ò d y{ r - gifu-pu.ac.jp · issn 2187 -4360 coden: gydka9 ò d y{ r ù ° ¬ í / º"u "x 0 "y...

128
ISSN 2187-4360 CODEN: GYDKA9 岐阜薬科大学紀要 62 平成25年6月30日 THE ANNUAL PROCEEDINDS OF GIFU PHARMACEUTICAL UNIVERSITY No. 62 2013 糖転移化合物の新規医薬品添加剤への応用を目指した製剤設計及び処方検討 に関する研究 ・・・・内山博雅、竹内洋文・・・・(1前脳選択的 HB-EGF 欠損マウスを用いた、中枢神経系の高次脳機能における HB-EGF の役割 ・・・・大八木篤、原英彰・・・・(12免疫系に関わる因子が大脳皮質神経細胞層の構築に及ぼす影響 ・・・・宗宮仁美、福光秀文、古川昭栄・・・・(22自然免疫受容体シグナルに対するローヤルゼリー由来脂肪酸の抑制作用 ・・・・高橋圭太、杉山剛志、森 裕志・・・・(32ミカン科アワダン属植物の成分に関する研究 ・・・・中島健一、大山雅義、飯沼宗和・・・・(385-FU との併用療法を目指すヒトデオキシウリジントリホスファターゼ阻害剤の開発 ・・・・宮腰均・・・・(48

Upload: vuduong

Post on 22-Apr-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

  • ISSN 2187-4360

    CODEN: GYDKA9

    THE ANNUAL PROCEEDINDS

    OF

    GIFU PHARMACEUTICAL UNIVERSITY

    No. 62 2013

    1

    HB-EGF

    HB-EGF

    12

    22

    32

    38

    FU

    48

  • 57

    AMPK

    68

    24 24 12 75

    Ann. Proc.

    Gifu Pharm. Univ. Gifu Pharmaceutical University

    1-25-4 Daigaku-Nishi, Gifu 501-1196

  • Vol. 62, 1-11 (2013) 1

    , *

    -glucosyl hesperidin (Hsp-G) -glucosyl Stevia (Stevia-G)

    Research on the Dosage Form Design and a Formulation Study Aimed at

    Application to New Pharmaceutical Excipients of Transglycosylated Compounds

    Hiromasa UCHIYAMA, Hirofumi TAKEUCH*

    Abstract: While the water solubility of new drug candidates in the development phase is often extremely poor, the improvement of

    the dissolution and absorption of poorly water soluble drug candidates is a key factor in the continuation of drug development and

    making new drugs. Since the existing technology and formulation design cannot produce acceptable results for poorly water soluble

    drugs in many cases, improvement in dissolution with new techniques and formulation designs is essential. We focused on

    transglycosylated compounds which were recently developed by innovation of enzyme synthesis technology and have begun to be

    used as functional food additives. A transglycosylated compound is the general term for compounds which increase water solubility

    by the addition of sugar to an existing compound making it safe and widely used in the food industry. The purpose of this study was

    to evaluate the potential of Hsp-G and Stevia-G as pharmaceutical excipients and functional food additives to enhance the dissolution

    and absorption of poorly water soluble drugs using a new formulation, as well as an evaluation of the improvement and mechanism

    of dissolution enhancement effect.

    Key phrases: transglycosylated compound, improvement of dissolution, improvement of absorption, solid dispersion, micelle-like

    structure

    1)

    2)

    40 %

    501-1196 1 25-4

    Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University (1-25-4 Daigaku-nishi, Gifu 501-1196, JAPAN)

  • 2

    3-4) 5) 6)

    7-9)

    10-11)

    3-4) CMC)

    12)

    13-14)

    2

    15-17)

    CMC

    CMC

    CMC

    -glucosyl hesperidin (Hsp-G) -glucosyl

    Stevia (Stevia-G)

    Hsp-G

    cyclomaltodextrin glucanotransferase

    18-20)

    Hsp-G 1

    300

    Hsp-G

    Hsp-G

    60

    21) Hsp-G

    150-300

    22) 20

    Stevia-G

    Stevia-G

    Stevia-G

    Stevia-G Hsp-G

    Stevia-G

    Hsp-G Stevia-G

    -glucosyl hesperidin

    (Hsp-G) -glucosyl Stevia (Stevia-G)

    Hsp-GStevia-G

  • Vol. 62, 1-11 (2013) 3

    Stevia-G

    Flurbiprofen (FP) Probucol (PRO)

    hydroxypropyl methylcellulose

    (HPMC) 1/10

    spray-dried particle (SPD) physical mixture

    (PM) X

    Fig.1

    HPMC

    PRO

    FP

    Fig. 1. Powder X-ray diffraction (PXRD) patterns of (a) FP crystal, (b) PM of FP/Hsp-G (1/10), (c) SDP of FP/Hsp-G (1/10), (d) SDP of FP/Stevia-G (1/10), (e) SDP of FP/HPMC (1/10), (f) Hsp-G powder.

    Fig.

    2 Fig. 2 (a)

    FP

    35 g/mL FP 180

    17 g/mL

    FP

    180

    20 g/mLFP

    HPMC

    Hsp-G Stevia-G

    5

    55 g/mLFig. 2 (b)

    1 pH1.2)

    FP pKa 3.78 pH1.2

    1Henderson-hasselbalch

    FP

    Hsp-G

    Stevia-G

    5 50 g/mL

    Hsp-G Stevia-G

    2

    Hsp-G Stevia-G

    Fig. 3

    PRO PRO

    3-5 ng/mL

    PRO 23)

    Hsp-GStevia-G

    Hsp-G Stevia-G

    PRO

    1000 Hsp-G

    Stevia-G

    pH

    Fig. 2Fig. 3Hsp-GStevia-G

    FP PRO

    2

    1

    2

    24-25) PVP

    26)FP

    HPMC

    HPMC FPHsp-G

    Stevia-G FP

    FP

    Hsp-G Stevia-G

    (a)

    (d)

    (c)

    (b)

    30.0020.0010.005.00

    Count(cps)

    2q (degree)

    (f)

    (e)

  • 4

    Hsp-GHsp-G

    21)

    Hsp-G Stevia-G

    Hsp-G Stevia-G

    Hsp-G Stevia-G

    Hsp-GStevia-G

    FP PRO

    Fig. 2. Dissolution profiles of FP in (a) distilled water and (b)

    HCL solution (pH1.2) (, untreated FP; , PM of FP/Hsp-G

    (1/10); , PM of FP/Stevia-G (1/10); , SDP of FP/Hsp-G

    (1/10); , SDP of FP/Stevia-G (1/10); , SDP of FP/HPMC (1/10)). Each point represents the meanS.D. (n=3).

    Fig. 3. Dissolution profiles of PRO in distilled water (,

    untreated PRO; , PM of PRO/Hsp-G (1/10); , PM of

    PRO/Stevia-G (1/10); , SDP of PRO/Hsp-G (1/10); , SDP

    of PRO/Stevia-G (1/10)). Each point represents the meanS.D. (n=3).

    Fig. 4 FP

    Table 1

    maximum concentration (Cmax) Area

    Under the Curve (AUC) FP

    Cmax 3.7 g/mL

    Hsp-GStevia-G

    Cmax 4.8 g/mL 5.7

    g/mL Hsp-G Stevia-G

    Cmax

    10.2 g/mL 8.3 g/mL FP 2

    AUC Hsp-G

    Stevia-G 2.8

    2.6 Fig. 5 PRO

    Table 2

    Cmax AUC

    FP Hsp-G

    Stevia-G

    PRO Hsp-G

    Stevia-G AUC

    5.3 9.8 PRO FP

    Biopharmaceutics Classification System Class II

    Class II

    Class II

    FP

    Mizoe 27) 4

    FP

    Hsp-G Stevia-G

    FP FP

    PRO

    6 %

    28)

    PVP

    PVP SDS

    29-30)

    PRO

    Hsp-G

    Stevia-GPRO

    FP

    Hsp-G PRO Stevia-G

    FP Hsp-GPRO Stevia-G

    Hsp-GStevia-G

    0

    10

    20

    30

    40

    50

    0 60 120 180

    Time (min)

    Con

    cen

    trati

    on

    of

    FP

    dis

    solv

    ed

    (mg/m

    L)

    0

    10

    20

    30

    40

    50

    0 60 120 180

    Time (min)

    Co

    nce

    ntr

    ati

    on

    of

    FP

    dis

    solv

    ed

    (mg

    /mL

    )

    (b)

    (a)

  • Vol. 62, 1-11 (2013) 5

    Fig. 4. Plasma concentration-time profiles of FP in rats after

    oral administration of untreated FP and SDP: (, untreated FP;

    , PM of FP/Hsp-G (1/10); , PM of FP/Stevia-G (1/10); ,

    SDP of FP/Hsp-G (1/10); , SDP of FP/Stevia-G (1/10)). Each point represents the mean S.E. (n=6).

    Table 1. Pharmacokinetic parameters of FP after oral administration of SDPs of FP/Hsp-G or FP/Stevia-G in rats. (**p< 0.01, compared to untreated FP. ##p< 0.01, Compared to the corresponding PMs).

    Fig. 5. Plasma concentration-time profiles of PRO in rats after

    oral administration of untreated PRO and SDP: (, untreated

    PRO; , SDP of PRO/Hsp-G (1/10); , SDP of

    PRO/Stevia-G (1/10)). Each point represents the mean S.E. (n=6).

    Table 2. Pharmacokinetic parameters of PRO after oral

    administration of SDP of PRO/Hsp-G or PRO/Stevia-G in rats. (**p< 0.01, compared to untreated PRO. ##p< 0.01, Compared to the SDP of PRO/Hsp-G).

    1

    Caco-2

    Fig.6

    SDS 0.1 %

    Hsp-G

    Stevia-G 10 %

    Hsp-G Stevia-G

    Fig. 6. Cytotoxicity of Hsp-G and Stevia-G to Caco-2 cells (n=8) Control; Phosphate buffer solution (pH 7.4).

    3

    Fig. 7 Hsp-G Stevia-G

    Hsp-G Stevia-G

    Hsp-G Stevia-G

    Hsp-G Stevia-G

    Fig. 7. Surface tension according to concentration of Hsp-G

    and Stevia-G: (, Hsp-G; , Stevia-G).

    Blo

    od

    con

    cen

    trati

    on

    of

    FP

    (mg/m

    L)

    Time (hr)

    0

    5

    10

    0 4 8 12

    Tmax (h) Cmax (mg/mL) AUC0-48 (mgh/mL)

    untreated FP

    PM of FP/Hsp-G(1/10)

    PM of FP/Stevia-G(1/10)

    1.0

    2.0

    2.0

    3.73 0.43

    4.82 0.64

    5.71 0.31

    22.06 2.54

    32.09 3.98

    41.26 2.03

    SDPs of FP/Hsp-G(1/10)

    SDPs of FP/Stevia-G(1/10)

    0.5

    0.5

    10.22 0.14

    8.34 0.39

    62.65 2.82

    57.14 2.27

    ##**

    ##**

    Tmax (h) Cmax (mg/mL) AUC0-48 (mgh/mL)

    untreated PRO

    SDPs of PRO/Hsp-G(1/10)

    SDPs of PRO/Stevia-G(1/10)

    10.0

    8.0

    8.0

    0.18 0.03

    0.89 0.06

    1.61 0.16

    4.94 2.06

    26.08 4.52

    48.79 9.97

    **

    **

    50

    55

    60

    65

    70

    75

    0 10 20 30

    Concentration of Hsp-G and Stevia-G (mg/mL)

    Surf

    ace t

    ensi

    on (

    mN

    /m)

  • 6

    I1/I3

    CMC

    Stevia-G

    Hsp-GHsp-G

    Hsp-G

    Stevia-G

    Fig. 8Stevia-G I1/I3

    Stevia-G I1/I3

    I1/I3

    I1/I3

    I1/I3

    I1/I3Fig. 8

    Stevia-G I1/I3

    Stevia-G

    I1/I3

    Stevia-G CMC 16.5

    mg/mL Stevia-G

    Turro and Yekta 31) static

    quenching method Fig. 8

    Stevia-G 15-16 Stevia-G

    I1/I3

    Stevia-G

    I1/I3

    -

    Stevia-G

    Stevia-G

    Stevia-G

    CMC

    Stevia-G

    SDS Tween 80

    32)

    SDS Stevia-G 2 nm

    (data not shown)Stevia-G

    CMC

    Stevia-G

    Fig. 8. Plot of pyrene I1/I3 ratios versus Stevia-G concentration.

    Hsp-G Zhang 33) NMR

    Hsp-G

    Hsp-G

    core-shell Hsp-G

    CMC 5.0 mg/mL

    Hsp-G 4-5 Hsp-G

    2 nm

    Hsp-G core-shell

    Hsp-G

    Stevia-GHsp-G

    4. Stevia-G

    Stevia-G

    Stevia-G

    Stevia-G

    CMC

    Stevia-G

  • Vol. 62, 1-11 (2013) 7

    Stevia-G

    Fig. 9 Stevia-G

    SDS CMC FP

    bicomponent of FP/SDS (1/1 w/w) FP

    FP 35 g/mL

    SDS FP

    bicomponent of

    FP/Stevia-G (1/10 w/w) FP 2

    Stevia-G

    FP

    Stevia-G SDS 3 2

    FP/Stevia-G/SDS (1/10/1 w/w/w) FP

    7

    Stevia-G dodecyl

    trimethyl ammonium bromide (DTAB)

    SDS 3 2

    Stevia-G

    FP

    Fig. 9. Dissolution profiles of FP from Stevia-G/SDS systems

    in distilled water.: (, Untreated FP, ; bicomponent of

    FP/SDS (1/1 w/w); , bicomponent of FP/Stevia-G (1/10

    w/w); , tricomponent of FP/Stevia-G/SDS (1/10/0.2 w/w/w);

    , tricomponent of FP/Stevia-G/SDS (1/10/0.5 w/w/w); , tricomponent of FP/Stevia-G/SDS (1/10/1 w/w/w). Each point

    represents the meanS.D. (n=3).

    Fig. 10 Stevia-G

    n-Octyl--D-maltopyranoside (OMP) CMC

    FP bicomponent of

    FP/OMP (1/4 w/w) FP FP

    tricomponent of FP/Stevia-G/OMP

    FPbicomponent of FP/Stevia-G (1/10 w/w)

    Tween 80

    FP/Stevia-G/Tween80 3

    bicomponent of FP/Stevia-G (1/10 w/w)

    Stevia-G

    FP

    Fig. 10. Dissolution profiles of FP from Stevia-G/OMP systems

    in distilled water.: (, Untreated FP, ; bicomponent of

    FP/OMP (1/4 w/w); , bicomponent of FP/Stevia-G (1/10

    w/w); , tricomponent of FP/Stevia-G/OMP (1/10/2 w/w/w);

    , tricomponent of FP/Stevia-G/OMP (1/10/4 w/w/w). Each point represents the meanS.D. (n=3).

    2

    CMC

    FP

    Stevia-G

    FP/Stevia-G/ 3

    1

    Fig. 11 Stevia-G SDS CMC

    SDS

    Stevia-G

    DTAB

    Stevia-G

    Stevia-G

    - Stevia-G

    Fig. 11. Changes in surface tension as a function of Stevia-G

    concentration in distilled water (, Stevia-G solution; , SDS

  • 8

    solution; , Stevia-G solution with 0.2 mg/ml SDS; ,

    Stevia-G solution with 0.5 mg/ml SDS; , Stevia-G solution with 1 mg/ml SDS.

    Stevia-G

    Fig. 12 Stevia-G

    SDS CMC PyreneI1/I3

    SDS Pyrene I1/I3

    Stevia-G

    Pyrene I1/I3

    CMC Stevia-G 16 mg/mLSDS

    2.5 mg/mL1 mg/mL SDS Stevia-G

    0.8 mg/mL

    CMC

    Stevia-G

    Stevia-G Pyrene

    I1/I3 Stevia-G

    I1/I3 I1/I3

    Stevia-G

    3

    2

    2 34)1

    1

    -

    -

    Fig. 13 Stevia-G

    PyreneI1/I3 Stevia-G

    Stevia-G

    OMP

    Stevia-G

    PyreneI1/I3 Stevia-G

    Fig. 12. Plot of Pyrene I1/I3 ratios versus (a) SDS and (b)

    Stevia-G concentration ( , Stevia-G solution; , SDS

    solution; , Stevia-G solution with 0.2 mg/ml SDS; ,

    Stevia-G solution with 0.5 mg/ml SDS; , Stevia-G solution with 1 mg/ml SDS).

    Fig. 13. Schematic representation of nanocomposite formation among SDS and Stevia-G-aggregated nanostructures.

    Stevia-G

    Csco-2

    Fig. 14

    Stevia-G SDS

    Caco-2 0.1 %

    SDS Caco-2

    Stevia-G

    Stevia-G

    Stevia-G

    0.9

    1.1

    1.3

    1.5

    1.7

    0 5 10 15 20 25 30 35

    Concemtration of SDS (mg/mL)

    Py

    ren

    e I

    1/I

    3

    0.9

    1.1

    1.3

    1.5

    1.7

    0 5 10 15 20 25 30 35

    Concemtration of stevia-G (mg/mL)

    (a) (b)

    SDS molecule

    Nanostructurte formed

    by Stevia-G aggregation

    Nanocomposite formation

    between Stevia-G and SDS

  • Vol. 62, 1-11 (2013) 9

    Fig. 14. Cytotoxicity of Stevia-G, SDS and binary mixture of SDS/Stevia-G system to Caco-2 cells (n=8); Control; Phosphate buffer solution (pH 7.4).

    Stevia-G/

    FP

    Stevia-G/

    Fig. 15

    pranlukast hemihydrate (PLH)

    PLH FP

    Stevia-G

    bicomponent of PLH/Stevia-G

    (1/10 w/w) tricomponent of

    PLH/Stevia-G/SDS (1/2/1 w/w/w)

    Stevia-G

    Stevia-G

    Fig. 15. Dissolution profiles of PLH from Stevia-G/SDS system

    in distilled water.: (; Untreated PLH, ; bicomponent of

    PLH/SDS (1/1 w/w), ; bicomponent of PLH/Stevia-G (1/10

    w/w), ; tricomponent of PLH/Stevia-G/SDS (1/2/1 w/w/w),

    ; tricomponent of PLH/Stevia-G/SDS (1/5/1 w/w/w), ; tricomponent of PLH/Stevia-G/SDS (1/10/1 w/w/w).Each point represents the meanS.D. (n=3).

    Stevia-G SDS

    Fig.16

    PLH/Stevia-G/SDS 3

    2

    3

    AUC

    3.2

    (Table 3)PLH

    PLH

    PLH

    35-36)2 SDS Stevia-G

    PLH Stevia-G SDS

    PLH/Stevia-G/SDS

    3 PLH 2

    3

    3 Stevia-G

    SDS

    PLH

    Fig. 16. Blood concentration profile of PLH in rats after oral

    administration of Stevia-G/SDS system: (; Untreated PLH,

    ; bicomponent of PLH/SDS (1/1 w/w), ; bicomponent of

    PLH/Stevia-G (1/2 w/w), ; tricomponent of PLH/Stevia-G/SDS (1/2/1 w/w/w)). Each point represents the meanS.E. (n=6).

    Table 3. AUC values of untreated PLH and Tricomponent system during 8 hours after oral administration. (**p< 0.01, compared to the untreated PLH, Bicomponent of PLH/SDS (1/1 w/w) and Bicomponent of PLH/ Stevia-G (1/1 w/w)).

    5

    FP PRO

    pH

    0

    20

    40

    60

    80

    100

    120

    Control 1%Stevia-G 1%Stevia-G

    +0.1% SDS

    0.1 %

    SDS

    Via

    bil

    ity

    (% o

    f co

    ntr

    ol)

    AUC0-48h (mgh/mL)

    Untreated PLH

    Bicomponent of PLH/SDS (1/1 w/w)

    136.70 28.50

    189.13 14.28

    **

    Bicomponent of PLH/Stevia-G (1/2 w/w)

    Tricomponent of PLH/SDS/Stevia-G (1/1/2 w/w/w)

    231.85 17.14

    438.08 68.82

  • 10

    Stevia-G

    Stevia-G

    Stevia-G Stevia-G

    Stevia-G

    Stevia-G

    Stevia-G

    Stevia-G

    Stevia-G

    Hsp-G

    Stevia-G Hsp-G

    Stevia-G

    6

    7

    1) S. Brenner, R.A. Lerner, Proc. Natl. Acad. Sci. U S A 89,

    5381-5283 (1992).

    2) A. Persidis, Nature biotechnology 16 (1998) 488-489.

    3) J.J. Sheng, N.A. Kasim, R. Chandrasekharan, G.L. Amidon,

    Eur. J. Pharm. Sci. 29, 306-314 (2006) .

    4) G.E. Granero, C. Ramachandran, G.L. Amidon, Drug Dev.

    Ind. Pharm. 31, 917-922 (2005).

    5) G.Z. Papageorgiou, D. Bikiaris, E. Karavas, S. Politis, A.

    Docoslis, Y. Park, A. Stergiou, E. Georgarakis, AAPS J. 8,

    623-631 (2006).

    6) Y. Tanaka, M. Inkyo, R. Yumoto, J. Nagai, M. Takano, S.

    Nagata, Chem. Pharm. Bull. 57, 1050-1057 (2009).

    7) S. Sinha, M. Ali, S. Baboota, A. Ahuja, A. Kumar, J. Ali,

    AAPS PharmSciTech. 11, 518-527 (2010).

    8) F. Qian, J. Huang, M.A. Hussain, J. Pharm. Sci. 99,

    2941-2947 (2010).

    9) M.K. Gupta, R.H. Bogner, D. Goldman, Y.C. Tseng, Pharm.

    Dev. Technol. 7, 103-112 (2002).

    10) R.H. Potluri, S. Bandari, R. Jukanti, P.R. Veerareddy, Arch.

    Pharm. Res. 34, 51-57 (2011)

    11) R. Pignatello, M. Ferro, G. Puglisi, AAPS PharmSciTech. 3,

    35-45 (2002).

    12) J. Shokri, A. Nokhodchi, A. Dashbolaghi, , T. Ghafourian,

    M. Barzegar, Int. J. Pharm. 228, 99-107 (2001).

    13) S.H.Park, M.K. Choi, Int. J. Pharm. 321, 35-41 (2006).

    14) J.H. Smidt, J.C. Offringa, D.J. Crommelin, J. Pharm. Sci.

    80, 399-401 (1991).

    15) S.K. Mehta, S. Chaudhary, R. Kumar, K.K. Bhasin, J. Phys.

    Chem. B. 113, 7188-7193 (2009).

    16) Y. Yan, J. Huang, J. colloid Int. Sci. 337, 1-10 (2009).

    17) W. Zhang, Y. Shi, Y. Chen, S. Yu, J. Hao, X. Sha, X. Fang,

    Eur. J. Pharm. Biopharm. 75, 341-353 (2010).

    18) T. Kometani, T. Nishimura, T. Nakae, H. Takii, S. Okada,

    Biosci. Biotech. Biochem. 60, 645-649 (1996).

    19) T. Kometani, T. Nishimura, T. Nakae, H. Takii, S. Okada,

    Food Sci. Technol. Res. 5, 265-270 (1999).

    20) T. Kometani, T. Fukuda, T, Kakuma, K. Kawaguchi, W.

    Tamura, Y. Kumazawa, K. Nagata, Immunopharmacol.

    Immunotoxicol. 30, 117-134 (2008).

    21) Y. Tozuka, J. Kishi, H. Takeuchi, Adv. Powder Tech. 21,

    305-309 (2010).

    22) P. Chan, D.Y. Xu, J.C. Liu, Life Sci. 63, 1679-1684 (1998).

    23) N. Yagi, Y. Terashima, H. Kenmotsu, H. Sekikawa, M.

    Takada, Chem. Pharm. Bull. 44, 241-244 (1996).

    24) J.S. Kim, M.S. Kim, H.J. Park, S.J. Jin, S. Lee, S.J. Hwang,

    Int. J. Pharm. 359, 211-219 (2008).

    25) B.C. Hancock, M. Parks, Pharm. Res. 17, 397-404 (2000).

    26) H.A. Garekani, F. Sadeghi, A. Ghazi, Drug Dev. Ind. Pharm.

    29, 173-179 (2003).

    27) T. Mizoe, S. Beppu, T. Ozeki, H. Okada, J. Control Release.

    120, 205210 (2007).

    28) S. Flemming Nielsen, E. Gibault, H. Ljusber-Wahren, L.

    Arleth, J. Pharm. Sci. 96, 876-892 (2007).

    29) Y. Kubo, Y. Terashima, N. Yagi, H. Nochi, K. Tamoto, H.

    Sekikawa, Biol. Pharm. Bull. 32, 1880-1884 (2009).

    30) J. Shudo, A. Pongpeerapat, C. Wanawongthai, K. Moribe,to,

    Biol. Pharm. Bull. 26, 321-325 (2007).

    31) N.J. Turro, J. Am. Chem. Soc. 100, 5951-5952 (1978).

    32)M.E. Haque, A.R. Das, S.P. Moulik, J. Colloid Interface Sci.

    217, 1-7 (1999).

    33) Zhang J, Tozuka Y, Uchiyama H, Higashi K, Moribe K,

    Takeuchi H, Yamamoto K. J. Pharm. Sci. 100, 4421-4431

    (2011).

    34) J.M. Hierrezuelo, J. Aguiar, C. Ruiz, J. colloid Int. Sci. 294,

  • Vol. 62, 1-11 (2013) 11

    449-457 (2005).

    35) S. Chono, E. Takeda, T. Seki, K. Morimoto, Int. J. Pharm.

    347, 71-78 (2008).

    36) T. Mizoe, T. Ozeki, H. Okada, J. Control Release, 122,

    10-15 (2007).

    135

  • 12 HB-EGF

    HB-EGF

    HB-EGF

    HB-EGF

    , *

    (heparin-binding epidermal growth factor-like growth factor: HB-EGF) EGF

    HB-EGF

    HB-EGF

    HB-EGF HB-EGF

    HB-EGF

    HB-EGF KO

    (LTP)

    HB-EGF

    HB-EGF

    KO

    Roles of Heparin-binding EGF-like Growth Factor (HB-EGF) in the Higher

    Brain Functions: Analysis of Ventral Forebrain Specific HB-EGF KO Mice

    Atsushi OYAGI, Hideaki HARA*

    Abstract: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family of growth factors.

    Previously, HB-EGF has been reported to be involved in diverse biological processes, including tumor formation, heart function,

    wound healing, and eyelid formation. On the other hand, HB-EGF is widely expressed in the central nervous system, including the

    hippocampus, cerebral cortex and cerebellum, and is considered to play pivotal roles in the development of the adult nervous system

    and higher brain function. We generated mice in which HB-EGF activity is disrupted specifically in the ventral forebrain and

    investigated the roles of HB-EGF in higher brain function. These knockout mice showed behavioral abnormalities such as an

    increase in locomotor activity, decreased social interaction, a deficit of prepulse inhibition, and memory impairment. HB-EGF KO

    mice also showed altered monoamine factors such as dopamine and serotonin, decreased spine density in neurons of the prefrontal

    cortex, and impaired long-term potentiation (LTP) in the hippocampus. These results suggest that HB-EGF exerts significant

    influence in higher brain functions, such as psychomotor behavior and memory formation and careful regulation of its activity will be

    an important goal for treating a number of neurological diseases of the central nervous system.

    Key phrases: HB-EGF, higher brain function, KO mice, LTP

    (heparin-binding

    epidermal growth factor-like growth factor: HB-EGF) EGF

    501-1196 1 25-4

    Molecular Pharmacology, Gifu Pharmaceutical University (1-25-4 Daigaku-nishi, Gifu 501-1196, JAPAN)

  • Vol. 62, 12-21 (2013) 13

    EGF

    HB-EGF

    (pro-HB-EGF)

    a disintegrin and metalloprotease (ADAM)

    (HB-EGF)

    (HB-EGF-N) EGF

    ErbB4 mitogen activated protein

    kinase (MAPK)

    (HB-EGF-C)

    1)

    HB-EGF 2)

    3) 4) 5)

    HB-EGF

    6) HB-EGF

    7) 8)

    HB-EGF (KO)

    3)

    Cre-LoxP

    HB-EGF

    HB-EGF

    9) (Fig. 1)

    HB-EGF KO

    2-1. (Locomotor activity test)

    (NS-AS01;

    Neuroscience, Tokyo, Japan)

    (NS-DAS-32; Neuroscience)

    HB-EGF KO 24

    HB-EGF KO ( 8:00

    8:00) ( 8:00 8:00)

    (Fig. 2a, b)

    haloperidol (0.1 mg/kg, i.p.)9HB-EGF KO

    (Fig. 2a, b) clozapine

    (1 mg/kg, i.p.) 9 HB-EGF KO

    24

    9) (Fig. 2a)

    Cresyl violet staininga b

    LacZ stainingin situ

    hybridizationImmunohisto-

    chemical staining

    c d e

    WT

    KO

    WT

    KO

    CA1

    CA3

    DG

    DG

    CA1

    CA3

    CA1DG CA3LacZ staining

    Immunohistochemical staining

    Cresyl violet

    staininga bLacZ staining

    in situ

    hybridizationImmunohisto-

    chemical staining

    c d e

    WT

    KO

    WT

    KO

    CA1

    CA3

    DG

    DG

    CA1

    CA3

    CA1DG CA3LacZ staining

    Immunohistochemical staining

    Fig. 1. Histological evaluation in HB-EGF KO and WT mice.

    (a) Coronal section through the cortex region; square indicates area shown in the photomicrographs. (b) Histological analysis of

    cortex from WT (upper) and HB-EGF KO (lower) adult mice. LacZ staining, scale bar=50 m. In situ hybridization using an

    Hb-egf probe, scale bar=100 m. Immunohistochemical staining with anti-HB-EGF antibody, scale bar=20 m. Cresyl violet

    staining, scale bar=500 m. (c) Coronal section through the hippocampus; square indicates area shown in the photomicrographs

    (CA1, CA3, and DG). (d) LacZ staining of whole and individual hippocampal region in HB-EGF KO mice, scale bar=500 m. (e)

    Immunohistochemical analysis of individual hippocampal region from WT (upper) and HB-EGF KO (lower) adult mice, scale

    bar=20 m. The results were cited from ref 9.

  • 14 HB-EGF

    HB-EGF

    2-2. (PPI)

    (SR-LAB; San Diego

    Instruments, CA, USA)HB-EGF KO

    73 dB 76 dB prepulse

    PPI (Fig. 2c)

    30 clozapine (1 mg/kg, i.p.)

    risperidone (0.1 mg/kg, i.p.)

    HB-EGF KO PPI

    (Fig. 2c) haloperidol (0.1

    mg/kg, i.p.)KO PPI

    (Fig. 2c)120 dB

    startle amplitude KO

    9) [-vehicle ; 263.7

    33.56 (mean S.E.M, n=25), KO -vehicle ;

    205.8 35.25 (n=24), KO -haloperidol ; 230.2

    60.6 (n=15), KO -risperidone ; 212.5 43.78

    (n=14), and KO -clozapine ; 225.2 35.03

    (n=12)]

    2-3. (Social interaction)

    2

    (175245125 mm) 10

    (/)HB-EGF KO

    (Fig. 2 d)

    clozapine (1 mg/kg, i.p.) 7

    HB-EGF KO

    (Fig. 2d)

    Co

    un

    ts

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    73dB 76dB 82dB

    WT

    KO (Vehicle)

    KO (Haloperidol)

    KO (Risperidone)

    KO (Clozapine)

    Pre

    pu

    lse

    inh

    ibiti

    on

    (%

    )

    # #

    *

    ##

    ##

    0

    5000

    10000

    15000

    20000

    25000

    Total Daytime Night

    WT

    KO (Vehicle)

    KO (Haloperidol)

    KO (Clozapine)

    *

    #

    *#

    *

    #

    #

    a

    0

    500

    1000

    1500

    2000

    2500

    121314151617181920212223241 2 3 4 5 6 7 8 9 1011

    WTKO (Vehicle)KO (Haloperidol)KO (Clozapine)

    b

    Se

    co

    nd

    /co

    un

    ts

    0

    1

    2

    3

    Vehicle Haloperidol Clozapine

    KO

    d

    WT

    #

    c

    *

    Co

    un

    ts

    e

    0

    5

    10

    15

    20

    25

    left right

    KO

    left right

    WT

    Exp

    lora

    tio

    n ti

    me

    (s)

    f

    0

    5

    10

    15

    20

    25

    left right

    KO

    left right

    WT

    Exp

    lora

    tio

    n ti

    me

    (s) *

    g

    0

    10

    20

    30

    40

    WT KO

    To

    tal a

    rm e

    ntr

    ies (co

    un

    ts)

    h

    0

    15

    30

    45

    60

    75

    WT KO

    Alte

    ratio

    n (%

    of co

    ntr

    ol)

    **

    KO (Haloperidol)

    Fig. 2. Behavioral analysis of HB-EGF KO mice and WT mice. Mice were placed into individual cages, and their locomotion was assessed every hour for 1 day. WT (n=8), KO mice with

    treatment of vehicle (n=7), haloperidol (n=8), and clozapine (n=8). (a) Locomotor activity throughout the 24-hr period, and (b)

    locomotor activity analyzed separately during day and night periods. (c) PPI of the acoustic startle response in WT (n=24), KO mice

    with treatment of vehicle (n=24), haloperidol (n=15), risperidone (n=14), and clozapine (n=12) (d) Social interaction test in a

    novel environment in WT (n=8) and KO mice with treatment of vehicle (n=7), haloperidol (n=9), and clozapine (n=9). Two

    genetically identical mice that had been housed separately were placed in the same cage. Their social interaction was then

    monitored for 10 min. Values are means SEM. (e and f) Novel-object recognition task. (e) In the training trial (5 min), two circles

    were placed in symmetrical left and right positions. (f) In the test trial 1 hr later (5 min), one circle (left) and one triangle (right)

    were placed in the same positions. The amount of time the WT (n=6) and KO (n=6) mice spent exploring each object during

    training trial and test trial was recorded. * p < 0.05 vs. left object. (g and h) Y-maze task. Each mouse was placed at the end of one

    fixed arm of the maze and allowed to move freely through the maze for 8 min. The sequence of arm entries was recorded manually.

    (g) Total number of arms entered during the session. (h) % of alternation was calculated as (actual alternations/maximum

    alternations) 100. WT (n=6), KO (n=6). Values are means SEM. * p

  • Vol. 62, 12-21 (2013) 15

    haloperidol (0.1 mg/kg, i.p.) HB-EGF KO

    9) (Fig. 2d)

    2-4.

    (acquisition trial)

    (: 3 cm)

    5 1

    (retention trial) (:

    3 3 3 cm) 5

    HB-EGF KO

    (Fig. 2e) 1

    ()KO

    9) (Fig. 2f)

    2-5. Y

    3 Y

    (16502 cm)

    8

    Y

    3

    (

    )8

    HB-EGF KO

    alteration rate

    (Fig. 2h)8

    KO

    9) (Fig. 2g)

    Fig. 3. Morphological changes in the prefrontal cortex.

    (a) Representative photomicrographs showing morphology of pyramidal neurons in cortical layer III of the prefrontal cortex from

    WT (left) and KO (right) mice. Scale bar=20 m. (b) Representative photomicrographs of apical dendritic segments from WT (left)

    and KO (right) mice. Scale bar=8 m. (c) High-magnification images of apical dendritic segments from adult WT (left) and KO

    (right) mice. Scale bar=2 m. (d) Representative images of immunoblots showing NR1 and PSD-95 protein levels. (e)

    Quantification of the number of basal dendritic branch-points. (f) Spine density on primary apical dendrites of layer III pyramidal

    neurons of the prefrontal cortex from WT (white bar) and KO (black bar) mice. (g) Quantification of spine length. WT (n=700

    spines) and KO (n=592 spines) mice (n=4 mice, 25 neurons each). (h) Cumulative distribution of spine length. WT (white circle)

    and KO (black circle) mice (n=4 mice, 25 neurons each). (i, j, k, and l) Quantitative analysis of NR1, PSD-95, NR2A, and NR2B

    by densitometric scanning of immunoreactive bands. The results were cited from ref 9.

    WT KO

    WT KO

    WT KO

    a

    b

    c

    NR1

    PSD95

    WT KO

    d

    0

    2

    4

    6

    8

    10

    12

    14N

    um

    ber

    of

    bra

    nch p

    oin

    ts

    0

    2

    4

    6

    8

    10

    12

    Num

    ber

    of

    sp

    ines/1

    0m

    ***

    e f

    0

    50

    100

    0 0.5 1 1.5 2 2.5 3

    Spine Length (m)

    Cu

    mu

    lati

    ve

    % o

    f s

    pin

    es

    WT

    KO

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    Sp

    ine le

    ng

    th (m

    )

    g h

    **

    0

    20

    40

    60

    80

    100

    120 NR1

    % o

    f co

    ntr

    ol

    i

    0

    20

    40

    60

    80

    100

    120 PSD95

    **

    j

    0

    20

    40

    60

    80

    100

    120 NR2B

    k l

    WT KO WT KO

    WT KO

    % o

    f co

    ntr

    ol

    % o

    f co

    ntr

    ol

    WT KOWT KO

    WT KO

    0

    20

    40

    60

    80

    100

    120 NR2A

    % o

    f co

    ntr

    ol

    WT KO

    -tubulin

  • 16 HB-EGF

    HB-EGF

    3

    HB-EGF KO

    3

    Lucifer Yellow

    3 Fig. 3a-c LY

    HB-EGF KO

    HB-EGF KO (Fig. 3a,

    e)HB-EGF KO

    (Fig. 3b,

    c, f)

    HB-EGF KO

    (Fig. 3g, h)

    Fig. 3d N-methyl-D-aspartate (NMDA)

    NR1 post synaptic density

    protein 95 (PSD-95)

    NR1PSD-95HB-EGF KO

    (Fig.

    3i, j)NR2A NR2B

    HB-EGF KO

    9) (Fig. 3k, l)

    HB-EGF

    4-1.

    HB-EGF

    ( 120 45 cm) 31 cm

    (22 1C) 5

    3 5

    HB-EGF KO

    (Fig. 4b)

    3

    target

    (Fig. 4a, c)

    HB-EGF KO

    target

    (Fig. 4a, c)

    HB-EGF KO

    10)[; 18.4

    0.82 cm/sec (n=13)HB-EGF KO ; 17.6 1.47

    cm/sec (n=8)]

    4-2. HB-EGF KO

    15.59.618.0 cm

    323227 cm2

    HB-EGF KO

    (Fig. 5a) 24

    HB-EGF KO

    (Fig. 5a)ADAMs HB-EGF

    HB-EGF

    ADAMs

    KB-R7785

    KB-R7785

    (Fig. 5b) 24

    KB-R7785 (100 mg/kg,

    s.c.)

    (Fig. 5b)

    (3.0 mg/kg, i.p.)

    Fig. 4. Morris water maze test for HB-EGF KO mice.

    (a) Diagrammatic illustration shows the positions of the

    platform and each quadrant. (b) Latency to escape to the

    hidden platform in WT (n=13) and HB-EGF KO (n=8) mice

    in the training test. (c) Duration in each quadrant of

    HB-EGF WT (n=13) and KO (n=8) mice in the probe test.

    Values are means SEM. ** p < 0.01 vs. target quadrant.

    # p < 0.05 vs. WT in target quadrant. The results were cited

    from ref 10.

    WT

    KO

    Platform

    Right

    Left Opposite

    a b

    c

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    day1 day2 day3 day4 day5

    Late

    ncy t

    o p

    latf

    orm

    (sec)

    WT

    KO

    0

    10

    20

    30

    40

    50

    60

    RightTarget Left Opposite

    Du

    ratio

    n in

    ea

    ch

    qu

    ad

    ran

    t (%

    )

    #

    **

    Target

    **

    **

  • Vol. 62, 12-21 (2013) 17

    10) (Fig. 5b)

    4-3. CA1 (LTP)

    HB-EGF KO

    (HFS)

    CA1 (LTP)

    11)

    Schaffer

    HFS (100 Hz) CA1 LTP

    60 (Fig. 6a, b, c, d)

    HB-EGF KO LTP HFS 1

    60 (Fig. 6b, c, d)

    HB-EGF CA1 LTP

    10)

    4-4.

    (HFS)

    LTP 12), 13)

    HFS CA1 CaMKII

    HB-EGF KO

    CaMKII

    (Fig. 7a, c)HFS

    CaMKII

    HB-EGF KO (Fig. 7a, c)

    HB-EGF KO CaMKII

    -amino-3-hydroxy-5-

    methylisoxazole-4-propionicacid hydro bromide (AMPA)

    1 (GluR1)

    (Ser-831)HB-EGF KO

    (Fig. 7b, d)HFS

    GluR1 synapsin I

    HB-EGF KO

    (Fig. 7b, d)

    PKC ERK1/2

    HB-EGF KO 10) (Fig. 7a, c)

    .

    HPLC-ECD (Eicom, Kyoto, Japan)

    Fig. 5. Passive avoidance test.

    (a) Passive avoidance test results for HB-EGF KO mice.

    Latency to enter dark compartment was recorded in HB-EGF

    WT (n=14) and KO (n=12) mice at training and test sessions.

    Values are means SEM. ** p < 0.01 vs. WT in training

    session. # p < 0.05 vs. WT in test session. (b) Effect of an

    ADAMs inhibitor on behavior in a passive avoidance test.

    KB-R7785 (30 and 100 mg/kg) and vehicle (0.5% CMC) were

    subcutaneously administrated to mice once a day for 4 days.

    The passive avoidance test was conducted on the third to

    fourth days, 30 min after vehicle, KB-R7785, or scopolamine

    administration. Latency to enter a dark compartment was

    recorded in KB-R7785 and vehicle-treated mice during

    training and test sessions. Values are means SEM. * p <

    0.05, ## p < 0.01, vs. vehicle (test trial). Vehicle (n=16 or 8),

    KB-R7785 30 mg/kg (n=10), 100 mg/kg (n=16), and

    scopolamine (n=6). The results were cited from ref 10.

    Fig. 6. Long-term potentiation (LTP) in HB-EGF KO

    mice.

    (a) Illustration showing LTP measurement. (b) Representative

    field excitatory postsynaptic potentials (fEPSPs) recorded

    from the CA1 region. (c) Changes in slopes of fEPSPs

    following high frequency stimulation (HFS) in the CA1 region

    from WT (n=5) and HB-EGF KO (n=5) mice. (d) Level of

    LTP potentiation at 1 and 60 min after HFS in the CA1 region

    from WT and HB-EGF KO mice. Values are means SEM.

    * p < 0.05, ** p < 0.01 vs. WT. The results were cited from ref

    10.

    c

    CA1

    Schaffer

    d

    a b

    0

    50

    100

    150

    200

    250

    300

    350

    WT KO WT KO

    Training Test

    **

    La

    ten

    cy to

    en

    ter

    (se

    c)

    #

    0

    50

    100

    150

    200

    250

    300

    350

    Vehicle 30 100 mg/kg Vehicle Scopolamine

    La

    ten

    cy to

    en

    ter

    (se

    c) Training

    Test

    KB-R7785

    *

    ##

    a

    b

  • 18 HB-EGF

    HB-EGF

    a b

    c d

    HB-EGF KO

    (DA) (5-HT) 5-HT 5-HIAA

    (Fig. 8a) 5-HT

    (Fig. 8b)

    DA (Fig. 8c)

    (NE)

    MHPG 5-HT HB-EGF KO

    9) (Fig. 8d)

    .

    HB-EGF

    HB-EGF KO

    HB-EGF KO

    24 Phencyclidine

    (PCP)

    14)

    HB-EGF KO

    haloperidol clozapine

    HB-EGF KO prepulse inhibition (PPI)

    15)PPI

    PPI DA NMDA

    (PCPketamine dizocilpine)

    PPI

    16), 17), 18)HB-EGF KO PPI

    clozapine risperidone

    HB-EGF KO

    Sams-Dodd 19)HB-EGF

    KO

    haloperidol

    clozapine

    HB-EGF KO

    Fig. 8. Monoamine contents in HB-EGF KO and WT

    mice.

    Monoamine contents in (A) prefrontal cortex, (B) striatum, (C)

    thalamus, and (D) Cerebellum. Each column and bar represent

    mean S.E.M. (n =10 or 11), *; p < 0.05, **; p

  • Vol. 62, 12-21 (2013) 19

    HB-EGF KO

    3 40%

    X

    20)

    46 3

    21)

    HB-EGF KO

    PSD-95

    NMDANR1

    CaMKII

    PAK 9)

    HB-EGF KO

    Y

    HB-EGF KO

    22) 23) 24)

    HB-EGF KO

    25), 26)HB-EGF

    KO

    HB-EGF KO

    35

    HB-EGF

    HB-EGF KO

    24

    CA1

    (LTP)

    LTP NMDA

    Ca2+ 27)

    AMPA

    LTP 28),

    29), 30) HB-EGF KO CA1

    (HFS) LTP

    HB-EGF KO

    CaMKII GluR1

    CaMKII LTP

    31)HFS

    NMDA Ca2+

    CaMKII 32)

    AMPA GluR1 831

    33)HFS CaMKII GluR1

    CaMKII GluR1

    HB-EGF KO

    HB-EGF KO

    DA5-HT 5-HIAA

    NEMHPG 5-HT

    5-HT DA

    HB-EGF DA

    7) DA

    HB-EGF

    DA

    DA 5-HT

    HB-EGF KO

    .

    HB-EGF KO

    DA

    HB-EGF

    HB-EGF

    KO

    LTP

    CaMKII

    HB-EGF

  • 20 HB-EGF

    HB-EGF

    HB-EGF

    HB-EGF

    1) Nanba D., Mammot A., Hashimoto K., Higashiyama S.,

    J Cell Biol, 163, 489-502. (2003)

    2) Miyamoto S., Yagi H., Yotsumoto F., Kawarabayashi T.,

    Mekada E., Cancer Sci, 97, 341-347(2006).

    3) Iwamoto R., Yamazaki S., Asakura M., Takashima S.,

    Hasuwa H., Miyado K., Adachi S., Kitakaze M.,

    Hashimoto K., Raab G., Nanba D., Higashiyama S.,

    Hori M., Klagsbrun M., Mekada E., Proc Natl Acad Sci

    U S A, 100, 3221-3226(2003).

    4) Tokumaru S., Higashiyama S., Endo T., Nakagawa T.,

    Miyagawa J.I., Yamamori K., Hanakawa Y., Ohmoto H.,

    Yoshino K., Shirakata Y., Matsuzawa Y., Hashimoto K.,

    Taniguchi N., J Cell Biol, 151, 209-220. (2000).

    5) Mine N., Iwamoto R., Mekada E., Development, 132,

    4317-4326 (2005).

    6) Mishima K., Higashiyama S., Nagashima Y., Miyagi Y.,

    Tamura A., Kawahara N., Taniguchi N., Asai A.,

    Kuchino Y., Kirino T., Neurosci Lett, 213, 153-156

    (1996).

    7) Farkas L.M., Krieglstein K., J Neural Transm, 109,

    267-277 (2002).

    8) Jin K., Sun Y., Xie L., Batteur S., Mao X.O., Smelick

    C., Logvinova A., Greenberg D.A., Aging Cell, 2,

    175-183 (2003).

    9) Oyagi A., Oida Y., Kakefuda K., Shimazawa M., Shioda

    N., Moriguchi S., Kitaichi K., Nanba D., Yamaguchi K.,

    Furuta Y., Fukunag K., Higashiyama S., Hara H., PLoS

    One, 4, e7461 (2009).

    10) Oyagi A., Moriguchi S., Nitta A., Murata K., Oida Y.,

    Tsuruma K., Shimazawa M., Fukunaga K., Hara H.,

    Brain Res, 1419, 97-104 (2011) .

    11) Moriguchi S., Shioda N., Han F., Narahashi T.,

    Fukunaga K., J Neurochem, 106, 1092-1103 (2008).

    12) Silva A.J., Paylor R., Wehner J.M., Tonegawa S.,

    Science, 257, 206-211 (1992).

    13) Fukunaga K., Stoppini L., Miyamoto E., Muller D., J

    Biol Chem, 268, 7863-7867 (1993).

    14) Noda Y., Nabeshima T., Mouri A., Nihon Yakurigaku

    Zasshi, 130, 117-123 (2007).

    15) Braff D., Stone C., Callaway E., Geyer M., Glick I.,

    Bali L., Psychophysiology, 15, 339-343 (1978).

    16) Yamada S., Nihon Shinkei Seishin Yakurigaku Zasshi,

    20, 131-139 (2000).

    17) Andersen M.P., Pouzet B., Psychopharmacology (Berl),

    156, 291-304 (2001).

    18) Linn G.S., Negi S.S., Gerum S.V., Javitt D.C.,

    Psychopharmacology (Berl), 169, 234-239 (2003).

    19) Sams-Dodd F., J Neurosci Methods, 59, 157-167

    (1995).

    20) Fiala J.C., Spacek J., Harris K.M., Brain Res Brain Res

    Rev, 39, 29-54 (2002).

    21) Glantz L.A., Lewis D.A., Arch Gen Psychiatry, 57,

    65-73 (2000).

    22) Sarter M., Bodewitz G., Stephens D.N.,

    Psychopharmacology (Berl), 94, 491-495 (1988).

    23) Parada-Turska J., Turski W.A., Neuropharmacology, 29,

    1111-1116 (1990).

    24) Dodart J.C., Mathis C., Ungerer A., Neuroreport, 8,

    1173-1178 (1997).

    25) Peters M., Mizuno K., Ris L., Angelo M., Godaux E.,

    Giese K.P., J Neurosci, 23, 9752-9760 (2003).

    26) Denayer E., Ahmed T., Brems H., Van Woerden G.,

    Borgesius N.Z., Callaerts-Vegh Z., Yoshimura A.,

    Hartmann D., Elgersma Y., D'Hooge R., Legius E.,

    Balschun D., J Neurosci, 28, 14443-14449 (2008).

    27) Bliss T.V., Collingridge G.L., Nature, 361, 31-39

    (1993).

    28) Shi S.H., Hayashi Y., Petralia R.S., Zaman S.H.,

    Wenthold R.J., Svoboda K., Malinow R., Science, 284,

    1811-1816 (1999).

    29) Matsuzaki M., Honkura N., Ellis-Davies G.C., Kasai H.,

    Nature, 429, 761-766 (2004).

    30) Derkach V.A., Oh M.C., Guire E.S., Soderling T.R., Nat

    Rev Neurosci, 8, 101-113 (2007).

    31) Lisman J., Schulman H., Cline H., Nat Rev Neurosci, 3,

    175-190 (2002).

    32) Lisman J., Trends Neurosci, 17, 406-412 (1994).

  • Vol. 62, 12-21 (2013) 21

    33) Hayashi Y., Shi S.H., Esteban J.A., Piccini A., Poncer,

    J.C., Malinow R., Science, 287, 2262-2267 (2000).

    129

  • 22

    , , *

    Immune-related Factors Influenced the Development of the Mouse Cerebral Cortex

    Hitomi SOUMIYA, Hidefumi FUKUMITSU, Shoei FURUKAWA* Abstract: Clinical symptoms are variable in subjects where cognitive impairments are a major feature with psychiatric, and neurodevelopmental disorders, including schizophrenia and autism. The cerebral cortex plays important roles in cognitive function. Abnormal neuronal morphology and cytoarchitecture of the cerebral cortex are found in postmortem brains from human subjects with severe psychiatric disorders such as schizophrenia and autism. These impairments are thought to be responsible for the abnormal cognitive functions and behavior of such patients. As immunological dysfunctions have also been reported in schizophrenic or autism patients, it may underlie the development of the psychiatric brain. In this study, we examined how immune-related factors affect the development of the cerebral cortex. The results obtained in this study suggest that subtle alterations in the genesis and development of the cerebral cortex induced by immune-related factors might cause functional disorders of the cerebral cortex. Key phrases: neurodevelopmental disorder, schizophrenia, cerebral cortex, neurogenesis, cytokine

    1

    4

    ADHD

    1)

    lissencephaly1 Lis1 doublecortin 2

    1%~%

    501-1196 Laboratory of Molecular Biology, Gifu Pharmaceutical University (1-25-4 Daigaku-nishi, Gifu 501-1196, JAPAN)

  • Vol. 62, 22-31 (2013) 23

    90% 30% 2)

    3) 4)

    5, 6)

    1%

    7, 8)

    Fig. 1. Cytoarchitecture of the cerebral cortex. 78

    6 9, 10) Fig. 1

    ventricular zone; VZ

    3

    11)

    brain-derived neurotrophic factor; BDNF3 neurotrophin-3 ; NT-3

    12, 13, 14)

    5, 6)

    15, 16)

    interleukin; IL-6 JAK/STAT 17)

    stromal cell-derived factor1 SDF1 18)

  • 24

    2

    : ventricular zone, VZ : cortical plate: CP 19) Fig. 2

    MRI

    20, 21)

    22)

    23)

    stem cell factor; SCF fms 3 III c-kit 24)1SCF c-kit

    25, 26)2SCF/c-kit 27, 28) 29)

    3 SCF 30)

    SCF

    SCF

    SCF 2-1 SCF c-kit

    E13.5E14.5E15.5SCF c-kit mRNA RT-PCR

    c-kit SCFE13.5 SCF 100 ng/ml 30 6SCF/c-kit Akt Akt SCF 30 1 2

    c-kit E13.5 Akt SCF

    Fig. 2. Laminar formation during development of the cerebral cortex.

  • Vol. 62, 22-31 (2013) 25

    2-2. SCF SCF

    SCF10 ng/ E13.5 6 P6SCF 15 12 6 4

    SCF20 ng

    2 mm

    2 10 ng SCF

    orthologue of the Drosophila cut geneCux1; II-IV chicken ovalbumin upstream promoter transcription factor COUP-TF-interacting protein 2CTIP2; V SCF

    Cux1 II IV CTIP2 V VI V VI SCF Cux1 CTIP2 SCF

    2-3/ SCF

    SCF SCF 11 17

    1-3 3

    SRY-box containing gene 2 Sox2T-brain gene 2 Tbr2III-tubulinTuj1 E13.5 Sox2 VZ Tbr2 subventricular zone, SVZ

    E17.5 Sox2 intermedeiate zone, IZ) VZ E13.5 SVZ

    Fig. 3. SCF induced ectopic accumulation of cortical cells. The arrowheads indicate the edge of each area of heterotopia.

  • 26

    Tbr2 SCF VZ Sox2 Tbr2 SCF 31)SCF

    Fig.3 SCF 30) 27)

    SCF Sox2 SCF

    SCF 20 ng 1 Sox2 Tbr2 SCF

    SCF 10 ng Sox2

    SCF

    SCF

    Fig.3

    SCF SCF

    3.

    5)

    lipopolysaccharideLPS

    32)

    7)

    6

    9, 10)

    19, 33)

    34, 35, 36, 37)

    RNA polyriboinosinic-polyribocytidylic acid Poly I:C38, 39)

    40, 41, 42)

    Poly I:C 3 -1 Poly I:C C57BL641) BALB/c40) Poly I: C

    ddY 9.5 Poly I:C vehicle

    9.5 Poly I:C Poly I:C-E9.5

    Poly I:C-E9.5

    3 -2 Poly I:C

  • Vol. 62, 22-31 (2013) 27

    P10 Poly I:C-E9.5

    Poly I:C-E9.5 P10 P8W

    Poly I:C Poly I:C-E9.5 -Cux1 Cux1brain-specific homeobox/POU domain protein Brn1 Brn1 Cux1+ Brn1+Cux1+/Brn1+ 251525

    / Cux1+/Brn1+ Tbr1Ctip2Forkhead box p2FoxP2 Poly I:C-E9.5 Poly I:C-E9.5

    3-3Poly I:C Poly I:C8 Poly I:C-E9.5

    glutamic acid decarboxylase-67 GAD67; GABA II/III

    GAD67

    Poly I:C-E9.5 30%GAD67 40 %Golgi III Poly I:C-E9.5 III 20% Poly I:C E9.5

    4.

    4-1 Poly I:C 1 43), 44)

    Poly I:C-E9.5 E13.75E14.75E15.75E16.75 5-bromo-2-deoxyuridine BrdUP10 BrdU 43)

    E13.75 BrdU Poly I:C-E9.5 E14.75 E16.75 BrdU inside-out Poly I:C-E9.5 BrdU

    E14.75 BrdU Poly I:C E13.75 E15.75 BrdU E16.75 BrdU Poly I:C-E9.5 24.1 : 45.53.3 cells, Poly I:C-E9.5 : 56.72.8 cells; p

  • 28

    Table 1/Poly I:C-E9.5

    Table 1

    Fig. 4. Layer-specific neuronal phenotypes are sequentially generated from cortical progenitors.

    Table 1. Gene expression profile of the cells with same birthday in the cerebral cortex of the P10 control and Poly I:C-E9.5

    ND: not determined, : no change, : increase, : decrease 4-2

    Poly I:C Poly I:C

    E13.75 E15.75 BrdU E13.75 24 48 E15.75 24 96 BrdU Poly I:C-E9.5E15.75 BrdU VZ CP 48 BrdU 60 962 Poly I:C VZ CP

    E13.75 BrdU 2 Poly I:C

    Poly I:C-E9.5

    VZ

    45, 46)

    Poly I:C-E9.5 BrdU 47) E13.75 E15.75 VZ GF Fig.5

    Fig. 5. Schematic illustration of the analysis of the cell-cycle parameters of VZ progenitors in the control and the Poly I:C-E9.5 animals by cumulative BrdU labeling, starting at 8:00 P.M. on E13 or E15. VZ BrdU 2.5 26.5 VZ Poly I:C E13.75 Poly I:C-E9.5E15.75 Poly I:C-E9.5Tc 2GF 14 % BrdU 30 VZ BrdU BrdU E15.5 E16.75 Poly I:C-E9.5 BrdU 77.3%E16.75 48.32.7Poly I:C-E9.5 37.33.5p

  • Vol. 62, 22-31 (2013) 29

    4-3 Poly I:C

    VZ/SVZ

    VZ

    SVZ IZ SVZ IZ 13 48, 49) 3

    Poly I:C E13.75 E15.75 BrdU

    paired box gene 6 (Pax6)Tbr2Tuj1 BrdU E13.75 BrdU Poly I:C-E9.5 E15.75 BrdU Poly I:C-E9.5 Pax6 Pax6 BrdU BrdU 24 12%36 4.3%BrdU 48Pax6BrdU2 Pax6 BrdU Tbr2 Tuj1 2 BrdU 24 48 Tbr2 BrdU 65%Tuj1 BrdU 70Pax6

    E15.75 BrdU 24 48 BrdU Ki67 Ki67 G1 SMG2 50)Ki67 [quitting (Q) fraction] Q fraction Poly I:C-E9.5 BrdU 24 48 30%

    Fig. 6Poly I:C-E9.5 E15.75

    PolyI:C-E9.5 VZ BrdU E15.75 E16.75 E16.75 BrdU E15.75 Pax6 E16.75

    Fig. 6. Effects of the Poly I:C-injection on the cell cycle kinetics of cortical progenitors. A, Tissue sections were double immunostained with anti-BrdU antibody (red) and the antibodies against Ki67 (green). Scale bar, 100m. B, At 24 or 48 h after the BrdU injection on E15.75, sections were double immunostained with antibodies against Ki67 and BrdU. Note that the fraction of cells positive for BrdU only (BrdU+/Ki67-; no longer dividing; Q fraction) was essentially the same in both control and Poly I:C-E9.5 cortices at 24 and 48 h after the BrdU incorporation (n=3-5 embryos from 2 litters at each time point). n.s; no significance.

    5.

  • 30

    2

    6

    7

    1) 2007

    2) Rosenberg R.E., Law J.K., Yenokyan G., McGready J., Kaufmann W.E., Law P.A., Arch Pediatr Adolesc Med. 163, 907-914 (2009)

    3) Geier D.A., Kern D.A., Geier M.R., Acta Neurobiol Exp 70, 209-226 (2009)

    4) Williams G., King J., Cunningham M., Stephan M., Kerr B., Hersh J.H., Dev Med Child Neurol. 43, 202-206 (2001)

    5) Brown A.S., Schizophr. Bull. 32, 200202. (2006) 6) Ellman L.M., and Susser E.S., Neuron 64, 2527 (2009) 7) Amaral D.G., Schuman C.M., Nordahl C.W., Trends

    Neurosci 31, 137-145 (2008) 8) Freitag C.M., Luders E., Hulst H.E., Narr K.L., Thompson

    P.M., Toga A.W., Krick C., Konrad C., Biol Psychiatry 66,316-319. (2009)

    9) Gilbert C.D., Kelly J.P., J Comp Neurol 163, 81-105 (1975) 10) Gilbert C.D., Wiesel T.N., Vision Res 25, 365-374 (1985) 11) Guerrini R., Dobyns W.B., Barkovich A.J. Trends

    Neurosci 31, 154-162 (2008) 12) Fukumitsu H., Ohtsuka M., Murai R., Nakamura H., Itoh K.,

    Furukawa S. J Neurosci 26, 13218-13230 (2006) 13) Ohtsuka M., Fukumitsu H., Furukawa S. Biochem Biophys

    Res Commun 369, 1144-1149 (2008) 14) Ohtsuka M., Fukumitsu H., Furukawa S. J Neurosci Res

    87,301-330 (2009) 15) Pardo C.A., Vargas D.L., Zimmerman A.W. Int. Rev.

    Psychiatry 17, 485495 (2005) 16) Patterson P.H. Behav Brain Res. 204, 313-321 (2009) 17) Taga T., Fukuda S. Clin Rev Allergy Immunol. 28, 249-256.

    (2005) 18) Lopez-Bendito G., Cautinat A., Sanchez J.A., Bielle F.,

    Flames N., Garratt A.N., Talmage D.A., Role L.W., Charnay P., Marin O., Garel S. Cell 125, 127-142 (2006)

    19) Angevine J.B. Jr., Sidman R.L. Nature 192,766-768 (1961) 20) Clark G.D. Brain Dev 26, 351-362 (2004) 21) Guerrini R Epilepsia 46, 32-37 (2005) 22) Browne T.R., Holmes G.L. N Engl J Med 344, 1145-1151

    (2001) 23) Miller F.D., Gauthier A.S. Neuron 54, 357-369 (2007) 24) Ashman L.K. Int J Biochem Cell Biol 31, 1037-1051

    (1999). 25) Keshet E., Lyman S.D., Williams D.E., Anderson D.M.,

    Jenkins N.A., Copeland N.G., Parada L.F. EMBO J 10, 2425-2435 (1991)

    26) Motro B., van der Kooy D., Rossant J., Reith A,. Bernstein A. 113, 1207-1221 (1991)

    27) Ueda S., Mizuki M., Ikeda H., Tsujimura T., Matsumura I., Nakano K., Daino H., Honda Zi. Z., Sonoyama J., Shibayama H., Sugahara H., Machii T., Kanakura Y. Blood 99, 3342-3349 (2002)

    28) Witte O.N. Cell 63, 5-6 (1990) 29) Krause D.S., Van Etten R.A. N Engl J Med 353, 172-187

    (2005) 30) Erlandsson A., Larsson J., Forsberg-Nilsson K. Exp Cell

    Res 301, 201-210 (2004) 31) Ogawa M., Matsuzaki Y., Nishikawa S., Hayashi S.,

    Kunisada T., Sudo T., Kina T., Nakauchi H., Nishikawa S. . J Exp Med 174, 63-71 (1991)

    32) Meyer U., Feldon J., Fatemi S.H. Neurosci Biobehav Rev 33, 1061-1079 (2009)

    33) Rakic P. Science 183, 425-427 (1974) 34) Molyneaux B.J., Arlotta P., Hirata T., Hibi M., Macklis J.D.

    Neuron 47, 817-831 (2005) 35) Alcamo E.A., Chirivella L., Dautzenberg M., Dobreva G.,

    Farinas I., Grosschedl R., McConnell S.K. Neuron 57, 364-377 (2008)

    36) Britanova O., de Juan Romero C., Cheung A., Kwan K.Y., Schwark M., Gyorgy A., Vogel T., Akopov S., Mitkovski M., Agoston D., Sestan N., Molnar Z., Tarabykin V. Neuron 57, 378-392 (2008)

    37) Cubelos B., Sebastian-Serrano A., Beccari L., Calcagnotto M.E., Cisneros E., Kim S., Dopazo A., Alvarez-Dolado M., Redondo J.M., Bovolenta P., Walsh C.A., Nieto M. Neuron 66, 523-535 (2010)

    38) Fortier M.E., Kent S., Ashdown H., Poole S., Boksa P., Luheshi G.N. Am J Physiol Regul Integr Comp Physiol 287, 759-766 (2004)

    39) Meyer U., Nyffeler M., Engler A., Urwyler A., Schedlowski M., Knuesel I., Yee B.K., Feldon J. J Neurosci 26, 4752-4762 (2006)

  • Vol. 62, 22-31 (2013) 31

    40) Shi L., Fatemi S.H., Sidwell R.W., Patterson P.H. J Neurosci. 23, 297-302 (2003)

    41) Smith S.E., Li J., Garbett K., Mirnics K., Patterson P.H. J Neurosci 27, 10695-10702. (2007)

    42) Zuckerman L., Rehavi M., Nachman R., Weiner Neuropsychopharmacology 28, 1778-1789 (2003)

    43) Caviness V.S. Jr. Brain Res 256, 293-302 (1982) 44) Hevner R.F., Daza R.A., Englund C., Kohtz J., Fink A.

    Neuroscience 124,605-618 (2004) 45) Caviness V.S. Jr., Takahashi T., Nowakowski R.S. Trends

    Neurosci 18, 379-383 (1995) 46) Tarui T., Takahashi T., Nowakowski R.S., Hayes N.L.,

    Bhide P.G., Caviness V.S. Cereb Cortex 15, 1343-1355 (2005)

    47) Takahashi T., Nowakowski R.S., Caviness V.S., Jr. J Neurosci. 15, 6058-6068 (1995)

    48) Englund C., Fink A., Lau C., Pham D., Daza R.A., Bulfone A., Kowalczyk T., Hevner R..F. J Neurosci 25, 247-251 (2005)

    49) Pontious A., Kowalczyk T., Englund C., Hevner R.F. Dev Neurosci 30, 24-32 (2008)

    50) Gerdes J., Schwab U., Lemke H., Stein H. Int J Cancer 31,13-20 (1983)

    8

    127

  • 32

    *, ,

    10-Hydroxy-trans-2-decenoic acid10H2DA

    10-Hydroxydecanoic acid10HDA 10H2DA

    10H2DA 10HDA

    10H2DA 10HDA

    toll-like receptorlipopolysaccharideIFN

    Inhibitory Effects of Royal Jelly-derived Fatty Acids on Cellular Signal Transduction in Innate

    Immune Responses

    Keita TAKAHASHI*, Tsuyoshi SUGIYAMA, Hiroshi MORI

    Abstract: Royal jelly is one of many bee products and a secretion of worker honeybees. Worker honeybees feed the queen honeybee

    for her life with only royal jelly. 10-Hydroxy-trans-2-decenoic acid (10H2DA) is the principal lipid component in royal jelly.

    10-Hydroxydecanoic acid (10HDA) is also contained in royal jelly. These fatty acids have been reported to show several biological

    activities, such as anti-tumor and estrogenic activity. Recently, we revealed the inhibitory effect of these fatty acids on innate immune

    receptor signals. In this review, we focus on the biological activities of 10H2DA and 10HDA (especially immunomodulatory

    activities). We also discuss the mechanisms underlying these biological activities and the possibilities for using these fatty acids as

    lead compounds in new therapeutic drugs for immune disorders.

    Key phrases: innate immunity, royal jelly, toll-like receptor, lipopolysaccharide, IFN, fatty acids

    1, 2)

    3)

    4)

    major royal jelly proteinMRJP-1

    5)

    3, 6, 7)

    MRJP 5

    501-1196 1 25-4

    Laboratory of Microbiology, Gifu Pharmaceutical University (1-25-4 Daigaku-nishi, Gifu 501-1196, JAPAN)

  • Vol. 62, 32-37 (2013) 33

    60-70%9-18%

    7-18% 3-8%

    6, 7, 11). 90-95%

    10-hydroxy-trans-2-decenoic acid

    10H2DA 10-hydroxydecanoic acid10HDA

    10)

    MRJPMRJP15 90%8, 9) 10%

    10-Hydroxy-trans-2-decenoic acid10H2DA

    50%

    10H2DA

    10-13)

    10-Hydroxydecanoic acid10HDA 10

    10H2DA

    10)

    14-16)

    10H2DA

    10HDA

    17-21) 10H2DA

    10HDA

    22)

    23-25)10H2DA

    lipopolysaccharideLPS interferon

    IFN-

    18-20) T 26, 27)

    28, 29)

    Toll-like receptorTLR

    10-hydroxy-trans-2-decenoic acid10H2DA

    10-hydroxydecanoic acid10HDA

    10 TLR110

    TLR TLR

    TLRTLR

    LPS

    Flagellin

    CpG DNA ssRNAdsRNA 30)TLR

    TLR

    IL-6 10H2DA

    Kohno

    15)LPS IFN-

    TNF- IL-6

    5 kDa

    LPS IL-6

    10H2DA 18)10H2DA NF-B

    TNF- NF-B

    10H2DA IL-6IB-

    Lipocalin 2 granulocyte-colony stimulating factor

    G-CSFIB- LPS IL-6Lipocalin

    2 G-CSF 31, 32)10H2DA IB-

    IL-6 IB-

    NF-B 10H2DA NF-B

  • 34

    IB-

    NO 10H2DA

    NO

    LPS IFN-

    IFN-

    NO iNOS

    iNOS NO

    10H2DA LPS iNOS

    NO 20)10H2DA IFN-

    IFN- NO

    IFN- STAT 10H2DA

    10H2DA JAK-STAT

    NO

    IFN- PI3K-Akt NF-B

    33)10H2DA NF-B

    PI3K-Akt NO

    34)

    10H2DA IFN- NF-B

    iNOS NO

    LPS 10H2DA

    LPS TLR4

    NF-B

    TNF- IL-6

    IRF-3 IFN-

    IFN-STAT

    NF-B iNOS

    10H2DA LPS IFN-

    NF-B IL-6 iNOS

    10H2DA IFN- NO 19)IFN-NOJAK-STAT

    STAT1 TNF-

    NF-B

    35)TNF- IRF-1

    IRF-8 36)IFN- IRF-1

    IRF-8 10H2DA IRF-1

    IRF-8 10H2DA

    TNF- NF-B

    10H2DA IFN- IRF-8

    IRF-8TNF-NF-BiNOS

    NO

    NO 10HDA

    10HDA 10H2DA

    in vitro

    TRPA1

    17, 37-39)

    10H2DA

    10HDA

    IFN- 10H2DA

    IFN- iNOS

    IFN-STAT1

    STAT1 IRF-1 IRF-8

    IRF-1 IRF-8 TNF-

    TNF- NF-B

    iNOS 10H2DA IRF-8

    TNF-

    NF-B iNOS

  • Vol. 62, 32-37 (2013) 35

    LPS NO

    10HDA 10H2DA

    10H2DA

    10HDA IL-6

    NF-B

    LPS iNOS iNOS

    NF-B

    IFN-stimulated response elementISRE

    IFN--activated sequenceGAS 40-42)

    10HDA NF-B GAS ISRE

    ISRE IFN-

    STAT1STAT2

    IRF-1

    10HDA IFN- STAT1STAT2

    IRF-1

    IRF-1

    LPS 10H2DA

    LPS NF-B

    IFN- 10HDA

    10HDA IFN-

    IRF-1

    IRF-1 ISRE

    10H2DA 10HDA LPS

    10H2DA 10HDA

    18, 37-39)LPS

    10H2DA

    10HDA

    10H2DA NF-B IB-

    10HDA IRF-1

    ISRE

    NF-B5

    2

    2

    43-46)10H2DA

    NF-B

    10H2DA

    10H2DA NF-B TNF-

    NF-B 19)

    10H2DA NF-B

    NF-B

    NF-B

    10H2DA NF-B IB-

    NF-B

    ER 10H2DA 10HDA

    37)

    10H2DA 10HDA ER

    10H2DA 10HDA LPS

    47)10H2DA 10HDA

    GPR30 GPCR

    48)Moutsatsou 10H2DA GPR30

    49) GPCR

    GPR120 GPR40

    50, 51)GPR119

    52)GPR84 53)GPR41

    GPR43 54)

    GPR84 9-14

  • 36

    LPS

    53)10H2DA 10HDA

    GPR120 -3 LPS

    GPR120 TNF-

    10H2DA 10HDA

    55) GPCR

    orphan GPCR

    10H2DA 10HDA

    10H2DA

    100

    mM 10H2DA 10)10H2DA

    mM

    mM

    10H2DA

    10H2DA 10HDA

    1) Cherniack E. P., Altern. Med. Rev., 15, 124135 (2010).

    2) Miyata T., J. Pharmacol. Sci., 103, 127131, (2007).

    3) Rembold H., Vitam. Horm., 23, 359382 (1965).

    4) Weaver N., Science, 121, 509510 (1955).

    5) Kamakura M., Nature, 473, 478483 (2011).

    6) Sabatini A. G., Marcazzan G. L., Caboni M. F., Bogdanov S.,

    Almeida-Muradian L. B. d., J. ApiProd. ApiMed. Sci., 1,

    1621 (2009).

    7) Melampy R. M., Jones D. B., Proc. Soc. Exp. Biol. Med.

    Soc., 41, 382388 (1939).

    8) Schmitzova J., Klaudiny J., Albert S., Schroder W.,

    Schreckengost W., Hanes J., Judova J., Simuth J., Cell. Mol.

    Life Sci., 54, 10201030 (2005).

    9) Drapeau M. D., Albert S., Kucharski R., Prusko C.,

    Maleszka R., Genome Res, 16, 13851394 (2006).

    10) Lercker G., Capella P., Conte L. S., Ruini F., Giordani G., J.

    Apic. Res., 21, 178184 (1982).

    11) Howe S. R., Dimick P. S., Benton A. W., J. Apic. Res., 24,

    5261 (1985).

    12) Antinelli J. -F., Zeggane S., Davico R., Rognone C., Faucon

    J. P., Lizzani L., Food Chem., 80, 8589 (2003).

    13) Weaver N., Law J. H., Nature, 188, 938939 (1960).

    14) Tamura T., Fujii A., Kuboyama N., Folia Pharmacol.

    Japon., 89, 7380 (1987).

    15) Kohno K., Okamoto I., Sano O., Arai N., Iwaki K., Ikeda

    M., Kurimoto M., Biosci. Biotechnol. Biochem., 68,

    138145 (2004).

    16) Helleu C., Ann. Inst. Pasteur (Paris), 91, 231237 (1956).

    17) Townsend G. F., Morgan J. F., Tolnai S., Hazlett B., Morton

    H. J., Shuel R. W., Cancer Res., 20, 503510 (1960).

    18) Sugiyama T., Takahashi K., Tokoro S., Gotou T., Neri P.,

    Mori H., Innate Immun., 18, 429437 (2011).

    19) Takahashi K., Sugiyama T., Tokoro S., Neri P., Mori H.,

    Cell. Immunol., 273, 7378 (2012).

    20) Sugiyama T., Takahashi K., Kuzumaki A., Tokoro S., Neri

    P., Mori H., Inflammation, 36, 372-378 (2013).

    21) Blum M. S., Novak A. F., Taber S., Science, 130, 452453

    (1959).

    22) Pavel C. I., Mrghita L. A., Bobi O., Dezmirean D. S.,

    apcaliu A., Radoi I. Mda M. N., Scientifical Papers,

    Anim. Sci. Biotechnol., 44, 108118 (2011).

    23) Erem C., Deger O., Ovali E., Barlak Y., Endocrine, 30,

    175183 (2006).

    24) Mannoor M. K., Shimabukuro I., Tsukamoto M., Watanabe

    H., Yamaguchi K., Sato Y., Lupus, 18, 4452 (2009).

    25) Karaca T., Bayiroglu F., Yoruk M., Kaya M. S., Uslu S.,

    Comba B., Mis L., Eur. J. Histochem., 54, e35 (2010).

    26) Gasic S., Vucevic D., Vasilijic S., Antunobic M., Chinou I.,

    Colic M., Immunopharmacol. Immunotoxicol., 29, 521536

    (2007).

    27) Vucevic D., Mellious E., Vasilijic S., Gasic S., Ivanovski P.,

    Chinou I., Colic M., Int. Immunopharmacol., 7, 12111220

    (2007).

    28) Yang X. Y., Yang D. S., Wei Z., Wang J. M., Li C. Y., Hui Y.,

    Lei K. F., Chen X. F., Shen N. H., Jin L. Q., Wang J. G., J.

    Ethnopharmacol., 128, 314321 (2010).

    29) Wang J. G., Ruan J., Li C. Y., Wang J. M., Li Y., Zhai W. T.,

    Zhang W., Ye H., Shen N. H., Lei K. F., Chen X. F., Yang X.

  • Vol. 62, 32-37 (2013) 37

    Y., Rheumatol. Int., 32, 27912799 (2012).

    30) Kimura H. J., Suzuki K., Landek-Salgado M. A., Caturegli

    P., Jounai N., Kobiyama K., Takeshita F., Endocr. Metab.

    Immune Disord. Drug Targets, 11, 252263 (2009).

    31) Yamamoto M., Yamazaki S., Uematsu S., Sato S., Hemmi

    H., Hoshino K., Kaisho T., Kuwata H., Takeuchi O.,

    Takeshige K., Saitoh T., Yamaoka S., Yamamoto N.,

    Yamamoto S., Muta T., Takeda K., Akira S., Nature, 430,

    218222 (2004).

    32) Yamazaki S., Matsuo S., Muta T., Yamamoto M., Akira S.,

    Takeshige K., J. Biol. Chem., 283, 3240432411 (2008).

    33) Yang C. H., Murti A., Pfeffer S. R., Kim J. G., Donner D. B.,

    Pfeffer L. M., J. Biol. Chem., 276, 13756-13761 (2001).

    34) Weinstein S. L., Finn A. J., Dave S. H., Meng F., Lowell C.

    A., Sanghera J. S., Defranco A. L., J. Leukoc. Biol., 67,

    405-414 (2000).

    35) Vila-del Sol V., Diaz-Munoz M. D., Fresno M., J. Leukoc.

    Biol., 81, 272283 (2007).

    36) Vila-del Sol V., Punzon C., Fresno M., J. Immunol., 181,

    44614470 (2008).

    37) Suzuki K. M., Isohama Y., Maruyama H., Yamada Y.,

    Narita Y., Ohta S., Araki Y., Miyata T., Mishima S., Evid.

    Based Complement. Alternat. Med., 5, 295302 (2008).

    38) Koya-Miyata S., Okamoto I., Ushio S., Iwaki K., Ikeda M.,

    Kurimoto M., Biosci. Biotechnol. Biochem., 68, 767773

    (2004).

    39) Terada Y., Narukawa M., Watanabe T., J. Agric. Food Chem.

    59, 26272635 (2011).

    40) Kim Y. M., Lee B. S., Yi K. Y. and Paik S. G., Biochem.

    Biophys. Res. Commun., 236, 655660 (1997).

    41) Kamijo R., Harada H., Matsuyama T., Bosland M.,

    Gerecitano J., Shapiro D., Le J., Koh S. I., Kimura T.,

    Green S. J., et al., Science, 263, 16121615 (1994).

    42) Gao J., Morrison D. C., Parmely T. J., Russell S. W.,

    Murphy W. J., J. Biol. Chem., 272, 12261230 (1997).

    43) Leung T. H., Hoffmann A., Baltimore D., Cell, 118,

    453464 (2004).

    44) Hoffmann A., Leung T. H., Baltimore D., EMBO J., 22,

    55305539 (2003).

    45) Anrather J., Racchumi G., Iadecola C., J. Biol. Chem., 280,

    244252 (2005).

    46) Cui R., Tieu B., Recinos A., Tilton R. G., Brasier A. R., Circ.

    Res., 99, 723730 (2006).

    47) Pedram A. Razandi M. Levin E. R. Mol. Endocrinol., 20,

    1996-2009 (2006).

    48) Mizukami Y., Endocr. J., 57, 101107 (2010).

    49) Moutsatsou P., Papoutsi Z., Kassi E., Heldring N., Zhao C.,

    tsiapara A., Melliou E., Chrousos G. P., Chinou I.,

    Karshikoff A., Nilsson L., Dahlman-Wright K., PLoS ONE,

    5, e15594 (2010).

    50) Briscoe C. P., Tadayyon M., Andrews J. L., Benson W. G.,

    Chambers J. K., Eilert M. M., Ellis C., Elshourbagy N. A.,

    Goetz A. S., Minnick D. T., Murdock P. R., Sauls H. R. Jr.,

    Shabon U., Spinage L. D., Strum J. C., Szekeres P. G., Tan

    K. B., Way J. M., Ignar D. M., Wilson S., Muir A. I., J. Biol.

    Chem., 278, 1130311311 (2003).

    51) Hirasawa A., Tsumaya K., Awaji t., Katsuma S., Adachi T.,

    Yamada M., Sugimoto Y., Miyazaki S., Tsujimoto G., Nat.

    Med., 11, 9094 (2005).

    52) Chu Z. L., Carroll C., Chen R., Alfonso J., Gutierrez B., He

    H., Lucman A., Xing C., Sebring K., Zhou J., Wagner B.,

    Unett D., Jones R. M., Behan D. P., Leonard J., Mol.

    Endocrinol.,24, 161170 (2010).

    53) Wang J., Wu X., Simonavicius N., Tian H., Ling L., J. Biol.

    Chem., 281, 34457-34464 (2006).

    54) Brown A. J., Goldsworthy S. M., Barnes A. A., Eilert M. M.,

    Tcheang L., Daniels D., Muir A. I., Wigglesworth M. J.,

    Kinghorn I., Fraser N. J., Pike N. B., Strum J. C.,

    Steplewski K. M., Murdock P. R., Holder J. C., Marshall F.

    H., Szekeres P. G., Wilson S., Ignar D. M., Foord S. M.,

    Wise A., Dowell S. J., J. Biol. Chem., 278, 11312-11319

    (2003).

    55) Oh D. Y., Talukdar S., Bae EJ., Imamura T., Morinaga H.,

    Fan W., Li P., Lu W. J., Watkins S. M., Olefsky J. M., Cell,

    142, 687-698 (2010).

    132

  • 38

    a), b) *, b)

    Melicope 230 Rutaceae

    2

    M. triphylla8-geranyloxy-

    5-methoxypsoralen 4

    melicotriphyllin AD M. denhamii 8

    melicodenine A H2 melicodin A B

    melicodin C 5 melicodenone A

    E Melicodenine A H melicodin C DielsAlder 2 + 2

    N-methylflindersine

    melicodenone A B

    Melicope triphyllaMelicope denhamii

    Chemical Constituents of Melicope Species (Rutaceae)

    Ken-ichi NAKASHIMAa)

    , Masayoshi OYAMAb) *, Munekazu IINUMA

    b)

    Abstract: Melicope (Rutaceae) consists of approximately 230 species and ranges from the Malagacy region east to the Pacific basin

    and south to New Zealand. A huge variety of secondary metabolites were isolated from the plants of Melicope genus, acetophenones,

    quinolinone- and furoquinoline-alkaloids, coumarins, and polymethoxyflavonoids. In the current study, two species of M. triphylla

    (LAM.) MERR. and M. denhamii (SEEM.) T. G. HARTLEY were investigated to obtain four new furanocoumarins melicotriphyllins AD,

    eight novel alkaloids melicodenines AH, three new phenylpropanoids melicodins AC, and five new sesquiterpenes melicodenones

    AE. These structures were established by spectroscopic analyses, including extensive 1D and 2D NMR experiments.

    Melicotriphyllins AD were linear-types of furanocoumarins bearing a hydroxyl or a hydroperoxy group on the geranyloxy side

    chain. Melicodenine A was a bisquinolinone alkaloid comprised of two N-methylflindersine, while melicodenines BH were

    composed of single molecular N-methylflindersine with acetophenones or furanocoumarin or phenylpropanoids. These novel

    quinolinone alkaloids were presumed to form through the Diels-Alder or [2+2] cycloaddition. Furthermore, melicodenones A and B

    were the first bicyclic zierane-type sesquiterpenes obtained from plant resources by the isolation of zierane.

    Key phrases: Melicope triphylla, Melicope denhamii, furanocoumarin, bisquinolinone alkaloid, sesquiterpene

    a) 464-8650 1-100

    Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University (1-100 Kusumoto-cho, Chikusa-ku, Nagoya

    464-8650, JAPAN)

    b) 501-1196 1 25-4

    Laboratory of Pharmacognosy, Gifu Pharmaceutical University (1-25-4 Daigaku-nishi, Gifu 501-1196, JAPAN)

  • Vol. 62, 38-47(2013) 39

    Rutaceae 155

    1600 1)

    CitrusPoncirus

    Zanthoxylum

    Phellodendron amurense

    Ruta graveolens

    2)

    Ptelea trifoliata HIF-1

    3)

    4)

    Glycosmis

    5-7)Murraya

    Clausena

    8), 9)

    HL-60 10-12)Acronychia

    13)

    DNA

    Melicope14)

    230

    15)

    Chart 1

    M.

    pteleifolia 3 16)

    Chart 1. An epitome of the constituents isolated from Melicope species

  • 40

    Chart 2. Structures of the compounds isolated from the fruits of Melicope triphylla

    13), 31), 32)Acradenia 33), 34)Boronia

    35), 36)

    M.

    triphylla

    M. denhamii

    M. triphylla

    M. triphylla

    1

    37-39)

    40-42)

    A B

    1 : 1

    HPLC

    18 Chart

    2 6 Chart 3

    -

    melicotriphyllin A D

    1H- 13C-NMR

    heteronuclear multiple bond connectivity

    spectroscopy HMBCdouble quantum filtered correlation

    spectroscopy DQF-COSY nuclear Overhauser

    enhancement and exchange spectroscopyNOESY

    2D-NMR Fig. 15

    8

    melicotriphyllin A B

    8 8

    13C-NMR 8

    melicotriphyllin A 70.4 ppm

  • Vol. 62, 38-47(2013) 41

    Fig. 1. Selected 2D NMR correlations observed in melicotri-

    phyllins A D

    melicotriphyllin B 82.0 ppm

    HR-ESIMS melicotriphyllin A

    B

    melicotriphyllin A 8

    melicotriphyllin B

    melicotriphyllin C

    D melicotriphyllin A B

    7 7

    7melicotriphyllin A

    B

    Melicotriphyllin B D

    melicotriphyllin A C

    4

    Chart 3. Structures of the compounds isolated from the roots

    of Melicope triphylla

    8-geranyloxy-5-

    methoxy-psoralen Phellopterin

    8-prenyloxy- 5-methoxypsoralen

    8-geranyloxy-5-methoxypsoralen

    melicotriphyllin

    BD

    Phebalium

    43), 44)

    -

    melicophyllone B

    TLC methyl p-

    geranyloxy-trans-cinnamate

    M. denhamii

    M. denhamii

    M. denhamii

    490 g

    1: 1

    78.3 g

    HPLC

    8

    melicodenine A H2

    melicodin ABmelicodin

    C 17

    N-methylflindersine

    M. denhamii

  • 42

    Chart 4. Structures of the compounds isolated from the leaves of Melicope denhamii

    DielsAlder

    melicodenine A B

    Melicodenine A

    HR-ESIMS C30H30N2O4

    1H-NMR 4

    2N-

    DQF-COSY

    2

    4 13C- NMR

    2

    HMBC 2 N-

    4

    2 1-methylquinolin-2-one

    Me2-2(2)/C-3(3)H-3(3')/C-4a(4a)

    H-4(4)/C-2(2) HMBC

    H-4(4)/C-5(5)

    Fig. 2. Selected 2D NMR correlations of melicodenine A

    H-4(4)/C-10b(10b) 4a(4a)

    2,2-dimethylpyran 2

    N-methylflindersine

    DQF-COSY 3 3'

    H-4/C-4a H-4/C-10a HMBC

    10b 4'

    melicodenine A Fig. 2

    ESIMS retro Diels-Alder

    N-methylflin-

    dersine [M+H]+ m/z 242

    NOESY H-10/H-4

    H-4/Me-22) H-4/Me-22)

    melicodenine A Fig. 2

    CD

    melicodenine A

    2 N-methylflindersine

    M. pteleifolia

    melicobisquinolinone A B

    16)melicodenine A 3 Chart 5

  • Vol. 62, 38-47(2013) 43

    Chart 5. Types of dimerization in the molecules of dimeric quinolinone alkaloids (Bessonova 51))

    5 melicodenine A

    Diels-Alder

    Fig. 3

    melicodenine B

    Diels-Alder

    N-methylflindersine

    evodionol methyl ether

    Fig. 3. Plausible biosyntheses of melicodenines A and B

    N-methylflindersine evodionol methyl ether

    melicodenine B

    2 + 2

    melicodenine C G

    Melicodenine C

    HR-ESIMS C26H27NO5

    1H-NMR 1

    N-2

    4 1

    DQF-COSY

    4

    HMBC

  • 44

    H-4/C-5H-4/C-10bMe-6/C-5Me-6/C-6aH-10/C-10b

    1-methylquinolin-2-one

    H-4/C-2Me2-2/C-3

    N-methylflindersine

    C-4 C-3 4

    3,4-methylenedioxyphenyl

    H-2/C-7, H-6C-7 MeO-9/C-9 HMBC

    3,4-methylenedioxyphenyl 7

    9

    melicodenine C Fig. 4

    NOE H-3/H-4H-3/H2-9

    H-4/H-7H-8/H-2H-8/H-6 NOE

    Fig. 4

    N-methylflindersine 3,4-methylenedioxy-

    cinnamyl alcohol methyl ether 2+2

    Fig. 5

    melicodenine

    D E

    melicodenine C

    melicode-

    nine D E 3,4-dimethoxycinnamyl alcohol

    methyl ether melicodin A

    melicodin A

    Melicodenine C E

    melicodenine F G

    2+2

    N-methylflindersine bergapten

    Fig. 6

    melicodenine F

    N-methylflindersine C(3)=C(4)

    melicodenine G C(4a)=C(10b)

    Toddalia asiatica

    toddacoumalone 52)

    2+2

    Fig. 4. Selected 2D NMR correlations of melicodenine C

    .

    Fig. 5. Plausible biosyntheses of melicodenines C E

    melicodenine H

    Melicodenine H ESIMS

    C24H23NO5 1D- 2D-NMR

    1-methylquinolin-2-one

    2 1

    2

    HMBC

    H-6/C-2H-6/C-4H-6/C-7H-3/C-5

    H-7/C-2H-7/C-6H-8/C-1MeO-2/C-2OCH2O/C-4

    Fig. 6. Plausible biosyntheses of melicodenines F and G

  • Vol. 62, 38-47(2013) 45

    Fig. 7. Selected 2D NMR correlations of melicodenine H

    OCH2O/C-5C-7

    2-methoxy-4,5-methylenedioxyphenyl

    H-7/C-2H-7/C-2bH-8/C-2a

    C-2a C-7 H-7/C-2a H-8/C-2b

    C-7 C-2b

    NOESY H-7/H-10 H-7/H2-9

    NOE Fig. 7

    Melicodenine Hmelicodin A

    melicobisquinolinone B melicodenine H

    Melicobisquinolinone B M. pteleifolia

    Diels-Alder

    melicodenine A melicodenine A retro

    DielsAlder melicobisquino-

    linone B (Fig. 8)

    melicodenine A ESIMS m/z 425

    [M+H+Me2CO]

    melicodenine HN-methyl- flindersinemelicodin

    A Fig. 8

    -M. denhamii

    2

    melicophyllone A C M. elleryana

    zierone417), 24), 53) M. denhamii 5

    melicodenone A E

    Chart 6

    zierane

    melicodenone A B

    Melicodenone A B

    zierone zierone 3

    Zierone

    Zieria macrophylla

    54) M. elleryana

    zierone

    55)

    2

    Chandonanthus hirtellus56Saccogyna viticulosa57)

    3

    3

    melicodenone A B

    zierone

    2 3

    Fig. 8. Plausible biosyntheses of melicodenine H and melicobisquinolinone B

  • 46

    Chart 6. Structures of the compounds isolated from the roots

    of Melicope denhamii

    guaiane

    melicodenone C E

    Melicodenone C E

    melicodenone C

    E 6

    Barton Gupta

    1, 2-

    58)

    1, 2-

    20

    Melicodenine A H

    59), 60)

    Dedy Darnaedi

    Joko Ridho Witono

    1) Chase M. W., Morton C. M., Kallunki J. A., Am. J. Bot., 86,

    11911199 (1999).

    2) Watermann P. G., Grundon M. F., Chemistry and chemical

    taxonomy of the Rutales, Academic Press: London, 1983.

    3) Takechi K., Abe N., Nakashima K., Ito T., Oyama M.,

    Iinuma M., Nagasawa H., Okubo S., Yamaura T., In the

    Abstract papers for the 57th Annual Meeting of the Japanese

    Society of Pharmacognosy, Tokushima, September 2010, p.

    325.

    4) Svoboda G. H., Lloydia, 29, 206224 (1966).

    5) Negi N., Jinguji Y., Ushijima K., Ikeda S., Takemura Y.,

    Ju-ichi M., Wu T.-S., Ito C., Furukawa H., Chem. Pharm.

    Bull., 52, 362364 (2004).

    6) Takemura Y., Ju-ichi M., Hashimoto T., Kan Y., Takaoka S.,

    Asakawa Y., Omura M., Ito C., Furukawa H., Chem. Pharm.

    Bull., 42, 15481549 (1994).

    7) Takemura Y., Kuwahara J., Ju-ichi M, Omura M., Ito C.,

    Furukawa H., Heterocycles, 45, 14111414 (1997).

    8) McPhail A. T., Wu T.-S., Ohta T., Furukawa H., Tetrahedron

    Lett., 24, 53775380 (1983).

    9) Ito C., Thoyama M., Kajiura I., Furukawa H., Chem. Pharm.

    Bull., 41, 20962100 (1993).

    10) Kawaii S., Tomono Y., Katase E., Ogawa K., Yano M.,

    Takemura Y., Ju-ichi M., Ito C., Furukawa H., Leukemia

    Research, 23, 263269 (1999).

    11) Kawaii S., Tomono Y., Katase E., Ogawa K., Yano M.,

    Takemura Y., Ju-ichi M., Ito C., Furukawa H., J. Nat. Prod.,

    62, 587589 (1999).

    12) Ito C., Itoigawa M., Nakao K., Murata T., Tsuboi M.,

    Kaneda N., Furukawa H., Phytomedicine, 13, 359365

    (2006).

    13) Oyama M., Bastow K. F., Tachibana Y., Shirataki Y.,

  • Vol. 62, 38-47(2013) 47

    Yamaguchi S., Cragg G. M., Wu T.-S., Lee K.-H., Chin.

    Pharm. J., 55, 239245 (2003).

    14) Groppo M., Pirani J. R., Sarantino M. L. F., Blanco S. R.,

    Kallunki J. A., Am. J. Bot., 95, 9851005 (2008).

    15) Hartley T. G., Allertonia, 8, 1328 (2001).

    16) Kamperdick C., Van N. H., Sung T. V., Adam G.,

    Phytochemistry, 50, 177181 (1999).

    17) Jong T.-T., Wu T.-S., J. Chem. Res., Synop., 237 (1989).

    18) Muyard F., Bissoue A. N., Bevalot F., Tillequin F., Cabalion

    P., Vaquette J., Phytochemistry, 42, 11751179 (1996).

    19) Chen J.-J., Chang Y.-L., Teng C.-C., Chen I.-S., Planta.

    Med., 68, 790793 (2002).

    20) Fauvel M. T., Gleye J., Moulis C., Blasco F., Stanislas E.,

    Phytochemistry, 20, 20592060 (1981).

    21) Chung L. Y., Yap K. F., Goh S. H., Mustafa M. R., Imiyabir

    Z., Phytochemistry, 69, 15481554 (2008).

    22) Latip J., Hartley T. G., Waterman P. G. Phytochemistry, 51,

    107110 (1999).

    23) Wang E., Bartley J. P., Smith G., Bott R. C., Aust. J. Chem.,

    54, 739741 (2001).

    24) Wu T.-S., Jong T.-T., Ju W.-M., McPhail A. T., McPhail D.

    R., Lee K.-H., J. Chem. Soc., Chem. Commun., 956957

    (1988).

    25) Kumar V., Karunaratne V., Sanath M. R., Meegalle K.,

    Macleod J. K., Phytochemistry, 29, 243245 (1990).

    26) Chou C.-J., Lin L.-C., Chen K.-T., Chen C.-F. J. Nat. Prod.,

    55, 795799 (1992).

    27) Briggs L. H., Locker R. H., J. Chem. Soc., 23762379

    (1950).

    28) Kirby K. D., Sutherland M. D., Aust. J. Chem., 9, 411415

    (1956).

    29) Goh S. H., Chung V. C., Sha C. K., Mak T. C. W.

    Phytochemistry, 29, 17041706 (1990).

    30) Li G. L., Zeng J. F., Zhu D. Y., Acta Pharm. Sin., 32,

    682684 (1997).

    31) Wu T.-S., Wang M.-L., Jong T.-T., Lee K.-H., J. Nat. Prod.,

    52, 12841289 (1989).

    32) Su C.-R., Kuo P.-C., Wang M.-L., Liou M.-J., Damu A. G.,

    Wu T.-S., J. Nat. Prod., 66, 990993 (2003).

    33) Baldwin M. E., Bick R. C., Komzak A. A., Price J. R.,

    Tetrahedron, 16, 206211 (1961).

    34) Quader A., Armstrong J. A., Gray A. I., Hartley T. G.,

    Waterman P. G., Biochem. Syst. Ecol., 19, 171176 (1991).

    35) Ahsan M., Armstrong J. A., Gibbons S., Gray A. I.,

    Waterman P. G., Phytochemistry, 37, 259266 (1994).

    36) Ahsan M., Gray A. I., Waterman P. G., J. Nat. Prod., 57,

    673676 (1994).

    37) Higa M., Miyagi Y., Yogi S., Hokama K., Yakugaku Zasshi,

    107, 954958 (1987).

    38) Higa M., Ohshiro T., Ogihara K., Yogi S., Yakugaku Zasshi,

    110, 822827 (1990).

    39) Higa M., Imamura M., Shimoji K., Ogihara K., Suzuka T.,

    Chem. Pharm. Bull.,60, 11121117 (2012).

    40) Jong T.-T., Wu T.-S., Phytochemistry, 28, 245-246 (1989).

    41) Su T.-L., Lin F.-W., Teng C.-M., Chen K.-T., Wu T.-S.,

    Phytother. Res., 12, S74S76 (1998).

    42) Hou R.-S., Duh C.-Y., Wang S.-K., Chang T.-T.,

    Phytochemistry, 35, 271272 (1994).

    43) Rashid M. A., Gray A. I., and Watermann P. G., J. Nat.

    Prod., 55, 851858 (1992).

    44) Ito C., Katsuno S., and Furukawa H., Chem. Pharm. Bull.,

    46, 341343 (1998).

    45) Reisch J., Mester I., Krsi J., Szendrei K., Tetrahedron

    Lett., 39, 36813682 (1978).

    46) Mester I., Reish J., Szendrei K., Krsi J., Liebigs Ann.

    Chem., 11, 17851788 (1979).

    47) Jurd L., Wong R. Y., Benson M., Aust. J. Chem., 35,

    25052517 (1982).

    48) Ngadjui T. B., Ayafor J. F., Sondengam B. L., Connolly J.

    D., Rycroft D. S., Khalid S. A., Waterman P. G., Brown N. M.

    D., Grundon M. F., Ramachandran V. N., Tetrahedron Lett.,

    23, 20412044 (1982).

    49) Jurd L., Benson M., Wong R. Y., Aust. J. Chem., 36,

    759768 (1983).

    50) Tashkhodzhaev B., Lindeman S. V., Bessonova I. A.,

    Razakova D. M., Tsapkina E. N., Struchkov Y. T., Chem. Nat.

    Comp., 24, 714719 (1988).

    51) Bessonova I. A., Yunusov S. Y., Chem. Nat. Comp., 25,

    113 (1989).

    52) Ishii H., Kobayashi J., Ishikawa T., Tetrahedron Lett., 32,

    69076910 (1991).

    53) Sutherland M. D., Aust. J. Chem., 12, 436441 (1959).

    54) Penfold A. R., J. Proc. Roy. soc. N. S. Wales, 60, 104 (1926)

    55) Takeshita H., Hirama M., Ito S., Tetrahedron Lett., 13,

    17751776 (1972).

    56) Komala I., Ito T., Nagashima F., Yagi Y., Kawahara M.,

    Yamaguchi K., Asakawa Y., Phytochemistry, 71, 13871394

    (2010).

    57) Connolly J. D., Harrison L. J., Rycroft D. S., J. Chem. Res.

    Synop., 284285 (1994).

    58) Barton D. H. R., Gupta G. S., J. Chem. Soc., 19611966

    (1962).

    59) Holla H., Jenkins I. D., Neve J. E., Pouwer R. H., Simon M.

    P., Teague S. J., Quinn R. J., Tetrahedron Lett., 53,

    71017103 (2012).

    60) Li H., Tang Y., Hsung R. P., Tetrahedron Lett., 53,

    61386143 (2012).

    130

  • 48 FU

    FU

    a), b)

    dUTPase 5-

    dUTPase

    SAR dUTPase N- N-

    1,2,3- 14c

    dUTPase IC50 = 0.067 Min vitro

    HeLa S3 5--2-EC50 = 0.07 M in vivo

    MX-1 5- 8a dUTPase

    dUTPase

    dUTPase

    14c 5-

    5-

    Development of Human Deoxyuridine Triphosphatase Inhibitors for

    Combination Cancer Therapies with 5-FU

    Hitoshi MIYAKOSHIa), b)

    Abstract: Deoxyuridine triphosphatase (dUTPase) has emerged as a potential target for drug development as part of a new strategy

    of 5-fluorouracil-based combination chemotherapy. We have initiated a project to develop potent drug-like dUTPase inhibitors based

    on structure-activity relationship (SAR) studies of uracil derivatives. N-carbonylpyrrolidine- or N-sulfonylpyrrolidine-containing

    uracils and 1,2,3-triazole-containing uracils were found to be promising scaffolds that led us to human dUTPase inhibitors (14c)

    having excellent potencies (IC50 = 0.067 M) and an improved pharmacokinetic profile. The X-ray structure of a complex of 8a and

    human dUTPase revealed a unique binding mode wherein its uracil ring and phenyl ring occupy a uracil recognition region and a

    hydrophobic region, respectively, and are stacked on each other. Compound 14c dramatically enhanced the growth inhibition activity

    of 5-fluoro-2-deoxyuridine against HeLa S3 cells in vitro (EC50 = 0.07 M) and the antitumor activity of 5-fluorouracil against

    human breast cancer MX-1 xenograft model in mice significantly. These data indicate that 14c is a promising candidate for

    combination cancer chemotherapies with TS inhibitors.

    Key phrases: dUTPase, 5-fluorouracil, TS inhibitor

    a) 501-1196 1 25-4

    Laboratory of Medicinal & Pharmaceutical Chemistry, Gifu Pharmaceutical University (1-25-4 Daigaku-nishi, Gifu 501-1196,

    JAPAN)

    b) 300-2611

    3

    Medicinal Chemistry, Chemistry Research Laboratory, Tsukuba Research Center, Taiho Pharmaceutical Co., Ltd.

    (3 Okubo, Tsukuba, Ibaraki 300-2611, JAPAN)

  • Vol. 62, 48-56 (2013) 49

    Thymidylate synthaseTS 5-fluorouracil

    5-FU

    TS

    TS

    Ladner TS

    deoxyuridine triphosphatase

    dUTPase 1)

    TS

    thymidine triphosphatedTTP

    deoxyuridine monophosphate

    dUMP

    dUMP deoxyuridine triphosphate

    dUTPDNA DNA

    dTTP dUTP

    2)dUTPdUTPDNA

    DNA

    Fig. 1 TS

    3)-5)

    dUTPase dUTP 5-FU TS

    5-fluoro-2-deoxyuridine triphosphate

    FdUTPFdUMP

    6)-7)

    5-FU 8)-10)

    1), 11)-13)

    dUTPase TS

    dUTPase

    14)-15)

    Fig. 1. 5-FU dUTPase.

    dUTPase N-

    N-

    dUTPase

    Fig. 216)-25)

    Fig. 2. Structural formula of dUTPase inhibitors.

    dUTPase dUTPase

    dUTPase

    hit 5 Table

    3 5IC50 = 97 M

    structure-activity relationshipSAR 6a-w

    dUTPase Table 3

    Table 1 SAR

    1

    2

    N-2,2- 3

    2 6sIC50 = 1.3 M 6w

    IC50 = 1.1 M dUTPase

    lipophilicity

    clogP:1.83-2.17

    6s

    dUTPase

    N-

    dUTPase

    Table 2

    rigidity

    N-

    dUTPase

  • 50 FU

    Table 1. Human dUTPase inhibitory activity of

    amide-containing uracil derivative 5, 6a-w and reference

    compounds 1-4.

    aCalculated by ACD/LogP algorithm. bExcept compounds 1a-b,

    2-3 and 5, enzyme inhibition assay are tested at 30 M or below.

    IC50 values are shown as the mean SE (n = 3). cReference data.

    N.T. = not tested

    lipophilicity

    Table 2Table 2SAR 7aIC50 = 0.29 M

    S eutomereudismic ratio = 34

    Thienyl

    7jIC50 = 0.23 M

    N- bioisostere

    N-Table

    3 N-

    8aIC50 = 0.32 M R eutomer

    N-

    dUTPase

    Table 2. Human dUTPase inhibitory activity of

    N-carbonylpyrrolidine-containing uracil derivatives 7a-l and 6s

    aCalculated by ACD/LogP algorithm. bIC50 values are shown as

    the mean SE (n = 3) cExcept 7b, enzyme inhibition assay are

    tested at 1.0 M or below.

    Table 3. Human dUTPase inhibitory activity of

    N-sulfonylpyrrolidine-containing uracil derivatives 8a-f and 6s

    aCalculated by ACD/LogP algorithm. bIC50 values are shown as

    the mean SE (n = 3) cExcept 8b, enzyme inhibition assay are

    tested at 1.0 M or below.

    dUTPase dUTPase

    X

  • Vol. 62, 48-56 (2013) 51

    dUTP

    dUTPase

    IC50 dUTPase

    dUTP

    dUTP 0.1 M

    dUTPase

    dUTPase X

    8a dUTPase X

    1.7

    Fig. 3

    Fig. 3. Binding of 8a (blue stick) in the catalytic site of human

    dUTPase. (A) Polar interactions. Distances [] are indicated. Waters are shown as small spheres. Red line depicted

    ,-imino dUTP 1b in the human dUTPase: ,-imino dUTP

    1b structure (PDB code: 2HQU) superimposed on the 8a: human dUTPase (PDB code: 3ARA). (B) Comparison of 8a

    (blue stick) with ,-imino dUTP 1b (red stick)

    Fig. 3A dUTPase 8a

    Fig. 3B dUTPase ,-imino dUTP1b

    PDB code: 2HQU26),-imino dUTP

    1b

    dUTP dUTP mimic 1b 8a

    dUTPase

    dUTPase

    8a

    dUTPase

    8a

    Val65Ala90Ala98 Val