csr の逆コンプトン散乱による x 線・ γ 線の生成

17
CSR のののののののののののの Xのγ のののの のののののののの 2010 2010の11の12の のの () ののののののののののの のの のの のののののののののののののの ()

Upload: liang

Post on 23-Feb-2016

99 views

Category:

Documents


0 download

DESCRIPTION

CSR の逆コンプトン散乱による X 線・ γ 線の生成. ビーム物理研究会 2010 2010 年 11 月 12 日(金) 理化学研究所仁科ホール 島田 美帆  (高エネルギー加速器研究機構). Energy recovery linac (ERL). ERL project progresses as a future light source. Compact ERL. 5 GeV ERL. Light s ource of Compact ERL (245MeV 2oop ERL) . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: CSR の逆コンプトン散乱による X 線・ γ 線の生成

CSR の逆コンプトン散乱によるX 線・ γ 線の生成

ビーム物理研究会 2010

2010 年 11 月 12 日(金)理化学研究所仁科ホール島田 美帆 (高エネルギー加速器研究機構)

Page 2: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Energy recovery linac (ERL)

2/16

• Hard X-ray due to inverse Compton scattering of an external femto-second laser• Intense CSR at terahertz region from a short electron bunch

Light source of Compact ERL (245MeV 2oop ERL)

5 GeV ERL Compact ERL

ERL project progresses as a future light source

Page 3: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Inverse Compton scattering of CSR

3/16

We proposed an inverse Compton scattering of CSR as a light source of ERL. M. Shimada and R. Hajima, PRSTAB 13, 100701,(2010)

CSR - ICSConventional - ICS

Total radiation power : P(k)

Incoherent Coherent)()1()()()( kpNNkFkNpkP

2)()( dzezkF ikz

P(k) : Total radiation power  N : Number of electron

p(k) : Radiation power per an electron

(z) : Longitudinal electron density distribution

F(k) : Form factor

Coherent synchrotron radiation (CSR)

Inverse Compton scattering (ICS)

Page 4: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Comparison CSR-ICS with conventional ICS : 1

4/16

X-ray expected at cERL.

Figure :Examples of scattered photon energy.

•  Laser-ICS : Ti:Sa laser (800nm)•  FEL-ICS : Scattered photon energy estimated from the wavelength of FEL and the electron energy. •  CSR-ICS : Bunch length 100fs

wavelength of CSR (30um x 2π)0 50 100 150 200 250

0.1

1

10

100

FEL-ICSLaser-ICSCSR-ICS

Electron energy [MeV]

Ener

gy o

f sca

ttere

d ph

oton

(hea

d-on

) [k

eV]

LX EE 24factorLorentzlaserofEnergyEphotonscatteredofEnergyE LX :::

Head-on collisionPhoton energy due to inverse Compton scattering

Page 5: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Comparison CSR-ICS with conventional ICS : 2

Laser-ICS FEL-ICS CSR-ICS

Equipment External laser Undulator Only mirror

Synchronization Difficult Easy Easy

Spot size of laser(depends on wavelength) Smaller Smaller Larger

Bandwidth Narrow NarrowRelatively narrow

~ white lightElectron energy Lower Lower Higher

Bunch compression Difficult Difficult Easy

Emittance Larger Larger Smaller

5/16

Page 6: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Proposal of CSR-ICS by other institutes

• CSR-ICS is proposed as a spectroscopy of terahertz region at AIST and KURRI.• Spectral information of terahertz is converted to the visible region. It

enables us a real-time measurement.• Spectrum information can be obtained from weak visible light.

6/16

N. Sei and T. Takahashi, APE 3, 052401,(2010)N. Sei et al, APE 1, 087003,(2008)

Page 7: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Optics : 1 Magic mirror scheme for white light source

7

Acceptance angle of magic mirror   300 mrad [H] x 20 mrad [V]

Transverse electron beam size    100 um [H] x 50 um[V]• including the energy spread at non-zero dispersion • betatron function is limited due to the large acceptance angle in the longitudinal direction.• spot size of CSR is assumed to be the same as that of electron beam ( neglecting cut-off effect)

Example : Electron charge : 77pC/bunch Electron energy : 60MeV, Bunch length : 100 fs

Number of scattered photon per pulse : 2 x 105 phs/pulse Flux of scattered photon : 2 x 1014 phs/sec (1.3 GHz)Pulse duration : 100 fs   (it will be lengthened after narrowing the band width)

Page 8: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Optics 2 : Optical Cavity scheme for narrow bandwidth

a. Incoherent stacking because the fluctuation of longitudinal position (a few hundreds um) is larger than wavelength of CSR.

b. Electron bunch emits CSR inside a cavity.c. Four mirrors is necessary for two focus

points. One is for collection of CSR and another is collision point.

8/16

CSR - ICS ICS by an external laser

a. Coherent stackingb. External laser is injected from outside a

cavity. It passes though a multilayered mirror with low transmittance.

c. Two mirrors are enough for single focus point.

E.R.Crosson et al, Rev. Sci. Instrum. 70, p.4 (1999)

In both cases, pulse power is stacked by 1000 times with reflectivity of mirrors 99.97% .

22 /inCAV PTFP

nn RRFFiness 1/: nin

CAV RPP

1

Pcav:Power in a cavity, Pin:Input power, R: Reflectance, T:Transmittance, n:Number of mirrors

Page 9: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Wavelength of CSR for pulse stacking in an optical cavity

9/16

Wavelength of CSR stacked in an optical cavity is chose as follows,

Total radiation power : P(k)

Incoherent Coherent)()1()()()( kpNNkFkNpkP

2)()( dzezkF ikz

P(k) : Total radiation power  N : Number of electron

p(k) : Radiation power per an electron

(z) : Longitudinal electron density distribution

F(k) : Form factor

2

2

2exp

21)(

zz

zz

22 2exp)(

zP

1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+021.0E-10

1.0E-07

1.0E-04

1.0E-01

1.0E+02

1.0E+05

1.0E+08

1.0E+11 Total radiation power

λ=σz   [b.w. 10%]

λ=2πσz   [b.w. 10%]

Photon Energy [eV] N

umbe

r of p

hoso

ns o

f CSR

[phs

/pul

se m

rad

b.w

. 0.1

%]

Gaussian beam with bunch length z

z 2

Page 10: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Mode matching

sourceCSRofdivergenceHorizontal

sourceCSRofspreadHorizontal

CSRofwavelength

CSRx

CSRx

:

:

:

10/16

Acceptance angle is limited for Mode matching

CSRofdivergencec :

Acceptance angle Q is determined to satisfy the mode matching.

Page 11: CSR の逆コンプトン散乱による X 線・ γ 線の生成

High reflectivity mirrorIn the wavelength range of a few 10 um ~ a few 100 um,• Reflectivity of metal is lower than 98 %.• It is difficult to fabricate multilayered mirror with larger than 99% reflectivity by

conventional method.

11/16

M.Tecimer et al, PRSTAB 13, 030703,(2010)

• Stacking up photonic crystal separated by vacuum layer.• Bandwidth is narrow at the higher order wavelength.• Wavelength, which depends on thickness of the layers, is controllable without losing

the high-reflectivity.

Development of high reflectivity mirror for terahertz region

Page 12: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Optimization of collision area : 1

12/16

In the case of bandwidth Δλ/λ, pulse duration of CSR is lengthened by a factor 1/(Δλ/λ).

• Half cycle of CSR is destroyed by an narrow band mirror.

Page 13: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Optimization of collision area : 2

13/16

•  CSR in optical cavity is assumed to be Gaussian beam. • Hour glass effect is considered at the collision.

220 // e

allCSRe

collisionCSRX NNwNNN

Number of scattered photons Nx is independent in Rayleigh length zR.

Page 14: CSR の逆コンプトン散乱による X 線・ γ 線の生成

X-ray at 200 MeV-ERL

• Number of photons of X-ray (b.w.10%)– Number of photons per pulse : ~ 104-5 phs/pulse.– Flux : ~ 1013-14 phs/s.

• Energy range of X-ray – From 0.04 to 4 keV.– 10 keV X-ray is possible at electron energy of 200 MeV and bunch length 50 fs,

which is accomplished in tracking simulation. • Pulse duration of X-ray is 100 fs – 1 ps. • Electron transverse beam size is much smaller than the focus size of focused CSR.

14/16

Page 15: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Gamma-ray at 5 GeV-ERL

• Number of photons of gamma-ray (b.w.10%)– Number of photons per pulse : ~ 108 phs/pulse. – Flux : ~ 1016 phs/s.

• Most powerful gamma-ray source is achieved at FEL-ICS in Duke univ. : ~ 1010phs/s (10 MeV) [IPAC 2010].

• For what is the intense gamma-ray used? – For nuclear and neutron experiments ?– Generation of positron for ILC – 1012 phs/pulse gamma-ray with 10MeV can be achieved by electron charge of 10 nC

and bunch length of 24 fs. (Rough estimation) 15/16

Page 16: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Summary

• We proposed the inverse Compton scattering of CSR.– ERL is a nice platform for both high-intensity CSR source and inverse Compton

scattering.

• Two optical schemes– Magic mirror : White light with pulse duration of 100 fs. – Optical cavity : Narrow bandwidth. Power amplification by pulse stacking is

estimated almost 1000 times.

• Scattered photon expected in ERL (Optical cavity)– Generation of soft X-ray with energy range of 0.04-4keV is expected at 200 MeV

ERL. Pulse duration is from 100 fs to 1 ps.– Number of photon per pulse is 104-5 phs/pulse, Flux 1013-14 phs/s.

– Intense gamma ray with 10 MeV can be obtained at 5 GeV ERL.– Number of photon per pulse is 108 phs/pulse, Flux 1016 phs/s.

16/16

Page 17: CSR の逆コンプトン散乱による X 線・ γ 線の生成

Longitudinal jitter expected in cERL

N. Nakamura, Proceedings of IPAC 10, p.2317-2319

Shift of arrival time caused by RF amplitude error

Layout of a 1-loop ERL

Source of error error Jitter of arrival timeRF amplitude   0.1 % 400 fs

RF phase 0.1 degree 200 fs

Injection timing 200 fs 10 fs*

*jitter of arrival time is shorter than error of injection time because it is compensated by the error of RF phase.