) ) )

    steel

    2

    s

    2

    s

    beam

    3

    w

    flange

    2

    e

    3

    ecr

    1

    3

    1

    212

    1

    ydnAdyAn

    tybt

    ytbybI

    ---

    -

    -=

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    48/61

    Reinforced Concrete Sections - Example

    Given a doubly reinforced beam with h = 24 in, b = 12 in.,

    d = 2.5 in. and d = 21.5 in. with 2# 7 bars in compression

    steel and 4 # 7 bars in tension steel. The material

    properties are fc= 4 ksi and fy= 60 ksi.

    Determine Igt, Icr, Mcr(+), Mcr(-), and compare to the NA of

    the beam.

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    49/61

    Reinforced Concrete Sections - Example

    The components of the beam

    )

    )

    2 2

    s

    2 2

    s

    c c

    2 0.6 in 1.2 in

    4 0.6 in 2.4 in

    1 k57000 57000 4000

    1000 lb

    3605 ksi

    A

    A

    E f

    = =

    = =

    = =

    =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    50/61

    Reinforced Concrete Sections - Example

    The compute the n value and the centroid, I uncracked

    n area (in ) n*area (in ) yi(in) yi*n*area (in2) I (in ) d (in) d *n*area(in )

    A's 7.04 1.2 8.448 2.5 21.12 - -9.756 804.10

    As 7.04 2.4 16.896 21.5 363.26 - 9.244 1443.75

    Ac 1 288 288 12 3456.00 13824 -0.256 18.89

    313.344 3840.38 13824 2266.74

    s

    c

    29000 ksi8.04

    3605 ksi

    En

    E= = =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    51/61

    Reinforced Concrete Sections - Example

    The compute the centroid and I uncracked

    3i i i

    2

    i i

    2 4 4

    i i i i

    4

    3840.38 in12.26 in.313.34 in

    I 13824 in 2266.7 in

    16090.7 in

    y n A

    y n A

    I d n A

    = = =

    = =

    =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    52/61

    Reinforced Concrete Sections - Example

    The compute the centroid and I for a cracked doublyreinforced beam.

    ) )0

    212212 ssss2 =-

    --

    b

    dnAAny

    b

    nAAny

    ) ) ) )

    ) ) ) ) )

    2 2

    2

    2 2s

    2

    2 7.04 1.2 in 2 8.04 2.4 in

    12 in.

    2 7.04 1.2 in 2 8.04 2.4 in 21.5 in.0

    12 in.

    4.624 72.664 0

    y y

    y y

    - =

    - =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    53/61

    Reinforced Concrete Sections - Example

    The compute the centroid for a cracked doubly reinforced

    beam.

    2

    4.624 72.664 0y y - =

    ) )2

    4.624 4.624 4 72.664

    26.52 in.

    y-

    =

    =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    54/61

    Reinforced Concrete Sections - Example

    The compute the moment of inertia for a cracked doublyreinforced beam.

    ) ) )2s2

    s

    3

    cr 1

    3

    1ydnAdyAnybI ---=

    ) )

    ) ) ) ) ) )

    3

    cr

    22

    22

    4

    112 in. 6.52 in.

    3

    7.04 1.2 in 6.52 in. 2.5 in.

    8.04 2.4 in 21.5 in. 6.52 in.

    5575.22 in

    I =

    -

    -

    =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    55/61

    Reinforced Concrete Sections - Example

    The critical ratio of moment of inertia

    4

    cr

    4g

    cr g

    5575.22 in

    0.34616090.7 in

    0.35

    I

    I

    I I

    = =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    56/61

    Reinforced Concrete Sections - Example

    Find the components of the beam ) ) )

    )

    ) )

    c c

    s

    s s s

    2

    s s s c

    0.85 0.85 4 ksi 12 in. 0.85 34.68

    2.5 in. 0.00750.003 0.003

    0.0075 217.529000 0.003 87

    217.50.85 1.2 in 87

    261

    100.32

    C f ba c c

    cc c

    f Ec c

    C A f f c

    c

    = = =

    - = = -

    = = - = -

    = - = -

    = -

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    57/61

    Reinforced Concrete Sections - Example

    Find the components of the beam

    ) )

    ) ) )

    )

    2

    c s

    2

    2

    2.4 in 60 ksi 144 k

    261144 k 34.68 100.32 34.68 43.68 261 0

    43.68 43.68 4 261 34.68

    2 34.68

    3.44 in.

    T

    T C C

    c c cc

    c

    = =

    =

    = - - - =

    =

    =

    The neutral axis

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    58/61

    Reinforced Concrete Sections - Example

    The strain of the steel

    Note: At service loads, beams are assumed to act

    elastically.

    )

    )

    s

    s

    3.44 in. 2.5 in.0.003 0.0008 0.00207

    3.44 in.

    21.5 in. 3.44 in. 0.003 0.0158 0.002073.44 in.

    - = =

    - = =

    3.44 in.

    y 6.52 in.

    c=

    =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    59/61

    Reinforced Concrete Sections - Example

    Using a linearly varying and s= E along the NA is the

    centroid of the area for an elastic center

    The maximum tension stress in tension is

    r c7.5 7.5 4000

    474.3 psi 0.4743 ksi

    f f= =

    =

    My

    I

    s= -

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    60/61

    Reinforced Concrete Sections - Example

    The uncracked moments for the beam

    ) )

    )

    )

    )

    4

    r

    cr

    4

    rcr

    0.4743 ksi 16090.7 in650.2 k-in.

    24 in. 12.26 in.

    0.4743 ksi 16090.7 in

    622.6 k-in.12.26 in.

    My IM

    I y

    f IM

    y

    f IM y

    ss

    -

    = =

    = = =-

    = = =

  • 8/10/2019 Crackwidth (Gergely & Lutz)

    61/61

    Homework-12/2/02

    Problem 8.7