dampingrings-lecture4

Upload: lantea1

Post on 07-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 DampingRings-Lecture4

    1/33

    Insertion Devices

    Ina Reichel

    Berkeley Lab

    June 2012

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 1 / 33

  • 8/18/2019 DampingRings-Lecture4

    2/33

    Overview

    1.  Undulators and wigglers

    2.   Impact on radiation damping and equillibrium beam sizes

    3.  Nonlinear Effects

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 2 / 33

  • 8/18/2019 DampingRings-Lecture4

    3/33

    Undulators and Wigglers

     Periodic series of dipole magnets with period  λw   =  2πk w  with gap  g 

     Field is periodic along the beam axis (with  B̃  being the peak field)

    B y  =  B̃  sin(k w s ) (1)

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 3 / 33

  • 8/18/2019 DampingRings-Lecture4

    4/33

    Undulators and Wigglers (cont’d)

    Electromagnetic wiggler at the   ATF (left) and permanent magnetundulator at the   ALS (right).

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 4 / 33

  • 8/18/2019 DampingRings-Lecture4

    5/33

    Trajectory in a wiggler

      Assuming  y  = 0 and  B x  = 0 the equations of motion can be written

    as

    ẍ    =   −ṡ    e me γ 

     B z (s ) (2)

    s̈    = ẋ   e 

    me γ  B z (s ) (3)

    This can be approximated to (using ẋ  = v x   x   andṡ  = v s  = β c  =const.):

    ẍ  =

    β ceB w 

    me γ 

      cos k w s    (4)

    Using ẋ  = x β c  and ẍ  = x β 2c 2 this becomes

    x   = −   eB w me β c γ 

      cos k w s  = −   eB w me β c γ 

      cos

      s 

    λw 

      (5)

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 5 / 33

  • 8/18/2019 DampingRings-Lecture4

    6/33

    Trajectory in a wiggler (cont’d)

      Integration yields (β  = 1):

    x (s ) =  λw eB w 

    2πme γ c   sin k w s    (6)

    x (s ) =  λ2

    w eB 

    w 4π2me γ c   cos

    k w s    (7)

     The maximum angle of the trajectory and the wiggler axis is given by

    θw   = x max  =

      1

    γ 

    λw eB w 

    2πme c    (8)

      If  θw  ≤   1γ  the device is an undulator, otherwise it’s a wiggler

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 6 / 33

  • 8/18/2019 DampingRings-Lecture4

    7/33

    Wiggler contribution to energy loss

      Increased energy loss from synchrotron radiation

     Ideally integrated field over the lenth is zero, therefore can be insertedinto straight section without change to overall geometry

     Total energy loss per turn in a storage ring is given by(C γ  = 8.846 · 10−5   mGeV3 )

    U 0  =  C γ 

    2π E 40   I 2   with I  2  =

       1

    ρ2  ds    (9)

     Need to add wiggler contribution

    I 2w  =

    Lw  0

    1

    ρ2  ds  =

      1

    (B ρ)2

    Lw  0

    B 2 ds  =  1

    (B ρ)2B 2w Lw 

    2  (10)

      I 2w  does not depend on the wiggler period!

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 7 / 33

  • 8/18/2019 DampingRings-Lecture4

    8/33

  • 8/18/2019 DampingRings-Lecture4

    9/33

    Wiggler contribution to the momentum compaction factor

     The momentum compaction factor  αC  has an effect on otherparameters like the synchrotron tune.

    αC   =  1

    C 0I 1   with I  1  =

       D x 

    ρ  ds    (14)

      In a FODO lattice  αC  can be approximated using the horizontal tune:

    αC  ≈   1Q 2x 

    with Q  x  ≈   12π

    C 0

    β x (15)

     For the ILC damping rings without wigglers (C 0  = 6.7 km andβ x  ≈ 25m) one gets  αC  ≈ 5 × 10−4

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 9 / 33

  • 8/18/2019 DampingRings-Lecture4

    10/33

    Wiggler contribution to the momentum compaction factor(cont’d)

     Need dispersion in wiggler to calculate contribution to momentumcompaction factor.

      In a dipole with bending radius  ρ  and quadrupole gradient  k 1, thedispersion is given by

    d 2D x 

    ds 2   + K D x  =  1ρ   with K   =   1ρ2  + k 

    1   (16)

      Assuming  k 1  = 0 we get

    d 2D x 

    ds 2  +

      B 2w (B ρ)2

     D x   sin2 k w s  =

      B w 

    B ρ  sin k w s    (17)

      Try  D x  ≈ D 0   sin k w s    For  k w ρw   1, one can neglect the second term on the left:

    D x  ≈ −sin k w s ρw k 2w 

    (18)

    For the ILC damping wigglers  k w ρw  ≈ 160Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 10 / 33

  • 8/18/2019 DampingRings-Lecture4

    11/33

    Wiggler contribution to the momentum compaction factor(cont’d)

     Have assumed all contributions to dispersion are from bending in thewiggler. Things like misaligned quadrupole components etc. wouldadd additional contributions which we neglect here.

     Dispersion in generated in the wiggler is small:

    |D 0| ≈   1ρw k 2w 

    with   ρw   =  B ρ

    B w (19)

     For the ILC damping wiggler we get |D 0| ≈ 0.39mm  compared toabout 10 cm in the dipoles.

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 11 / 33

  • 8/18/2019 DampingRings-Lecture4

    12/33

    Wiggler contribution to the momentum compaction factor(cont’d)

     Now lets calculate the wiggler contribution to   I 1:

    I 1w   =

    Lw  0

    D x 

    ρ  ds  ≈ −

    Lw  0

    sin2 k w s 

    ρ2

    k 2

    ds  = −   Lw 2 ρ2

    k 2

    (20)

      I 1w  is negative as higher energy particles have a shorter path length inthe wiggler (which is the opposite from the path length in a storagering).

     For the ILC damping wigglers (ρw k w  ≈ 160 and  Lw  ≈ 210m) we getI 1w  ≈ −0.004m  which is small compared to   I 1 ≈ 3.4m  from thedipoles, so the contribution to the momentum compaction factor isnegligible.

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 12 / 33

  • 8/18/2019 DampingRings-Lecture4

    13/33

    Wiggler contribution to the natural energy spread

     Natural energy spread (C q  =  5532√ 

    3

    mc   = 3.832× 10−13 m):

    σ2δ  = C q γ 2   I 3

    J z I 2with I  3  =

       1|ρ|3   (21)

      I 3  does not depend on the dispersion, so the wiggler could possiblymake a large contribution to the energy spread

     Bending radius in the wiggler:1

    ρ =

      B 

    B ρ =

      B w 

    B ρ sin k w s  =

      1

    ρw sin k w s    (22)

     This yields

    I 3w   =   1ρ3w 

    Lw  0

    sin3 k w s  ds  =   4Lw 3πρ3w 

    (23)

     For the ILC damping wigglers (Lw  ≈ 210m,  ρw  ≈ 10.4m),I w 3 ≈ 0.079m−2 which is large compared to the dipole contribution(5.1 × 10−

    4

    m−2

    ).Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 13 / 33

  • 8/18/2019 DampingRings-Lecture4

    14/33

    Wiggler contribution to the natural energy spread (cont’d)

     In the ILC damping rings, the damping wiggler contribution to   I 2  andI 3  is large compared to the contribution of the dipoles. Therefore theenergy spread is largely determined by the wiggler:

    σ

    2

    δ ≈  4

    3πC q 

    γ 2

    ρw  =

      4

    mc C q γ B w    (24)

     For a damping ring, the energy spread of the extracted beam is animportant parameter: The larger it is, the more difficult thedownstream bunch compressors are to design

      With a beam energy of 5 GeV and a wiggler field of 1.6 T, the naturalenergy spread is about 0.13%. This is acceptable (upper limit isaround 0.15%).

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 14 / 33

  • 8/18/2019 DampingRings-Lecture4

    15/33

    Wiggler contribution to the natural emittance

     The natural emittance depends on   I 2  and   I 5

    (C q  =

      55

    32√ 3

    mc   = 3.832× 10−13m

    ):

    ε0  = C q γ 2   I 5

    J x I 2with I  2  =

       1

    ρ2ds and  

    I 5

     =    Hx 

    |ρ|3ds with

      Hx  = γ 

    x D 2

    x  + 2α

    x D x 

    D px 

     + β x 

    D 2

    px   (25)

     The contribution of the wiggler to  I 5  depends on the  β -function in thewiggler. We assume  αx  ≈ 0. Then we get

    D px  ≈

      dD x 

    ds   = k w D 0 cosk w s    (26)

      Assuming  k w     1β x  we can approximate

    Hx  ≈   β x ρ2w k 

    2w 

    cos2 k w s    (27)

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 15 / 33

  • 8/18/2019 DampingRings-Lecture4

    16/33

    Wiggler contribution to the natural emittance (cont’d)

     With this we can write the wiggler contribution to   I 5  as

    I 5w  ≈   β x ρ2w k 

    2w 

    Lw  0

    cos2 k w s 

    |ρ|3   ds  =  β x ρ5w k 

    2w 

    Lw  0

    | sin3 k w s | cos2 k w s ds    (28)

      Using| sin3 x |cos 2x  =   415π  we have

    I 5w  ≈   415π

    β x  Lw ρ5w k 

    2w 

    (29)

      Assuming β x  ≈ 10m  and the usual wiggler parameters(k w  ≈ 15.7m−1), we get   I 5w  ≈ 5.9 × 10−6 m−1.

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 16 / 33

  • 8/18/2019 DampingRings-Lecture4

    17/33

    Wiggler contribution to the natural emittance (cont’d)

     Lets see how this compares to the contribution from the dipoles(assuming  TME lattice tuned for minimum dispersion;  θ  is the bendingangle in the dipoles,  ρ  the bending radius):

    I 5  =   π5√ 

    15θ

    3

    ρ  (30)

      Assuming 120 dipoles with a field of 0.15 T and 5 GeV one getsI 5D  ≈ 1.7 × 10−7 m−1, so the wiggler contribution dominates.However often a less than ideal

      TME

     lattice is used where the wigglercontribution can be significant. In other lattices, like  FODO, the dipolecontribution can dominate.

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 17 / 33

  • 8/18/2019 DampingRings-Lecture4

    18/33

    Wiggler contribution to the natural emittance (cont’d)

      Combining   I 2w   and   I 5w  we get for the natural emittance

    0 ≈   815π

     C q γ 2 β x ρ3w k 

    2w 

    (31)

     Using the usual parameters this yields  0 ≈ 0.22nm.   If the dipole contribution is comparable to the wiggler contribution,

    the natural emittance will be larger than this by about a factor of two.  The wiggler contribution can be reduced by

    reducing the horizontal  β -function reducing the wiggler period, i.e. increasing  k w  reducing the wiggler field, i.e. increasing  ρw 

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 18 / 33

  • 8/18/2019 DampingRings-Lecture4

    19/33

    Dynamical effects of wigglers

     Aside from the effects on the natural emittance and the energyspread, the wigglers have two other effects:

    1.  provide linear focusing which must be included in the lattice design2.  non-linear field components that can affect particles at large amplitude

    and thus can limit the dynamic aperture

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 19 / 33

  • 8/18/2019 DampingRings-Lecture4

    20/33

    3D field in an ideal wiggler

     If the poles are infinitely wide, the horizontal field componentvanishes:

    B x    = 0 (32)

    B y    =   B w   sin k z z   cosh k z y    (33)B z    =   B w   cos k z z   sinh k z y    (34)

      As  B z  is non-zero for a vertical offset and the particle has a horizontalvelocity thanks to the wiggler field, a particle with a horizontal offset

    will experience a vertical deflecting force which leads to verticalfocusing in the wiggler.

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 20 / 33

  • 8/18/2019 DampingRings-Lecture4

    21/33

    Vertical focusing in a wiggler

     For simplicity we will assume that the trajectory of a particle is

    determined by the vertical field component of the wiggler. Otherforces, e.g. vertical deflections, will be trated as perturbations.

     The horizontal equation of motion on the mid-plane is given by

    d 2x 

    ds 2   =  B y 

    B ρ  =  B w 

    B ρ   sin k z s   cosh k z y    (35)

     with the solution

    x  =−

    B w 

    B ρ

    1

    k 2z sin k z s   cosh k z y    (36)

    and

    p x  = −B w B ρ

    1

    k z cos k z s   cosh k z y    (37)

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 21 / 33

  • 8/18/2019 DampingRings-Lecture4

    22/33

    Vertical focusing in a wiggler (cont’d)

     The vertical equation of motion is

    dp y ds 

      =   q p 0

    p x B z  =   B w 

    B ρ p x   cos k z s   sinh k z y    (38)

     The total deflection per period is

    ∆p y  ≈   B w B ρ   sinh k z y λw  

    0

    p x   cos k z s ds    (39)

      Using  p x  as from above we find

    ∆p y  ≈ −

    B w B ρ

    21

    k z sinh k z y   cosh k z y 

    λw  0

    cos2 k z s ds    (40)

    = −   π2k 2z 

    B w 

    B ρ

    2sinh2k z y    (41)

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 22 / 33

  • 8/18/2019 DampingRings-Lecture4

    23/33

    Vertical focusing in a wiggler (cont’d)

     Series expansion in  y   yields

    ∆p y  ≈ − πk z 

    B w 

    B ρ

    2 y  +

     2

    3k 2z y 

    3 + ...

      (42)

     Taking only the term linear in  y   into account, per wiggler period this

    is equivalent to a vertically focusing quadrupole with the integratedstrength

    k 1l  = − πk z 

    B w 

    B ρ

    2(43)

     The cubic term contributes

    ∆p (3)y    ≈ −2π

    3

    B w 

    B ρ

    2k z y 

    3 (44)

    which is often referred to as the “dynamic octupole” term.

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 23 / 33

  • 8/18/2019 DampingRings-Lecture4

    24/33

    Horizontal focusing in a wiggler

     The finite width of the magnet poles leads to a decrease of the field

    strength for large horizontal offsets.  In a simple model the field can be written as

    B x    =   −k x k y 

    B w  sin k x x   sinh k y y   sin k z z    (45)

    B y    =   B w   cos k x x   cosh k y y   sin k z z    (46)B z    =

      k z 

    k y B w   cos k x x   sinh k y y   cos k z z    (47)

    with the condition (from Maxwell’s equations)

    k 2x  + k 2z   = k 2y    (48)

     A particle with a horizontal offset sees a weaker field in one set of poles and a stronger field in the other. The net effect is a horizontaldeflection that appears as a horizontal defocusing force.

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 24 / 33

  • 8/18/2019 DampingRings-Lecture4

    25/33

    Horizontal focusing in a wiggler (cont’d)

     Consider a particle with the trajectory (x 0   is the inital horizontal

    offset)x  = x 0 + x̂   sin k z s with   x̂  =

      1

    k 2z 

    B w 

    B ρ  (49)

      Assuming  y  = 0 the horizontal kick per period is

    ∆p x    =   −   1B ρ

    λw  0

    B y  ds    (50)

    =   −B w B ρ

    λw  

    0

    cos[k x  (x 0 + x̂  sin k z s )] sin k z s ds    (51)

    =  B w 

    B ρ λw J 1 (k x x̂ ) sin(k x x 0) (52)

    ≈   B w B ρ

     λw k x x̂ 

    2  k x  x 0   (53)

    (54)Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 25 / 33

  • 8/18/2019 DampingRings-Lecture4

    26/33

    Horizontal focusing in a wiggler (cont’d)

     The horizontal focusing can be written as

    ∆p x  ≈  λw 2

    B w 

    B ρ

    2k 2x k 2z 

    x 0   (55)

     Compare to the vertical focusing

    ∆p y  ≈ −λw 2

    B w 

    B ρ

    2 k 2y k 2z 

    y 0   (56)

     For infinitely wide poles,  k x  → 0 which means there is no horizontalfocusing. In this case one also gets  k y   = k z . For finite horizontalpoles, the vertical focusing is enhanced due to  k 2y   = k 

    2x  + k 

    2z .

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 26 / 33

  • 8/18/2019 DampingRings-Lecture4

    27/33

    Nonlinear effects in wigglers

     At the center of a pole (sin k z s  = 1) and with  y  = 0 the vertical field

    is given by

    B y   = B w   cos k x x  = B w 

    1 −  1

    2k 2x x 

    2 +  1

    24k 4x x 

    4 − ...

      (57)

     The quadratic term leads to horizontal defocusing, the sextupole field“feeds down” (when combined with the wiggling trajectory) to give alinear focusing effect.

      In the same manner, the decapole component feeds down to give aoctupole component. So for finite pole width, we have a “dynamic

    octupole” in both planes.  Wigglers can have a significant impact on the non-linear dynamics.

    They can potentially restrict the dynamic aperture. Therefore it isimportant to have a good model for analysing the nonlinear effects.

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 27 / 33

  • 8/18/2019 DampingRings-Lecture4

    28/33

    Modelling the nonlinear effects of wigglers

    Modelling the nonlinear effects of wigglers is done in four steps:1.  Magnetostatic codes (e.g. Tosca, Radia) are used to calculate the

    magnetic field in one period.

    2.  An analytical model for the field (a mode decomposition) is fitted tothe field obtained in step 1.

    3.  The analytical model is then used to create a dynamical map whichdescribed the motion of a particle through the wiggler. This is donewith codes like MaryLie or COSY.

    4.  The dynamical map is then used in a tracking code to determine the

    impact of the wiggler on non-linear dynamics, e.g. tune shifts,resonances or dynamic aperture.

    We will have a brief look at some of the steps.

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 28 / 33

    M d lli h li ff f i l 2

  • 8/18/2019 DampingRings-Lecture4

    29/33

    Modelling the nonlinear effects of wigglers, step 2

    Generalise the representation used so far to inlude a series of wigglermodes:

    B x    =   −B w m,n

    c m,nmk x 

    k y ,mnsin mk x x   sinh k y ,mny   sin nk z z    (58)

    B y    =   B w m,n

    c m,n  cos mk x x coshk y ,mny   sin nk z z    (59)

    B z    =   B w m,n

    c m,nnk z 

    k y ,mncos mk x x   sinh k y ,mny   cos nk z z    (60)

    k 2y ,mn  = m2k 2x  + n

    2k 2z    (61)

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 29 / 33

    M d lli h li ff f i l 2 ( ’d)

  • 8/18/2019 DampingRings-Lecture4

    30/33

    Modelling the nonlinear effects of wigglers, step 2 (cont’d)

    From the vertical field on the mid-plane (y  = 0)

    B y   = B w m,n

    c m,n  cos mk x x   sin nk z z    (62)

    one can in principle determine the coefficients  c m,n  by using a 2D Fouriertransform of the field data from step 1. In practice this does not work well.The hyperbolic dependence of the field on  y  means that any small errorsfrom the fit increase exponentially away from the mid-plane.A better technique is to fit the field on a surface enclosing the region of 

    interest. The hyperbolic dependence of the field means that in this caseany small errors actually decrease exponentially towards the axis of thewiggler.

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 30 / 33

    M d lli h li ff f i l 2 ( ’d)

  • 8/18/2019 DampingRings-Lecture4

    31/33

    Modelling the nonlinear effects of wigglers, step 2 (cont’d)

     Using a cylindrical surface within the wiggler aperture and standard

    cylindrical coordinates, we get:B ρ   =

    m,n

    αm,nI m(nk z ρ) sin mφ  sin nk z z    (63)

    B φ   = m,n

    αm,nm

    nk z ρ I m(nk z ρ) cos mφ  sin nk z z    (64)

    B z    =m,n

    αm,nI m(nk z ρ) sin mφ  cos nk z z    (65)

     If we know the radial field component  B ρ  at a fixed radius, we can

    obtain the mode coefficients  αm,n  by a 2D Fourier transform.  Usually done as close to the poles as data quality allows.  Number of modes required depends on shape of field.   Once  αm,n  are known, we can construct the field components

    everywhere. The errors are small within the cylindrical surface.

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 31 / 33

    M d lli th li ff t f i l t 3

  • 8/18/2019 DampingRings-Lecture4

    32/33

    Modelling the nonlinear effects of wigglers, step 3

     With the mode decomposition of the field, we can now use an“algebraic” code to construct a dynamical map.

     An “algebraic” code manipulates algebraic expressions instead of numbers. There are different types of algebraic codes: Differential algebra codes like  COSY Lie algebra codes like MaryLie

    A differential algebra code can manipulate Taylor series. Byincorporating an integrator to solve the equations of motion into adifferential algebra code, we can construct a Taylor map representingthe dynamics of a particle in the given field.

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 32 / 33

    M d lli th li ff ts f i l s st 4

  • 8/18/2019 DampingRings-Lecture4

    33/33

    Modelling the nonlinear effects of wigglers, step 4

     The map constructed in step 3 now needs to be included in a trackingcode to look at the impact on beam dynamics

     Could just track a set of particles at varying amplitudes to “measure”the dynamic aperture, however a frequency map analysis yields muchmore informtion

    Ina Reichel (Berkeley Lab)   Insertion Devices   June 2012 33 / 33