dc-link 전압변동을 고려한 pmsm 토크제어의 성능 향상 방법

11
112 DC-link 전압변동을 고려한 PMSM 토크제어의 성능 향상 방법 (A Performance Improvement Method of PMSM Torque Control Considering DC-link Voltage Variation) 이정효 * 원충연 ** (Jung-Hyo Lee Chung-Yuen Won) Abstract 1. 서 28-11-15 논문 Copyright ⓒ 2014 KIIEE All right's reserved

Upload: others

Post on 13-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

[15]201400183(,).hwp(A Performance Improvement Method of PMSM Torque Control Considering DC-link
Voltage Variation)
***
Abstract
This paper proposes a PMSM torque control method considering DC-link voltage variation and
friction torque. In general EV/HEV application, two dimensions look-up table(2D-LUT) is used for
reference current generation due to its stable and robust torque control performance. Conventionally,
this 2D-LUT is established by flux-torque table to overcome the DC-link voltage variation. However,
the flux table establishment is more complex than the speed table establishment. Moreover, one flux
data reflects several speed conditions in variable DC-link voltage, friction torque cannot be considered
by using the flux table. In this paper, speed-torque 2D-LUT is used for current reference generation.
With this table, PMSM torque control is well achieved regardless of DC-link voltage variation by the
proposed control method. Simulation and experimental results validate improvement of torque control
error through friction torque compensation.
Key WordsPMSM Torque Control, DC-link Voltage Variation, 2D-LUT, Friction Torque Compensation
* LG 4 ** * Main authorSenior Research Engineer,
Automotive Components Development 4 Team, LG Innotek.
** Corresponding authorProfessor, School of Inf. and Comm., Sungkyunkwan Univ.
Tel031-290-7115, Fax031-290-7179 [email protected] 2014 10 20 12014 10 22 2014 11 21
1.
Synchronous Motor : PMSM)
LUT-- LUT
, - LUT
. , 1 (a) - 2 Look-up
(2D-LUT)
Journal of the Korean Institute of IIIuminating and Electrical Installation Engineers (2014) 28(11)112122 28-11-15
http://dx.doi.org/10.5207/JIEIE.2014.28.11.112 ISSN 1229-4691(Print) ISSN 2287-5034(Online)
113
28 11, 2014 11
2. DC-link Fig. 2. Control block considering the proposed DC-link voltage variation
DC-link
[1-3]. DC-link
- 2D-LUT
.
[4-5]. LUT

.
- 2D-LUT
,
. ,


.
1. Look-up (a) - 2D-LUT (b) - 2D-LUT
Fig. 1. The controller based look-up table for driving electric vehicle
114
Journal of KIIEE, Vol.28, No.11, November 2014

.
,
.
PMSM .
DC-link
-
DC-link
DC-link

.


DC-link
. PMSM
0 ( )
r r r d s q r fqs qs
v iR pL L dp L R pLv i dt
w w w f + -é ù é ùé ù é ù
= + =ê ú ê úê ú ê ú+ë û ë ûë û ë û (1)
( )3 ( ) 2 2
r r r e f qs d q ds qs
PT i L L i if= + - (2)

. ,

.
dc
v V
w f= + +
2 2 max
norm norm dc
v V
w f= + +
= (4)
(a)
(b)
3. - 2D-LUT (a) (b) -
Fig. 3. Design method of the speed-torque 2D-LUT
115
1dcV
d-axis current
4. DC-link d-q Fig. 4. The d-q axis current change in the
variable DC-link voltage
5. Fig. 5. The control block diagram for speed
normalization
(MTPA) ,
.
d-q
/ d
22
norm e
d f f d d q d q f d q qs r
d e f ed e d e f d q qs
n n n
L TL T L TL L i P P P
f f f w
ì üæ öï ï+ - - + - - -í ýç ÷ è øï ïî þ
ì ü æ öï ï+ - - + =í ý ç ÷ ï ï è øî þ
(5)
d-q. (5)

.
d-q .
DC-link d-q
d-q .
DC-link d-q
dcV
max 1 2 2( ) ( )
w f
(5) q
DC-link
LUT . DC-link
a DC-link (7) .
(7) DC-link
.
(8) .
116
Journal of KIIEE, Vol.28, No.11, November 2014
max max3 3
norm norm
v L i L i
v L i L i
w f
PMSM
3. DC-link

(9)
.
( ),L e r e e rT T B T F T Tw w= - = - × (10)

1

.


DC-link
.
Torque
Torque
Speed
Speed
6. - (a) DC-link (b) DC-link
Fig. 6. The speed-torque graph considering friction torque
7 (a) DC-link
, 7 (b)
- 2D-LUT
DC-link

.
Torque
Torque
Speed
Speed
7. - 2D-LUT (a) (b) - 2D-LUT
Fig. 7. The output torque error using flux-torque 2D-LUT
, - 2D-LUT DC-link

.
: DC-link
.
4)
.
Speed
Torque
_maxrw
_maxeT
Speed
8. - Fig. 8. The friction torque value considering
speed-torque
,
.
_ _max _max _max. ( , ) r eT e r e LF T T T Tw w = - (11)
, _ maxeT d-q ,
118
Journal of KIIEE, Vol.28, No.11, November 2014
_ maxLT .


.
9. Fig. 9. The control block diagram for friction
torque compensation

.
10
LT : DC-link
min ,L propT :

Speed
Torque
min _ .L propT
min _ .L convT
Torque
Speed
10. Fig. 10. The output torque considering the friction
torque compensation

DC-link
.
Torque
Speed
11.
Fig. 11. Developed torque and load torque by friction torque compensation
119
11


1. Table 1. Motor and load parameters
10
[mΩ] 30
Ld [mH] 0.260
Lq [mH] 0.560
[Vrms/krpm] 41.14
[Nm] 350
[rpm] 2400
[rpm] 8000
[Apk] 380
d-q
MTPA
.
12. (a) , (b) d-q
Fig. 12. Maximum output control corresponding to the motor speed variation
13 320V, 260V, 380V DC-link
.
1000rpm 350Nm ,
5000rpm
90kW
200Nm
d-q
.
Journal of KIIEE, Vol.28, No.11, November 2014
13. DC-link (a) DC-link : 320V, (b) DC-link : 260V, (c) DC-link : 380V
Fig. 13. Maximum output considering the DC-link voltage
14. DC-link ( : 4000rpm)
Fig. 14. Maximum output control considering the DC-link voltage variation
14 DC-link
. 4000rpm
DC-link . DC-link

.
4.2 DC-link

15. Fig. 15. Friction torque corresponding to the
speed variation
.
. 4000rpm
80Nm
.
121
DC-link
.
16. DC-link ( : 4000rpm, : 80Nm)
Fig. 16. Constant torque control considering the DC-link voltage variation
2. Table 2. Comparing of friction torque error
DC-link
260V 3.8% 2.9%
380V 4.1% 3.2%
17. (DC-link ; 320V) Fig. 17. Torque control error (DC-link : 320V)
17 DC-link
. 18, 19
260V, 380V
2 .
18. DC-link (DC-link : 260V) (a) (b)
Fig. 18. Torque control error at DC-link voltage variation (DC-link : 260V)
19. DC-link (DC-link : 380V) (a) (b)
Fig. 19. Torque control error at DC-link voltage variation (DC-link : 380V)
122
Journal of KIIEE, Vol.28, No.11, November 2014

DC-link
.
.
2014 () . (No. 2014R1A2A2A05006744)
References
[1] Y. Kusaka, E, Yamada, and Y. Kawabata, “Method and Apparatus for Driving and Controlling Synchronous Motor using Permanent Magnets as its Field System,” US Patent 55169995, Oct, 1996.
[2] JaeHyuk Lee, JungHyo Lee, JinHo Park, ChungYuen Won, “Field-weakening strategy in condition of DC-link voltage variation using on electric vehicle of IPMSM” IEEE-Conf. Electrical Machines and Systems (ICEMS), pp. 1-6, Aug. 2011.
[3] Yang Nanfang, Luo Guangzhao, Liu Weiguo, Wang Kang, “Interior permanent magnet synchronous motor control for electric vehicle using look-up table” IEEE-Conf., Electrical Machinesand Systems(ICEMS), pp.1015-1019, Jun. 2012.
[4] Tae-Suk Kwon, Gi-Young Choi, Mu-Shin Kwak and Seung-Ki Sul “Novel Flux-Weakening Control of an IPMSM for Quasi-Six-Step Operation,” IEEE-Trans. Ind. Appl., vol 44, no. 6 pp. 1722-1731, Nov. 2008.
[5] Bing Cheng, Tesch, T.R., “Torque Feedforward Control Technique for Permanent-Magnet Synchronous Motors,” IEEE-Trans. Ind. Elect., vol 57, no. 3, pp. 969-974, Mar. 2010.
[6] J. M. Kim and S. K. Sul, “Speed control of interior permanent magnet synchronous motor drive for the flux weakening operation,” IEEETrans.Ind.Appl.,vol.33,no.1,pp.43 –48,Jan./Feb.1997.

() 1982 9 20. 2006 . 2008 (). 2008 ∼2013 (). 2013∼ LG .
() 1955 5 10. 1978 . 1980 (). 1991 12∼1992 12 . 1998∼ 2000 .