連続体力学の基礎 -...

200

Upload: others

Post on 13-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤
Page 2: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

連続体力学の基礎れんぞくたいりきがくのきそ

古口日出男・永澤  茂

共  著

Fundamentals of Continuum Mechanics

Page 3: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

1.

, .

,

. , ,

.

.

2.

, , , ,

. , ,

.

, .

3. (keywords)

Internet ,

(tensile) (compressive) (shear)

(strain),

(elasticity) (plasticity),

(viscosity) (velocity),

, , ,

(vector) (tensor),

(basic vector),

(bound vector) (free vector),

- I -

本書の目的と使い方PrefaceContents

Page 4: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(differentiation of functions with several variables)

(integration),

( coordinate transformation),

(material coordinate)

(material derivative) = (substantial derivative),

(index), (summation convention),

(space) (time),

(deformation) , (field) (equilibrium),

(free body),

(divergence) (rotation),

(constitutive equation),

Leibniz (Leibniz integral rule)

Gau (Gauss ’divergence theorem),

(total differential) (increment),

(partial derivative) (ordinary differential),

(chain rule for partial derivative),

(multiplication of a matrix by a vector ),

(multiplication of matrices)

4.

,

.

.

,

.

. , , ,

. ,

.

- II -

連続体力学の基礎

Page 5: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

本書の目的と使い方 (How to use this book and purposes)  ............................................................. i

1. 本書の目的 ......................................................................................................................................... i

2. 達成したい目標 ................................................................................................................................. i

3. 核となる用語(keywords)  ............................................................................................................... i

4. 本書の内容および本書を使った学習の方法 ............................................................................... ii

1.連続体力学の考え方 (Defi nition of the continuum mechanics)  ...............................................1

1.1 連続体力学の歴史 (History of the continuum mechanics)  ...........................................................1

1.2 連続体の概念を理解するための取り組み方(Approach to philosophy)  ..................................2

1.3 力学とは ? (What is mechanics?)  ...................................................................................................2

1.4 連続体の性質(properties of a continuum body)  ..........................................................................4

1.5 空間内の物質の連続分布 : 密度と平滑化 (Distribution and smoothness)  .................................4

1.6 微小要素の大きさについて (Size of infi nitesimal elements)  ......................................................7

1.7 連続量(物理量)  ............................................................................................................................7

1,8 場の量 (時空間で定義される連続量)と表記法  .......................................................................9

1.9 連続体の分類  .................................................................................................................................10

1.10 連続体力学の学習で必要な考え方  ...........................................................................................12

1.11 例題 多質点系の平衡方程式  ......................................................................................................14

練習問題  ...............................................................................................................................................16

復習 基礎知識  .....................................................................................................................................17

練習問題  ...............................................................................................................................................21

2.ベクトルとテンソル (Vectors and tensors)  ............................................................................23

2.1 ベクトルの演算(積)と座標変換則

   (Vector product and the transformation rule of coordinates)   ..................................................25

 2.1.1 位置ベクトルと束縛ベクトル  ..............................................................................................25

 2.1.2 ベクトルの等価性 (Equality of vectors)  ..............................................................................26

 2.1.3 ベクトル場 (Vector fi eld)  ......................................................................................................27

目    次

- III -

目  次PrefaceContents

Page 6: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

 2.1.4 ベクトルの演算 (Operation rules in vector space)  ...............................................................29

  (1) スカラー積,内積 (inner product)  .....................................................................................29

    例題 2.1  ...................................................................................................................................29

    例題 2.2  ...................................................................................................................................29

    例題 2.3  ...................................................................................................................................30

  (2) ベクトル積 , 外積(outer product)  .....................................................................................31

    例題 2.4  ...................................................................................................................................31

  (3) 基底ベクトルの外積演算 ....................................................................................................32

  (4) 座標変換則 (Rules of translation and rotation of coordinates)  ...........................................33

    例題 2.5  ...................................................................................................................................34

  (5) 演算規則に慣れよう ............................................................................................................35

 2.1.5 まとめ ......................................................................................................................................36

練習問題 ...............................................................................................................................................37

2.2 テンソルの演算(積)と座標変換則

  (Tensor product and the transformation rule of coordinates)  ......................................................39

 2.2.1 ベクトルの演算(積)再考 ..................................................................................................39

 2.2.2 テンソル積 (dyadic, tensor product) と基底 (diad)  ............................................................40

 2.2.3 テンソル積によって表現される物理量 ..............................................................................43

 2.2.4 テンソル積の座標変換則 ......................................................................................................45

 2.2.5 関数としてのベクトル量 [ 復習 ]  ........................................................................................47

練習問題 ...............................................................................................................................................48

3.応力 (Stress)  ..................................................................................................................................51

3.1 応力ベクトル (stress vector)  ........................................................................................................51

3.2 応力テンソル(stress tensor)  .......................................................................................................52

3.3 法線応力とせん断応力(normal and shear stress)  .....................................................................55

3.4 せん断応力の対称性 (symmetry of shear stress components )  ...................................................55

3.5 表面力の釣り合い .........................................................................................................................56

 例題 3.1 .............................................................................................................................................59

 例題 3.2 .............................................................................................................................................63

 例題 3.3 .............................................................................................................................................65

3.6 Mohr の応力円(Mohr's stress circle)  ..........................................................................................66

- IV -

連続体力学の基礎

Page 7: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

 例題 3.4 .............................................................................................................................................68

 例題 3.5 .............................................................................................................................................69

練習問題 ...............................................................................................................................................70

4.ひずみ(Strain)  .............................................................................................................................73

4.1 1 次元の伸長変形  .........................................................................................................................73

4.2 運動記述のための座標系の選択  ................................................................................................74

4.3 3 次元変形への導入  .....................................................................................................................76

4.4 変形勾配  ........................................................................................................................................76

4.5 変形計量とひずみ  ........................................................................................................................78

4.6 変位場を用いたひずみの表現  .....................................................................................................79

 例題 4.1  .............................................................................................................................................80

 例題 4.2  ............................................................................................................................................ 81

4.7 体積ひずみ(dilatation)  ...............................................................................................................82

4.8 相対変位の分解(並進と剛体回転)(Linear motion and rigid rotation)  .................................82

練習問題  ...............................................................................................................................................84

5.構成方程式 , 固体弾・塑性の基礎 (Plasticity and elasticity on metal)  ...........................87

5.1 固体の機械的性質  ........................................................................................................................87

5.2 1次元材料引張試験  ................................................................................................................... 87

5.3 金属の結晶と塑性変形 (結晶のすべりによる変形)  ............................................................... 90

5.4 真応力と対数ひずみの構成近似モデル  .................................................................................... 93

5.5 弾性変形における実用弾性率  .....................................................................................................95

練習問題  ...............................................................................................................................................96

6.固体・流体の構成方程式 (Constitutive equations on solid and fl uid)  .................................99

6.1 流体および固体の力学的特性の記述  .........................................................................................99

6.2 完全流体 (perfect fl uid)  ...............................................................................................................99

 6.2.1 理想気体 (ideal gas)  ..............................................................................................................99

 6.2.2 非圧縮性流体 (Incompressible fl uid)  ..................................................................................100

6.3 Newton 流体(Newtonian fl uid)  ................................................................................................100

6.4 Stokes 流体(Stokes fl uid)  .........................................................................................................100

- V -

目  次PrefaceContents

Page 8: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

6.5 現実挙動の流体の状態方程式  ...................................................................................................101

6.6 Hooke 弾性固体(Hookean elastic solid)  ..................................................................................102

 6.6.1 等方性弾性体 (Isotropic elasticity)  .....................................................................................103

 6.6.2 体積弾性係数K  .....................................................................................................................104

  例題 6.1  ......................................................................................................................................105

 6.6.3 ポアソン比  ............................................................................................................................106

 6.6.4 横弾性係数  ............................................................................................................................107

 6.6.5 温度効果(Effect of temperature)  .......................................................................................108

6.7 線形粘弾性体(Linear viscoelastic bodies)  ...............................................................................108

 6.7.1 Maxwell 模型  ........................................................................................................................109

 6.7.2 Voigt 模型  ..............................................................................................................................110

 6.7.3 Maxwell 模型のクリープ関数(creep function)  .............................................................. 111

 6.7.4 Maxwell 模型の緩和関数 (relaxation function)  .................................................................111

練習問題  ............................................................................................................................................ 112

7.保存則と場の方程式 (Field equation and laws of conservation)

7.1 各種保存法則の復習  .................................................................................................................. 112

 7.1.1 エネルギー保存則  ................................................................................................................113

  (a) 現実世界の事象と変形過程の重要な性質  ......................................................................113

  (b) 熱の性質  ..............................................................................................................................114

 7.1.2 物体の運動の性質  ................................................................................................................114

 7.1.3 線形(並進) 運動量保存則  .................................................................................................115

 7.1.4 角運動量保存則  ................................................................................................................... 116

7.2 連続体力学から見たエネルギー保存則 (Balance of energy) .................................................117

7.3 Gauss の定理  ................................................................................................................................119

 7.3.1 関数の定積分の公式  ............................................................................................................119

 7.3.2 経路に沿った線積分による誘導  ........................................................................................120

 7.3.3 Gauss 定理の応用  ................................................................................................................ 123

  (a) 物理量 A が速度(uj) の場合 ............................................................................................123

  (b) 物理量 A がポテンシャル関数Ψの場合  ........................................................................ 124

  (c) 物理量 A が速度(uj) の場合(再び)  ............................................................................. 124

  (d) 物理量 A が 2 階テンソル Cij である場合  ...................................................................... 125

- VI -

連続体力学の基礎

Page 9: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

7.4 物質導関数 (Material derivative)  .............................................................................................. 125

7.5 体積積分の物質導関数 (Material derivative of volume integral)  ............................................129

7.6 補足 , Leibniz の積分公式 (Essential rules of Leibniz integration)  ..........................................131

7.7 連続と運動の方程式 (Equations of continuity and motion )  ....................................................132

 7.7.1 質量保存則と連続の方程式  ................................................................................................133

 7.7.2 運動量保存則と運動方程式  ................................................................................................133

7.8 エネルギー保存則の展開 (Description of energy balance) ......................................................135

練習問題  .............................................................................................................................................139

8.固体の弾性理論と応力関数 (Theory of elasticity and stress function)  .............................141

8.1 変位場解法の序  ..........................................................................................................................141

8.2 平面応力状態 (Plain stress state)  ..............................................................................................144

8.3 平面ひずみ状態 (Plain strain state)  ..........................................................................................145

8.4 Airy の応力関数 (Airy stress function)  .....................................................................................146

 例題 8.1 調和関数φと重調和関数Φの関係  .............................................................................150

 例題 8.2 応力関数Φから変位場の解析  .....................................................................................151

 例題 8.3 応力場と平衡方程式の関係  .........................................................................................154

 例題 8.4 3 次元丸棒の変形  ..........................................................................................................157

 例題 8.5 応力場から適合条件の照合  .........................................................................................160

8.5 サンブナンの原理 (Principle of Saint-Venant)  ........................................................................161

練習問題  .............................................................................................................................................163

9.流体の場の方程式と境界条件 (Field equation of fl uid and boundary condition)

9.1 Navier-Stokes 方程式  ..................................................................................................................165

9.2 境界条件について  ......................................................................................................................166

9.3 Reynolds 数と相似則  .................................................................................................................169

練習問題 (1),(2)  ...........................................................................................................................170

9.4 水平な水路あるいは管内の流れ  ...............................................................................................171

 例題 9.1  ...........................................................................................................................................172

 例題 9.2  ...........................................................................................................................................177

 例題 9.3  ...........................................................................................................................................178

練習問題 (3), (4)  ............................................................................................................................179

- VII -

目  次PrefaceContents

Page 10: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

9.5 完全流体  .......................................................................................................................................179

9.6 渦度と循環  ...................................................................................................................................181

9.7 渦無し流れ  ...................................................................................................................................183

 例題 9.4  ...........................................................................................................................................184

練習問題(5),(6),(7).......................................................................................................................186

- VIII -

連続体力学の基礎

Page 11: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

1.

1. 1

. ( , ), ( ,

), ( , ) ,

. ,

( ) .

, , 2

. , . ,

, .

, (velocity) .

, ,

(displacement) .

, 17 19 .

, . (17 , ), (18 ,

, , , ; 19 , , ),

(19 , ), (19

, ).

.

. (1653 , ), (1687, ),

( , ),

(1826, ), (1847, ).

1

Page 12: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

1. 2

2 .

(1) ,

.

(2) ,

, .

(1) , , .

, (2) ,

,

. (1) (2) ,

,

, (2) . (

) , . ,

, .

. ,

,

.

1. 3

, .

2

Page 13: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, .

, .

, , , . , (

) (material body, object, body)

. , , .

.

.

, ( ) ,

,

. ,

. ,

, .

, ,

.

,

.

, .

. , (

) , ,

. ,

.

, .

, ,

, (rigid body)

.

. ,

, .

, .

(material) (atom)(material body, body)

3

Page 14: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, .

, .

, ,

.

1. 4

a, b a <b [a, b]

( [a, b])

(continuum body)

, [1, 2] 1. 5

. ,

, .

1. 5 1. 5 .

[1, 2] [1. 5, 1. 512345]

[1. 500000000000001, 1. 512000000000000009] . . . . . .

3

, ( ) , 3 (x, y, z) .

, (

) . ( )

[ ] .

.

.

1. 5

,

4

Page 15: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

P (x, y, z) dV= dxdydz , dx, dy, dz

. ( ) , 3 dxdy,

dydz, dzdx 1 dV , ,

.

(mass density)

j=0 4

j ,

Vj Mj

1.

V0V1

V2V4dV4

V3

x

y P

5

Page 16: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

j 0, 1, 2, 3, 4

2 2 dV

dV . j=0, 1 ,

,

= (M0+M1)/(V0+V1) (1.1)

. j=0 ,

= M0/V0 (1.2)

. j=0, 1 ,

.

, ( )

. ,

.

j P (x, y, z) j (x, y, z) , (1.

3) dMj dVj dMj/dVj . 1

j=4 . (x, y, z) , Vj P

dMj dVj , dVj

( ). ,

.

P :

j

j

0d dd

limP,,j V

Mzyx

V(1. 3)

j j . dVj

(index)

,

6

Page 17: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, (1. 3)

. ( ) Q , j

.

P (x, y, z) , , (P) ,

.

.

1. 6

,

. dV

, P(x. y, z) .

dV , ,

. , ,

.

.

, 1

= 5×10-6 cm

, .

1. 7 ( )

.

, (linear momentum) , (angular

momentum), (energy) .

.

P(x, y, z) . dV=dxdydz ,

7

Page 18: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

v=(vx, vy, vz) 3*,

dp =(dpx, dpy, dpz) O dh =(dhx, dhy, dhz) (1. 4), (1. 5) 4*. OP=r= (x, y, z) O

P (position vector) . (1. 5)

, (outer product) . ,

.

Vdd vp (1. 4)

Vdd vrh (1. 5)

(1. 4) , P v (1. 6)

.

dVd

VVMomentumzyx

VV

pv0d0d

limd

dinlim,, (1. 6)

(1. 4) dV , v .

. ,

, .

,

dV , dp , dV

. dV +0 ,

.

dV

. ,

.

v 3 3(bold) v

v dV

8

3

4

Page 19: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

1. 8

, t (1 ) 3 r=(x, y, z) (3

) r

x 4

(r, t) .

, .

u(r, t), v(r, t), (r, t), p(r, t), T(r, t)

, (vector quantity) (bold) ,

, , (scalar quantity) .

, u ( )

.

(index)5* ,

.

: r = (x, y, z) = (x1, x2, x3) = (xk) = xk , ( k=1, 2, 3)

: u = (u1, u2, u3) = (uk) = uk, ( k=1, 2, 3) (1.7)

: v = (v1, v2, v3) = (vk) = vk, ( k=1, 2, 3)

k , (free index)

, u

. k, j .

: uk (xj, t) ( k=1, 2, 3, j=1, 2, 3) (1.8)

, .

, .

: u = [ u1 (x1, x2, x3, t), u2 (x1, x2, x3, t),

u3 (x1, x2, x3, t) ] (1.9)

0,1,2,3,…

9

5

Page 20: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, .

, ,

. ,

, . 6*.

1. 9

1.1 ,

. , .

, (solid) (fluid) .

, (displacement) .

(strain) .

, (velocity) . ,

(rate of strain) . ,

.

, , . ,

.

1 1 , 0

.

: , : =f( ) (1.10)

: .

: =E (E: ) (1.11)

.

( , ductile material), (plastics), (clay soils)

.

.

(component)(base vector)

10

6

Page 21: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

( , ) ( )

.

. d /dt ( =

d /dt , : ) .

(glacier), , (glue, adhesives),

(Mayonnaise) . ( ) (

)

(Rheology) 7*.

( )

(normal strain) , ( )

(shear strain) 2 ( ,

)

( )

N/m2 = Pa N/mm2 = MPa .

(normal stress) ,

(shear stress) .

(force, structural load) (1 )

(elasticity)

(viscosity)

3

11

7

Page 22: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

1. 10

,

. ,

.

(dynamics of multiple material points):

. ( ) ,

,

( ) , ,

.

(free body): ( ) .

(free body diagram) .

.

.

. 1.2(a) , m, ,

, ( )

1.2(b) ,

W=mg F, P

, . 3 W, F, P 0

1.2

mW=mg

FP

(a) (b)

F

PW

12

Page 23: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

,

(constitutive equation):

. , .

: Hooke’s law ( =C C ) .

, d dt t

.

(equilibrium equation): .

,

. . ,

, , ,

, . , (

) .

.

( ) 0 D’Alembert (Lagrange-d’Alembert principle):

( ) –dp/dt

.

, –dp/dt .

. p: , t:

(moment of force): . (torque)

. , × ,

. ,

r F r F .

: Newton . ,

.

13

Page 24: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

: Newton . ,

.

( ) .

: Newton 3 . ,

.

,

. , ,

.

1.11

( )

K

0 I

, ( ) )(eIF , J I ( )

IJF (1.12)

KIK

JIJ

eI ,,2,10

1

)( FF (1.12)

I 0

(1.12) I=1,2,3,…, K (1.13), (1.14)

1.3 I, J

P(x,y,z)

QI

rI

rJQJ

rJ rIFIJFJI

,

,

,

14

Page 25: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

01 11

)(K

I

K

JIJ

K

I

eI FF (1.13)

01

)(K

I

eIF (1.14)

JIIJ FF(1.14)

3 , P

I QI IPQ Ir (1.12)

Ir ( ) 0 ( ) Ir

Ir ( )

(1.15)

0

,,2,10

1

)(

1

)(

K

JIJI

eII

K

JIJ

eII KI

FrFr

FFr

(1.15)

I =1,2,3…K (1.15) (1.16) .

01 11

)(K

I

K

JIJI

K

I

eII FrFr (1.16)

2 JIIJ FF I=J

0FIJ

JI rr IJF ( )

2

0Frr IJJI (1.17)

I, J =1,2,3...K

01 11 1

K

I

K

JIJJ

K

I

K

JIJI FrFr

15

Page 26: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

JIIJ FF

01 1

K

I

K

JIJI Fr (1.18)

(1.18) (1.16) (1.19)

01

)(K

I

eII Fr (1.19)

I Ir

, F D

2 , (Couple)

FD

(1) 1.4 O

. , F =(-5N, 10N, 2N) P

0.6 cos 45 m,0.6sin 45 m, 0.75m

(2)

(3)

1.4 1.5 F

x

y

z

0.1m

0.4m

PF1m

4

O LL-aa

Fx

F

R1 R2

S

-S-M

M

,

,

16

Page 27: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(4) ( )

(5) 1.5 a F L

x

, S

M ,

x S

M F a, L

R1, R2

(6) , 1.5

1) f(x, t) .

,

. ,

t x

(x0, t0)

: ft

x0 , t0

limt 0

f x0 , t0 t f x0 , t0

t (1.18)

ft

x,t limt 0

f x,t t f x,tt

(1.19)

,

,

17

Page 28: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

n ft n x,t lim

t 0

1t

n 1 f x,t tt n 1

n 1 f x,tt n 1 (1.20)

2 ft x

x,t limt 0

1t

f x, t tx

f x,tx

limx 0

1x

f x x,tt

f x, tt

2 fx t

(1.21)

2)

3 .

1, 2, 3

)3,2,1(,,,, 321 kxxxxxzyx kkxr (1.22)

A 1, 2, 3

)3,2,1(,,,, 321 kAAAAAAAA kkzyxA (1.23)

A, B (inner product, scalar product) A, B

iii

iik

kk BABABABBB

AAA3

1

3

13

2

1

321BA

(1.24)

, 1 2

, . (1.24)

i, k (dummy index) , i, k

. ,

18

Page 29: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(summation convention) . .

3)

, alpha , beta , gamma

, delta , epsilon , eta , phi ,

psi , xi zeta lambda mu

nu pi theta , rho sigma

omega , a, b, g, d, e, h, f, y, x, z, l, m, n, p, q, r, s, w

. , .

,

A, B, G, D, E, H, F, Y, X, Z, L, M, N, P, Q, R, S, W .

,

.

http://e-words. jp/p/r-greek. html

, d, D, . x,t y=f(x,t)

df Df f (differential), (total differential)

. (increment) dx

Dx x x . ,

.

x,t f ,

.

x f x [ x f

] , df/dx . f

x1, x2, x3, … , xk (k=1, 2, 3, …)

, df/dxk (k=1, 2, 3, …) , kxf / .

. xk

df .

19

Page 30: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, , ,

. , df, Df, f f .

( ) .

4)

, x1, x2, x3, … , x

. xk (k=1, 2, 3…)

. k , (free

index) .

1 10 k ,

, (dummy index) . ,

. (1.24) k, i

102110

1.... xxxx

k k (1.25)

,

. , (stress)

. .

, ,

.

, ( ) . x 2 k, j

,

xkj (1.26)

. k j ,

, .

k , j X (1.26)

20

Page 31: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(7) , .

(8) x,y,z P(0,0,0) 10kg F (1N, -2N,

2N)

(9)

yxxeye

xyx

yx cossin)ii(

)sin()i(

2

: (i) x+y=z . (ii) y x

(10) f(x,y) df P (x,y)

f x, y yfxf /,/ Q(x+dx, y+dy)

df (11) z= f(x,y) x,y u,v

)()(

)()(

yz

xz

uz

)()(

)()(

yz

xz

vz

(12) z =f(x,y) z=f(y/x)

yzy

xzx

(13) z=f(x,y) x= r cos( ), y= r sin( )

/,/ zrz

22

yz

xz

(14) A, B, C 332211 eeeA aaa , 332211 eeeB bbb ,

21

Page 32: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

332211 eeeC ccc BAC

(15) A i k a ik

(index, subscript)

15.1 3 (matrix) B b12, b31, b33

982153764

B

15.2 b11+b22+b33 3

1i

i

ikikb .

15.3 3

12

kkb

(16) A, B , .

zyx

ihgfedcba

BA :3,:3

16.1 A B AB 16.2

amn : A m n , bh : B h

3

1kkikba

16.3 A, B BT, AT BTAT

(17) A A-1

213301421

A

22

Page 33: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2.

÷

3

2 2

1 (vector) 0 (scalar)

0,1,2 , 3,4,5

. n

. , 2

4

23

Page 34: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

÷ 3

,

24

Page 35: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2.1

(magnitude) (direction), (sense)

) , ( ) , , ,

(magnitude)

) ,

2.1.1

O P(x1,x2 ,x3) .

(2.1) ek (k=1,2,3)

, 1**

jjj

j jj

xx

xxxx

er

eeeerOP 3

1332211 (2.1)

2 ,

1** ( ) 1

2.1 OP P a(P)

O

P (x1, x2, x3)

x1 (x)x2 (y)

x3 (z)

r

x1

x2

x3

OP (x1, x2, x3)

x1 (x)x2 (y)

x3 (z)

r

x1

x2

x3

RQ

a(P)

a(R)a(Q)

,

,

,

,

,

25

1

Page 36: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

O . , O (bound vector) .

, .

P , . P . Q, R

, ( ) . (vector

field) .

jjj aa ea . (free

vector) . , .

, P a

.

2.1.2

2 a, b , , , a=b

. a, b a=b

. 2 a, b

, . ,

, 2, .

2.2

A

B

FFM

L

L/2

G

,

,

,

,

,

26

,

Page 37: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

,

2.2 2L A F , G

M = F L/2 (2.2)

G F , .

a Fa , Fa

b , b

Fa Fb . ,

Fa Fb . , .

, .

2.1.3

. P

.

: P , ( ) .

, , P

. , .

, ,

. , .

,

,

,

,

,

,

,

,

27

Page 38: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

. ,

. ,

.

( ),

, .

, , . ,

. , . ,

2.3

2.4

,

,

,

,

28

Page 39: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

r O

.

2.1.4

(1) (inner product) 2 a, b (2.3) .

cos|||| baba (2.3)

a b b a ( )

.

2.1

a=1e1 + 0e2= e1 , a b = b1e1 + b2e2

(2.4) .

, 2.5 ,

cos e1

b e1 x1

e1 b = b1 = |b |cos (2.4)

, , .

2.2

a b = a1b1+ a2b2+a3b3 (2.5)

.

a= a i e i , b= bk ek .

i ,k . ,

2.5 a b

ab

,

29

Page 40: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

,

,

2** ,

, (2.6) .

a b = a i e i bk ek = a i bk e i ek (2.6)

, i=k

e i ek= 12 cos0 = 1 (2.7)

. i k

e i ek= 12 cos90 = 0 (2.8)

. (2.7), (2.8) ,

ik , (2.9)

e i ek= ik (2.9)

a b = a i bk i k = ak bk

a b = a1 b1+ a2 b2+ a3 b3 .

2.3

. .

F ( ) dx

WAB: xA xB , (2.10)

.

2**

c

30

2

2

c

Page 41: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

c

xB

xA

xB

xAAB dxFdxFdxFdW 332211xF (2.10)

(2) (outer product)

2 a, b ,

(2.11) c . a, b

.

|c | = |a | |b | sin (2.11)

|c| ,

. ,

(2.12)

.

122131331223321

21

213

31

312

32

321

321

321

321

bababababababbaa

bbaa

bbaa

bbbaaa

eee

eee

eeeba

(2.12)

2.4 .

m r,

v (i) ( , ) M:

2.6 a, b

b

a

c=a b

|a| sina

bS = |a| |b| sin

c

31

Page 42: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

,

,

,

M = r × F ( ) (2.13)

(ii) L: L= r × (mv) ( ) (2.14)

( , )

,

(iii) ( ) : v = × r ( ) (2.15)

(3)

O-x1x2x3 x1 , x2 , x3

ek (k=1,2,3) , ( ) . , 3 .

e i × e j (= ek ) (2.16)

i,j 1,2,3

i j , |e i | = |e j | =1, sin =sin90°=1 |ek |=1 . 3

, i j 3

, k . , i, j , k 33** ,

. i=j , sin = sin0 = 0 e i × e j= 0 (

0 ). , , e i × e j = e j × e i

.

1(permulation symbol) i jk

( ) , 3 (i,j,k) ,

3** 3 1, 2, 3 , (1, 2, 3)

.

32

3

Page 43: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤
Page 44: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2 5

x3 (counter-clockwise)

2.7 , 321O xxx x3

321O xxx . x3 (2.23),

(2.24)

3333 , eexx (2.23)

p13=p23=0, p33=1 (2.24)

),( 21 ee ),( 21 ee

.

e1 ),( 21 ee,

.

211 eee

e1 1e

cos

cos01121111 eeeeee

e1 2e cos(90°+ )

sin)2/cos()2/cos(

)2/cos(10222121 eeeeee

.

2.7

x2

e1

e2

x1O

34

Page 45: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

211 )sin(cos eee (2.25)

p11= cos , p21= sin , p31=0 (2.26)

e2 .

, .

212 cossin eee (2.27)

p12= sin , p22= cos , p32=0 (2.28)

, (2.22) p i j , (2.29)

1000cossin0sincos

321321 eeeeee (2.29)

(5)

(2.29) , P

.

,

.

, kjkj pee ,

k .

. (2 .30) (2.29)

3

2

1

3

2

1

1000cossin0sincos

eee

eee

(2.30)

(6)

v (entity)

,

,

35

Page 46: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

,

,

ek vk

(2.31)

kkjj vv eev (2.31)

(2.21): kjkj pee ,

.

kkkjkj vpv eev kkjj vpv (2.32)

(2.33)

3

2

1

3

2

1

1000cossin0sincos

vvv

vvv

(2.33)

(2.33) , P , . ,

. P , P

tP

. .

2.1.5

, O

P .

, (a)

, (b)

. ,

(b) ,

36

Page 47: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(a)

,

. P .

P 1

,

. 1 ,

.

. ,

.

, (Bold)

, .

, .

,

. , ,

,

.

(1) (E.2.1) .

,

.

62

ijkijk

illjkijk

jlimjmillmkijk

(E.2.1)

(2) a=(1, 2, 3), b=(0, -1, 1) , .

(i) a×b (ii) a b

,

37

Page 48: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

E2.1

,

(iii) 3a 2b (3) .

30° , 9.

8N 3m .

(4) 980 N .

. (5) P=[p i j ] tP P

(6) e1, e2 2 O-x1x2

30° 21 xxO

21 xxO 21 , ee e1, e2

(7) 2 321O xxx 321O xxx a, kkjj aa eea (j,k:1,2,3)

, ka ja , (E.2.2) 4**.

kjjkjjk apaa ee (E.2.2)

(8) 1,1,0a , 1,,2 xxr , a rx

(9) e1, e2, e3 . u

= e1 2e2+3e3 u

.

(10) E2.1 O-x1x2

O 60

O-x '1x '2

BAA , B OB=(2,1), OA=(0.5, 2) [

4** P pk j , k j .

O

B

A

x1

x2

x’2

x’1

=60E.2.1

38

4

4

Page 49: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2.2

2.2.1

2 a, b a b

. 2 1 . 2 a=akek ,

b= b je j (k,j:1,2,3 ) ab

a b =(akek) (b je j)= akb j eke j (2.34)

= a1b1 e1e1+ a1b2 e1e2+a1b3 e1e3

+a2b1 e2e1+ a2b2 e2e2+a2b3 e2e3

+a3b1 e3e1+ a3b2 e3e2+a3b3 e3e3

(a1e1, a1e2…)

332313

322212

312111

321

3

2

1

bababababababababa

bbbaaa

ab (2.35)

2 eke j (k,j: 1,2,3 )

, (k j )

.

( ) eke j ,

k,j

k=j , eke j = 0.

k j, k,j : eke j = e jek

39

Page 50: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤
Page 51: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2 , (2.16)

(2.34)

a b = a1b2 e1e2+a1b3 e1e3+a2b1 e2e1+ a2b3 e2e3

+a3b1 e3e1+ a3b2 e3e2

= (a1b2 a2b1)e1e2+(a2b3 a3b2)e2e3+(a3b1 a1b3)e3e1 (2.36)

(2.36) ,

e1e2 e3, e2e3 e1, e3e1 e2

. (2.16) ( )

“ “ ,

e1 e2 = e3, e2 e3 = e1, e3 e1 = e2

.

k,j

k=j , eke j = 1. ek e j = 1

k j , eke j = . ek e j = 0

ab = a1b1 +a2b2 + a3b3 (2.37)

(2.34) (2.35)

2.2.2 (dyadic, tensor product) (diad)

2 a=akek ,b=b je j (k,j:1,2,3 )

40

Page 52: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(dyadic) a b b a 5**.

332313

322212

312111

)(bababababababababa

ba jkba

(2.38)

332313

322212

312111

)(ababababababababab

ab jkab (2.39)

a b b a ,

(2.38),(2.39) ,

,

333323231313

323222221212

313121211111

33221133

3322112233221111

332211332211

332211332211

)()()(

)()(,

eeeeeeeeeeee

eeeeeeeeee

eeeeeeeeeeeeeeba

eeebeeea

babababababa

babababbba

bbbabbbabbbaaa

bbbaaa

(2.40)

.

( ) ,

mkmkmmkk baba eeeeba )()( (2.41)

k,m = 1,2,3

ak bm

(diad) ek em 5** , a, b ab

41

5

5

Page 53: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

6**

a=akek (k=1,2,3 : ) ,

2 ( ) ek em

(diadic) (diad)

(diad) ( )

( )

(i) a ei e j (i,j=1,2,3: )

aaa jijiji eeeeee (2.42)

(ii) a, b, c,

d, f (i,j,k=1,2,3: )

, .

jkijii

jkiijkijii

fcbdafdcbaeeeeee

eeeeeeeeee)()(

(2.43)

(iii) (diad) z

(i,j,k=1,2,3: )

kjjikjji

kjjikjji

babababa

eezeezeeeezzeezeezeeee

)()()(

)()()( (2.44)1 ,2

kjjikjji

kjjikjji

babababa

eezeezeeeezzeezeezeeee

)()()(

)()()(

(2.45) 1 ,2

(2.44),(2.45) 6** 2

( ) , 2 (x,y) (ax+bx , y)=a (x,y)+b (x,y), (x,ay+by)=a (x,y)+b (x,y)

42

6

6

Page 54: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(dyadic) (diad)

2.2.3

(dyadic) a b (diad) e i e j , 2

1

a b e i e j

. 2 a,b

2 (tensor of the second rank)

2 (the

second rank) 2 a,b

, n (=0,1,2,3,4…)

n n=1

, 1

(diadic) a b , 2 ( ).

(diad) e i e j , 2 e i , e j .

(diadic) a b z

(dyadic) a b z (dyadic)

a b = a ib j e i e j (2 )

T = T i j e i e j … e i e j : T i j (2.46)

T : 2 , T i j : 2

2.2.3

(diadic) a b

( )

43

Page 55: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2.8

(

) 3

3

F

F

, (F1, F2,

F3)

3 A3

1 1 2 2

3 3 3

3

333

3

232

3

131 ,,

AF

AF

AF

(2.47)

(2.47) (2.48)

3

333

3

232

3

131 ,,

AF

AF

AF

(2.48)

k Ak j

F j : k j

: kk Aa /)( b j=F j .

k

jj

kjk A

FF

Aba )(

(2.49)

(2.49) ( )

2.8 3

x3

x1

x2

A3

A1

A2

x1: 1

x3: 3

x2: 2

F

F1

F3

F2

44

2.8

Page 56: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2.82.8

. (2.49) , ak b j

(dyadic) 7**

,

,

(dyadic) ,

. 2

2

3 4

(2.44)

(2.45)

,

2.2.4

2.1 2

T

2 321 xxxO 321 xxxO

),,( 321 eee , ),,( 321 eee 2 T

kjkj TT , (k,j=1,2,3: )

jkkjjkkj TT eeeeT (k,j=1,2,3: ) (2.50)

7** akb j= kj AF / b jak= kj AF /)(

45

7

7

Page 57: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

kjkj TT , , (2.44)

jkkjjkkj TT eTeeTe , (2.51)

2 :

jkjk p ee

(2.52)

):,;:,(

)()(

jkmwwmjmkw

mwjmkw

mjmwkwjkkj

Tpppp

ppTeTe

eTeeTe

(2.52)

2

(2.52) 2

2 P 1

, tP 1 , 2

(2.52) , (2.53)

332313

322212

312111

333231

232221

131211

333231

232221

131211

333231

232221

131211

ppppppppp

TTTTTTTTT

ppppppppp

TTTTTTTTT

(2.53)

(1 ) 1 (magnitude) 1

(direction) (sense) , 2 , 1

2

2

n n

46

Page 58: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

n P

2.2.5

A t

A

A (t)= Ak(t) ek = ( Ak(t) ) (2.54)

t

t Ak(t) t

dAk/dt Ak

dA (t)/dt = dAk(t)/dt ek = ( dAk(t)/dt ) (2.55)

A t

dttAdtt kk )()( eA (2.56)

a(t) , b(t) t da/dt , db/dt

(2.57)

: a+b , a b ,

c a : ca

: a b

: a b

(2.57)

47

Page 59: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

dtdbab

dtda

dtbad

dtd

dtd

dtd

dtdbab

dtda

dtbad

dtd

dtd

dtd

dtdaca

dtdc

dtcad

dtdc

dtdc

dtcd

dtdb

dtda

dtbad

dtd

dtd

dtd

kjijkk

jijk

kjijk

kkk

kkk

kk

k

kkkk

)()(

)()(

)()(

)()(

bababa

bababa

aaa

baba

(2.57)1 ,2 ,3 ,4

(11) (2.44) (2.51)

(12)

ek(t) v vk

dv/dt

(13) i jk

2 jk 2jk =

(14) =(1,0,0), = (0, 1,0) , =(( 1, 0,2),

(1,2,3), (0, 2, 1)) t .

120321201

120321201

.

(15) ek (k=1,2,3) a= e1,

b= -e2 2 T= e1 e1 +2e1 e3 +e2 e1 +2e2 e2

+3e2 e3 2e3 e2 +e3 e3 T a b T .

48

Page 60: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(16) 2,1,1,,,1,1,2, 22 cba yyxx

(i) ba (ii) bac cba

(17) .

1~3 .

jm

k

k

jjjk

k

ii z

tx

tx

xadXXxdx (c)(b)(a) 3

(18)

a)

3332231133

3322221122

3312211111

,,

nnntnnntnnnt

b) 333332323131232322222121131312121111 bababababababababa

c) x1y1+ x2y2+ x3y3

d)

3

1

3

1

3

1i j kkjiijk xxxc

e)

2

1kkk xau

f) 2221212

2121111

xaxayxaxay

(19) (mechanical work) , F

( ) dr

rF d . F , ek (k=1,2,3: )

. F= 3312

22121 )()( eee xxxxx

49

Page 61: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤
Page 62: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

E.2

3. (Stress)

1 1.2

(1) , 2 2

,

[ ] 2

(1) ( )

. , ( , )

(2) ( , )

. : = ÷

(2) , ,( ) .

, 1.11

( ) ,

3.1 (stress vector)

3.11*** P(x1 ,x2 ,x3)

S ( : ) f

,

1*** (bold)

E.2

51

1

1

Page 63: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

| S|= S S

+0

P(x1,x2 ,x3)

kk

S

t

dSd

S

e

t

ff0

lim

(3.1)

(3.1) t , f = f j e j

(e j) S = S f S

2 (2.48)

, S

3 3

.

3.2

,

P

, 3.2

dA3 ( x3 3=(0,0,1) , dA3=

dx1dx2 ) d f 3 3dA3 3= 3k ek

(k= 1,2, 3: )

3332313

3

3.1 S f

S= S

Sf

P

3.2 dA3

d f 3= 3dA3

3331 32

dx1

dx2

32 dx1dx2

33 dx1dx2

df3

31dx1dx2

T

T

52

tT

T

Page 64: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

tT

T

t

321332213212131

21333232131

213333

eee

eee

f

dxdxdxdxdxdx

dxdx

dxdxdAd

(3.2)

3 dA1, dA2, dA3 3

d f 1, d f 2, d f 3

i = i j e j (i: , j: ) (3.3)

i j i j 3

i (i=1,2,3) T

333231

232221

131211

333231

232221

131211

3

2

1

T (3.4)

, (dyadic)

(3.5) 2***

T = k k= e k kj e j = kj e k e j (k,j: ) (3.5)

P

3.3

k=1,2,3 k

k = e k k

(dyadic) , k j kj

2*** 3

ek e j

53

Page 65: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(3.5) . T P

T ( )

2 : (dyadic)

2 T . T

(3.4), (3.5) 2

: (2.52)

, , 2

3.5

,

3.3 ( )

Stress component

x1 x2 x3x1 11 12 13

x2 21 22 23

x3 31 32 33x1

x2x3 Symbol of

each component

• Stress [ ij] , 2nd rank tensor• 11, 22, 33 ( ii): normal stress• 13 ( ij): shear stress

11

22

33

31

32

21

23

12

13

EX. 1-plane, 2-component 12

)( ji

54

Page 66: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

1

, (

) (3 2 = 6 )

3 1

. ( ) ,

,

,

. ( )

, 3.3

3.3

3.3

(normal stress)

(shear stress) . 3.1 S t

3.4

,

3.4 ,

ABCD

( 3

3.4

dx2 dx1

dx1 21

dx1 21

dx2 12 dx2 12

B C

A D

55

Page 67: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

) ( ) ,

, 2

.

ABCD

AB, CD : dx2 12 , .

AD, CB : dx1 21 , .

AB-CD 2 , dx1 : dx1 (dx2 12) . , AD-CB 2 , dx2 : dx2 (dx1 21)

. , 2

0 .

dx2 (dx1 21) dx1 (dx2 12) = 0 (3.6)

12= 21 1 , 2

, 13= 31, 32= 23 , (3.7)

i j= j i (i,j=1,2,3: ) (3.7)

3.5

3.5

( ) P( )

. ,

, ,

. 3.5

SP

SftS

S

S

56

Page 68: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

0 S

(1.13)

( ) = 0 (3.8)

2 3***3

3.6 ( ) 2 OAB

( ) OAB ( ) AB

( )AO ( )BO

, ( :1).

AB

= ( 1, 2) = (cos , sin ) (3.9)

( : , : )

AB: t = (t1, t2) (3.10)

3*** 3 33, 31, 32 0

(plane stress)

3.6 OAB

x1

x2

12

A

BO

t

11

1 2221

2

t1

t2

57

Page 69: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

. AO+BO:

1= (- 11, - 12), 2= (- 1, - 22) (3.11)

.

AO, BO . , + 1, 2

( )

x1 :

AB: t1dS, AO: - 11dS1, BO: - 21dS2 … 0

12

211

111221111 tdSdS

dSdSdStdSdS (3.12)

x2 : AB: t2dS, AO: - 12dS1, BO: - 22dS2 … 0 .

22

221

122222112 tdSdS

dSdSdStdSdS (3.13)

(3.14)

AB: dS , AO: dS1=dS cos , BO: dS2=dS sin

.

dSdSdSdS

dtt

2

1

2

1

2

1

2212

2111

sincos

,sincos

S (3.14)

, k j AB t j

, (3.9) ,

(3.14) , (3.15), (3.16) .

58

Page 70: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, , (3.17) .

Cauchy

2

1

2212

2111

2

1

tt

(3.15)

(3.15) , (3.16) .

2221

12112121 tt (3.16)

kkjjt (k=1,2: , j=1,2: ) (3.17)

, (3.18) .

Tt (3.18)

T 2 (3.5) ,

k j= jk (3.15),(3.16)

3.1

AB t AB ( x 1 )

( x 2 ) ,

3.2

,

3.7

t O-x1x2

2

1

12

11

cossinsincos

tt

x1

x2

11

2221

12A

BO

t

t1

t211

x1

x2

12

59

Page 71: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, AB 2 ,

x 1 AB 11, 12 . 3.7 t , 2 O-x1x2 O- 21xx

2121 , eeee ,

12

1121

2

121 eeeet

tt

(3.19)

(2.29) 2

.

kjkj pee

eeee ,cossinsincos

2121

t (3.19)

jkjk tptt

12

1

12

11 ,cossinsincos

(3.20)

Cauchy (3.15)

sincos

cossinsincos

2212

2111

12

11 (3.21)

x 2 21, 22

x 2 Cauchy

+ /2 2

O-x1x2 O- 21xx 2121 , eeee

60

Page 72: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

)

2sin(

)2

cos(

cossinsincos

2212

2111

22

21 (3.22)

cos)2

sin(,sin)2

cos(

cossinsincos

cossinsincos

2212

2111

2212

2111 (3.23)

O-x1x2 O- 21xx

P 2

(2.53) .

2

2

, 2,

.

cossinsincos

cossinsincos

2221

1211

2221

1211 (3.24)

[ ]

2

2 (3.23) ,

.

(3.23) , ,

( ) 2.

61

Page 73: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2 ( )

Cauchy

3.7 ABO AB t

tk

, 11, 12

, t tk 2 1k

2 ,

3

, 3.8

( ) PABC

O-x1x2xO x1x2

O x1x2x1

cossinsincos

cossinsincos

2212

2111

2212

2111

sincos

cossinsincos

2212

2111

12

11

x2

O-x1x2x

Cauchy

3.8

Ax1

x2

x3

C

BP

t1

3

2

62

t

Page 74: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

t

t

. 2 dS: ABC

dS1: PBC, dS2:

PCA, dS3: PAB , PABC

, , .

t dS = 1dS1 + 2dS2 + 3dS3 (3.25)

dSk dS .

dSk = kdS (k=1,2,3: ) (3.26)

k , dS:ABC

(3.4) T (3.27),(3.28)

.

t = 1 1 + 2 2 + 3 3 = T3

2

1

321 (3.27)

,

kkjkjkjt (j=1,2,3: , k=1,2,3: ) (3.28)

, (3.17) Cauchy , 3

3.2

O O-x1x2x3 x3 O- 321 xxx 2 (3.24)

O- 321 xxx O-x1x2x3

cos c, sin s

63

Page 75: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

3 , x3= x 3, e3= e 3 . (3.24) 3

3 (3.29)

: 12= 21, 13= 31, 23= 32

3332313231

2322212221

1312111211

333231

232221

131211

333231

232221

131211

10000

10000

10000

cssccssccssc

cssc

cssc

cssc

(3.29)

,

3333

23323132

13323131

231323

122

222

112221121122

122221121121

231313

221211222221121112

122

222

112221121111

2

2

cs

sc

cs

sccscsccss

sccscs

sc

sccscsscsc

scscscsscc

(3.30)1-9

(3.30) 33= 31= 32=0 . 0313233 .

(3.24)

, (3.31)

. (3.31) , Mohr

64

Page 76: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2cos2sin2

,2sin2cos22

2sin2

2cos12

2cos1

,2sin2cos22

2sin2

2cos12

2cos1

122211

2112

1222112211

12221122

1222112211

12221111

(3.31)1 ,2 , 3

3.3

3.9 x1 W , OB

W A x1 =

W/A 0 O-x1x2

(3.32)

22122111 000000

eeeeeeeeT (3.32)

OB

(3.24) 11, 12 , (3.33)

3.9 x1

A WWO

AB

x1x2

65

Page 77: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

cossincos

sincos

000

cossinsincos 2

(3.33)

= sin cos = ( /2)sin2 OB

3.9 =45°(= /4 rad.)

/2

3.6 (Mohr's stress circle)

, 3.2 3.3

, 2

2 , 3

, 3.2 3

, 2 (3.31)

(3.24) (3.31)

3.7

OAB OA ( ) (= 11)

( ) - (=- 12) ( )

OA

AB ( )=( 11, 12)

2

(3.31) cos2 , sin2

( 11, 12) ( 11, 12)

66

Page 78: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

( 22, 21) ( 22, 21)

(3.31)

2cos2sin2

,2sin2cos22

,2sin2cos22

122211

2112

1222112211

22

1222112211

11

(3.34)1,2 ,3

(3.34)1 ,3 2 , (3.35)1 (3.34)2 , 3

2 , (3.35)2

212

222112

12

22211

22

212

222112

12

22211

11

22

,22

(3.35)1,2

( ) , 2

P 1211 , Q 2122 , (3.35)

R, ( ave ,0) 4*** AB , (3.35)

R (3.36)

2

,2

2211

212

22211

ave

R (3.36)1,2

4*** P, Q

2 ( 2 =180°)

( ) P 1211 , ,Q 2122 ,

67

Page 79: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, O-x1x2 11, 22, 12 . 3.10 (3.35)

O-x1x2 A* O- 21xx

P Mohr

, 11> 22 . 11< 22

, A* G

3.4

3.10 , 2

(3.34) P,Q A*,G (i) =0 22221111 , 1212 . (ii) =90° , cos(2×90°) = 1, sin(2×90°) = 0 ,

11222211 , . 1212 . P=G

(iii) =45° cos(2×45°) = , sin(2×45°) = 1 , :

12221211 , aveave : 2/221112

3.10 Mohr

Q

F

E

B*

D*

ave

C*

max = R

ave R

( 11 ave )2 + 122 = R2

O-x1x2 :P( 11, 12 )

P

A*

2

O-x1x2:A*: ( 11 , 12 )

G

G:( 22 , + 12 )

3.11

68

3.11

Page 80: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

3.11

=0,45,90° ,

3.11(a) 2

3.5 3.6 1 2 1p, 2p p1 p2

. max s1

( )

0

3.11(b) =0 B* 1 ( )

D* 2

( )

A*C*B* = 2 p1

A*C*D*=2 p2=2 p1+90°

1p= ave + R

2p= ave R

(a) =0,45,90° (b)

3.11 Mohr

F

E

B*

D*

C*

P

A*

2

O x1x2

A*: ( 11 , - 12 )

ave

12

P( 11, 12 )

11

22

12

12 ( 22- 11)/2

= 0

= 90= 45

F

E

B*

D*

GQ

ave

12

12

A*

C*

P

2

1p

2p

max = R

A*C* = R

A*C*B* = 2 p1

p1

A*C*D* = 2 p2 = 2 p1 +

2 s1

A*C*E = 2 s1

= ave+R

ave R11

22

69

Page 81: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

R (3.36)1 . , max = R

A*C*E= 2 s1

A*C*F=2 s1+90°

(1) 3.12

( : j k jk ).

(2) ( ) P (x1,x2)

T

MPa PP (x1,x2)

( ) : x1+ 3x2 = 1 ( 0 )

3.13 ( ) ( )

Cauchy ( )

(3) 3.14

3.12

( )

3.13

x1

x2

0 1

31

a= (1,3)x1+ 3x2=1

2110

T

70

P

Page 82: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

PP

7 AB, BC, CD, DE, EF, FG, GA

AB BC, CD, DE,

EF, FG, GA tAB, tBC, tCD, tDE, tEF, tFG, tGA

3.14 2

3

MPa cm

(4) 3.15

.

2

1

2221

1211

00

AB

.

(5) (3.34)

.

1222

1211 2,2 (3.37)

(6) (3.34) 012

3.14 ABCDEFG

DE

EF

A B

CD

E

FG

3.03.8

1.5

1.5 2.8

3.6

AB

FG

GACD

BC

x1

x2

22012001911910

333231

232221

131211

3.15 2

O

A

B

x1x2

71

Page 83: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2211

1222tan (3.38)

, (3.38) 0

(principal direction) .

(7) (3.34)3 , 12 ,

.

12

2211

22tan (3.39)

(8) (3.39) , (3.38)

45 °

(9) O-x1x2 ,

11 = 80 MPa, 22 = 50 MPa, 12 = 25 MPa

30° O-x1’x2’

4.1

72

4.1

Page 84: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

4.1

4. (Strain)

4.1 1

( )

( ) 2 2

( )

4.1 ( )

X

x

u = x- X

u ( ) ,

(displacement) ( ) u= 0,

( ) u= u

(4.1) F

.

XxEF x1 (4.1)

Xu

XXxEx x

ux

Xxx (4.2)1,2

4.1 1 ( )

X

x

FxFx

A A0

A0

A

u= x X

73

Page 85: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(4.2)1 Ex X Green

, x

x Euler u

x X Ex x 2

x Fx ( ) A0, A

(true stress) x (nominal stress) x0

2

00

0 AF

AAF

AF x

xxx

x (4.3)

4.2

, ( )

(configuration)

(motion)

.

t0 : X

t > t0 X : x

x X t , ( )

.

x=x(X,t) (4.4)1

xk= xk (X j, t) (k,j=1,2,3: ) (4.4)2

, ,

. x , 1 1 ( )

74

Page 86: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

X=X(x,t) (4.5)1

Xa = Xa(xb, t) (a,b=1,2,3: ) (4.5)2

X , , (material

coordinate) . , x

(spatial coordinate)

4.1

Xk

(Lagrangian description)

(material description)

, X t v X

t x

XX

XxXvt

tt ,),( (4.6)

,

(4.5) x v(x,t)

(Eulerian description)

(spatial description)

( )

(material time derivative)

v(X,t)

75

Page 87: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

v(x,t)

7

4.3 3

3 3

(stretching)

(simple shear) (twisting)

(bending)

,

, 0 ( ) ,

, 3 ,

3 2 9 (

6 ) 4.1 1

3

3 2 dX, dx

3

2

2

4.4

3 P Q

76

Page 88: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

P X = ( Xk ) , P' x = ( xk )

u = ( uk )

X + u = x (4.7)

Q 4.2

2 P, Q dX= dXmem dx =dxmem u= x X , X x :

x = x(X) dX dx (4.9)

j

kkj X

xFF (4.8)

(deformation gradient) .

XFx ddXXxx

dXdXdX

Xx

Xx

Xx

Xx

Xx

Xx

Xx

Xx

Xx

dxdxdx

jj

kk ,dd

,

3

2

1

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

3

2

1

(4.9)

4.2 P,Q PP', QQ'

x1 x2

x3

PQ

P’Q’u

u+du

uk = xk Xk: P P’

O

OP:X = Xm em dX

OQ:X+dX

x= xmemdx

x+dx

dX = dXmem

77

Page 89: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

: x X ( X = (x) ) F -1

xFX ddxxXX j

j

kk

1,dd (4.10)

4.5

2 PQ

( ) 2 ds2-dS2 PQ: dX=dXkek 2 : dS2 P'Q': dx=dXkek

2 : ds2 , (4.11)1,2

jiijmm

jkkjkk

dxdxdxdxddds

dXdXdXdXdddS

xx

XX2

2

(4.11)1,2

F F -1

hmh

k

m

k

hh

jm

m

kkjjkkj

hmh

k

m

k

hh

jm

m

kkjjkkj

dXdXXx

Xx

dXXx

dXXxdxdxds

dxdxxX

xX

dxxX

dxxXdXdXdS

2

2

(4.12)1,2

2 ds2 dS2 , (4.12) (4.13),(4.14)

2

dX, dx dXkdX j (dyadic) dX dX

2

78

Page 90: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

kj

j

s

k

ttskj

jkkj

Xx

XxEwhere

dXdXEdSds

21

,222

(4.13)1,2

j

s

k

ttskjkj

jkkj

xX

xXewhere

dxdxedSds

21

,222

(4.14)1,2

(dyadic) dXkdX j Ekj

2 ekj 21

Ekj Green's

(Lagrangian) strain tensor ekj

Almansi's (Eulerian) strain tensor

F 2

kjj

s

k

s

j

s

k

tis

kjj

s

k

s

j

s

k

iis

cxX

xX

xX

xX

CXx

Xx

Xx

Xx

(4.15)1,2

,

4.6

u= x-X

j

iij

j

i

Xu

Xx,

)(

XuIF

IFIXxXx

XXu

(4.16)

1

79

1

Page 91: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

j

k

k

j

k

i

j

ijk

ikj

i

k

iij

k

i

j

iikij

k

iik

j

iij

k

i

j

i

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xx

Xx

j

m

k

m

j

k

k

jkj

j

m

k

m

j

k

k

jkj

xu

xu

xu

xu

e

Xu

Xu

Xu

Xu

E

21

,21

(4.17)1,2

1k

m

Xu 2

j

m

k

m

j

m

k

m

xu

xu

Xu

Xu ,

kjkj

jk

j

jk

jj

jk

j

k xxxXX

xXuX

xXx

X)(

j

k

k

j

j

k

k

jkjkj x

uxu

Xu

Xu

eE21

21

(4.18)

, Green Ekj Euler

ekj Green Euler

2

4.1

80

Page 92: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

4.3 x1 du1

(du1 dX1)

1

111

1111

2111

21

111

2111

22

222

22

xue

dxedxdxe

dSdsdxedudSds

dxedxdxedSds jkkj

(4.19)1,2,3

E11 = e11 = u1/ X1 1

(4.2) Ex = u/ X

4.2

4.4

2112

2

1

1

21212 2

xu

xue (4.20)

2 : 2e12 x1-O-x2

4.3

dX1x1

x2

u1 u1+du1

dx2=dx3=0

ds=dx1=dX1+du1dS = dX1

4.4

x1

x2

21212

1 tanxu

12121

2 tanxu

O

81

Page 93: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

4.7 dilatation

e

e= e11+e22+e33 = ekk (k=1,2,3: ) (4.21)

e i j=0 (i j) 1

V , (4.22)

V = (1+e11)(1+e22)(1+e33) (4.22)

, V=V 1 e= e11+e22+e33 .

4.8 ( )

4.2 , u+du , X+dX u

. u(X+dX) = u(X) +du (4.23)

du , dX ,

j

j

kkkk dX

Xuududu

ddd

XXX

XXuXuXXuu

(4.24)1,2

(4.8) F , (4.24) jk Xu // XuL (2 )

,

82

Page 94: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

jk

j

j

kj

k

j

j

kjkjk dX

Xu

XudX

Xu

XudXLdu

21

21 (4.25)

XWEXLu

XE

XW

ddd

ddXedXXu

Xu

ddXwdXXu

Xu

jkjjk

j

j

k

jkjjk

j

j

k

,21

,21

(4.26)1,2 ,3

(4.25),(4.26) kj Xu / +/

, du (4.24)2

(4.25) 1 ekj , (4.18)

, 1 ekj k,j (symmetric part)

, 2 wk j

, k,j

(antisymmetric part)

XW d (4.27) .

, (4.28) (nabla)

(4.29): u , (4.30)

3

2

1

2

3

3

2

1

3

3

1

2

3

3

2

1

2

2

1

1

3

3

1

1

2

2

1

021

21

210

21

21

210

dXdXdX

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

(4.27)

kk X

e (4.28)

83

Page 95: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2

1

1

23

1

3

3

12

3

2

2

31 X

uXu

Xu

Xu

Xu

Xu

Xu

Xuu

X iij

kijki

j

kkjkk

jj

eee

eeeeeeu

(4.29)

3

2

1

12

13

23

312212311312332

021

21

210

21

21

210

21

21

21

21

21

21

dXdXdX

dXdXdXdXdXdX

dXdXd ikjijkkkjj

eee

eeeXu

(4.30)

(4.30) , (4.27) u

( ) ,

XXW dd2

, 2/

(1) P X x(X) xk X j

33122211 ,2,23 XxXXxXXx

(E.4.1)

F ( )

, j

kkj X

xFF

F

84

F

F

Page 96: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

F

F

F

(2) xk X j

33222

11 ,,3

XxXxXXx (E.4.2)

F , 1

(3) ( ) P (x1, x2) (u1, u2)

eij (i,j=1,2: ) (u1, u2)

(u1, u2) 2 (4) u u i) (i=1,2,3)

(a) 3211321 5,2,3,, axaxaxaxuuu (E.4.3)

(b) 212

22

22

1321 cossin,,,, 333 xxexexxeuuu xxx (E.4.4)

(5) , (E.4.5)

(4.18)

,

,,

2

31

1

23

3

12

321

332

1

23

3

12

2

31

213

222

3

12

2

31

1

23

132

112

xe

xe

xe

xxxe

xe

xe

xe

xxxe

xe

xe

xe

xxxe

X1

X2

O 1

1

x1

x2

O

85

Page 97: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤
Page 98: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

5.

5.1

4.3 ()

, ( )

2

(a) (elasticity):

(Hooke's

law) .

(b) (plasticity):

( )

5.2

87

Page 99: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

,

, ,

, ,

5.1(a) 5.1(b) ,

, (

) 2

(i) ( )

(ii) .

.

, .

(normal stress):

AF ( )

(normal strain):

0Lue ( ),

L

LdLu

0

e

L0 e=u/L0

(a) (b)

5.1

u

F

88

Page 100: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(nominal strain, engineering strain)

L dL/L

(logarithmic

strain) ,

N

L

L

L

LN

LL

LdL

LL

LdLe

1lnln

1)(

0

00

0

0

(5.1),(5.2)

(5.1), (5.2) , e

5.2 ,

: E, ( )

( ): E

( ): Y

0.2% : 0.2 ( Y )

5.2

e

B

0.2%

H’

E

Y

89

Page 101: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, ,

, ,

, ,

,

,

: H’ ( )

( ): B

( ): eB

( )

( )

(engineering strain, nominal strain) Green

(logarithmic strain) Euler

5.3

( )1

1 (dislocation) , (lattice defacts) .

5.3

90

Page 102: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

45°

,

( )5.4 5.5

5.4

1 ( 5.5

5.4

5.5

b : =

91

Page 103: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

5.6

( )

5.7 , , 5.8 ,

5.6

5.7

92

Page 104: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(work hardening)

5.4

- ( )

(5.3)

n Ludwik [1909]: =C n (0 n<1) (5.4)

n: , : = n

)('

)(

00

0

EH

EE

YY

Y

5.8

( )( )

93

Page 105: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

n : = 0 + K n (5.5)

n Swift[1952]: =C ( 0+ )n (5.6)

Voce [1948]: = C(1 m -ne ) (5.7)

C(1-m)= Y0 ,

Ramberg and Osgood[1946]: = ( /E) {1+ ( /B)n} (5.8)

/

Chakrabarty [1987]: ( Ludwik )

(5.9)

)/()/(

)/( 0

01

0 EE

EEE

Y

Yn

Y

5.9 (a)~(e)

n=0

n=1

n

n

E

H’

Y0

:H’=0, 0<E<+:H’ >0 0<E<+

E Y0

E

n (Ludwik,Ramberg Osgood)

Y0

(Ludwik, Swift )

94

5.9

Page 106: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

5.9

5.9

Hart[1967]: (5.10)

Backofen[1964]: (5.11)

(Newton ): (5.12)

( ) .

dtd

m

5.6

(1) ( ) e Hooke's law

5.10(a)

uL

AF

eE ( 0

0

LLdLuL

L) (5.13)

( Young's modulus) .

(compliance with stretch)… J= E 1

.

5.5

(1) ( )

5.10(a) ,

e Hooke’s law

E (Young’s modulus) .

,

5.10

L 0

L

A 0=

1b 0

F

u

(a)

Au F

h

A=1

b (b)

FKC

m

mn

95

Page 107: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

L

L

LLdLuuL

AF

eE

0

0 (5.13)

(2) ( )

5.10(b) F

(shear) 2et

Hooke's law

AF

AF

uh

AF

eG

t tan1

2 (5.14)

(rigidity), (shear modulus)

, x2 , x1

= 21, e t= e21=h

uxu

221

2

1 (5.15)1,2

(3)

5.10(a) , e

ec

eec (5.16)

(Poisson's ratio) , m

= 1/

(1) 5.3 2

1 , 2

1 =45

5.3

96

5.3

Page 108: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

5.3

( ) 2 (E.5.1) =45°

,

cossinsincos

000

cossinsincos 1

2221

1211 (E.5.1)

(2)

(3) 5.10(b) e12 (5.15)2

(4) 5.10(a) b, b0, F, L, L0

L>L0, b<b0

(5) 5.10(a) , F

E (E.5.2)

22

22 EeEE (E.5.2)

( ) U = AL E = L

LFdL

0

5.3

O

A

B

x1x2

97

Page 109: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

00

LLdLuL

L du= dL

(6) O-x1x2x3 P (x1 , x2 ,0)

0000000

QP

kj (E.5.3)

O-x1x2x3 x3

O-x'1x'2 x'3

[ ' kj] ( ) cos( )= c, sin( )= s 3 3.2

(3.24), ' kj= ' jk

10000

0000000

10000

'''''''''

333231

232221

131211

cssc

QP

cssc

(E.5.4)

(7) ( ) ( )

3

(8)

98

Page 110: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

6.

(Constitutive equation)

5

6 ,

3

1

6.2

,

( ) (

) ij

ijij p ij (6.1)

pp

p

ij

000000

p

6.2.1 (ideal gas)

p, T,

,

99

Page 111: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, ,

,

p RT ( ) (6.2)

=1/v: (v: ) T : R :

6.2.2 (Incompressible fluid)

p T

= constant ( (6.3)

6.3 Newton

(6.4)

klijklijij VDp (6.4)

ij : Vkl12

uk

xl

ul

xk

Dijkl uk :

Newton , Dijkl ,

3 4 34= 81

2

jkiljlikklijijklD

(6.5)

100

Page 112: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

ijkkijij

kljkiljlikklijij

klijklijij

VVpVp

VDp

2

(6.6)

, (6.7)

kkkk Vp 233 (6.7)

(Contraction) ,

6.4 Stokes

Stokes Vkk

3 2 0

23

(6.8)

(6.9)

ijkkijijij VVp322 (6.9)

Stokes3kk p

6.2.2

Vkk=0 ijijij Vp 2 (6.10)

0 , , (6.1)

6.5

,

ijijkkij ee 2

eij Lame ,

101

Page 113: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2 ,

,

, ,

, ,

, ,

, ,

,

,

(6.2) ,

f (p, , T) = 0 (6.11)

2

(6.2) van der

Waals (6.12)

, V 2 1

p

V 2 V RT (6.12)

(6.3)

,

( ) ,

,

( )

2 .

Newton

.

Newton

.

6.6 Hooke Hookean elastic solid)

3 ,

1 , Y.C.Fung: A first course in continuum mechanics, third edition (1994), page 182 (Prentice Hall) .

102

Page 114: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

klijklij eC (6.13)

ij: , ekl: , Cijkl

(4 ) , 34=81 .

(4.18) ,

jiij Cijkl C jikl (6.14)

ekl elk Cijkl C jikl Cijlk

, , 6

Cijkl , 62=36

Isotropic elastic materials)

6.6.1

2 .

Cijkl ij kl ik jl il jk ik jl il jk (6.15)

ik jl il jk =0

Cijkl ij kl ik jl il jk (6.16)

ijkkij

jiijkkij

kljkiljlikklij

klijklij

eeeee

eeC

2

(6.17)

(6.17) , x1, x2, x3 ( x,y,z ) ( G ), (6.18), (6.19)

2 Lame .

103

Page 115: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

31313333221133

23232233221122

12121133221111

2,22,2

2,2

eeeeeeeeee

eeeee (6.18)1~6

zxzxzzzzyyxxzz

yzyzyyzzyyxxyy

xyxyxxzzyyxxxx

eeeeeeeeeeeeeee

2,2

2,22,2

(6.19)1~6

i = j

kkiikkii eee 2323 (6.20)

ii= 11+ 22+ 33, eii=e11+ e 22+ e 33, ekk= e 11+ e 22+ e 33

23kk

kke (6.18) eij

kkijijije2322

1 (6.21)

Lame EE

1 1 2E 2 1

3 3 2 1

ijkkij

kkijijij

EE

e

112

1

(6.22)

6.6.2 K

3 (10) .

104

Page 116: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

dx1, dx2, dx3

dx1(1+e11), dx2(1+e22), dx3(1+e33)

V

V= dx1(1+e11) dx2(1+e22) dx3(1+e33) - dx1 dx2 dx3

= dx1dx2dx3(1+e11+ e22+ e33+ e11 e22+ e22 e33+ e11 e33 +e11 e22 e33) - dx1dx2 dx3

dx1dx2dx3(e11+ e22+ e33) ….. ( )

,

V/V = (e11+ e22+ e33) = ekk (6.23)

(6.21) ,

pkk 3332211 (6.24)

i=j)

233

2323

21

233233

21

23313

21

323

3321

23221

pp

pp

ppe kkiiiiii

(6.25)

ii 11 22 33 3 , (6.26)

pekk

23

K (6.26)

6.1

ekk

e e=e11+e22+e33

105

Page 117: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

V0 dx1dx2dx3

V 1 e11 dx1 1 e22 dx2 1 e33 dx3

, (6.27) .

332211113333222211332211

332211113333222211332211

321

321332211

321

321333222111

0

0

11

1111

111

eeeeeeeeeeeeeeeeeeeeeeee

dxdxdxdxdxdxeee

dxdxdxdxdxdxdxedxedxe

VVVe

(6.27)

, 2

, 1

ekk = e11+e22+e33

6.6.3

S

x3 33 (6.18)

, 03231122211

313333221133

2322332211

1211332211

20,220,2020,20

eeeeeeeeeeeeeee

2 e11 e22 2 e33 0 ,

e11 e22 e33 (6.28)

3 33=…

106

Page 118: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

33

333333

23

221

e

ee

3333 23e (6.29)

(6.28) 11332211 20 eeee

e33 1 2 e11 0 e33 2e11e11

e33 2 (6.30)1

(6.28) 22332211 20 eeee ,

e22

e33 2 (6.30)2

, ,

e11

e33

e22

e33 2 (6.31)

( ) E 33 e33

, (6.29) (6.32) .

23

33

33

eE

(6.32)

, E, Lame

.

6.6.4

2

107

Page 119: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

12 0

.

0, 312333221112 (6.33)

(6.18)

3133332211

2322332211

1211332211

20,2020,202,20

eeeeeeeeeeeeeee

e12 2 2e12

(6.34)

G G (Modulus of Rigidity)

6.6.5

Hooke Duhamel-NeumannCijkl ekl

T0 , T(6.35)

0TTeC ijklijklij (6.35)

ijijijkkij TTee 02 (6.36)

, ,

= (3 +2 ) = 21

E (6.37)

.

6.7

108

Page 120: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, (linear spring)

(dashpot) , 2 ( : Maxwell model, Voigt model) 3 , 4 ,

6.7.1 Maxwell

6.1 Maxwell .

s d

, ,

= s + d (6.38)

. ,

s E s (6.39)

dd d

dt (6.40)

E ,

t s d (6.38)

, (6.41) .

ddt

d s

dtd d

dt (6.41)

(6.39)d s

dt1E

d s

dt(6.40)

d d

dtd (6.41)

(6.42) .

6.1 Maxwell model (2 )

109

Page 121: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

ddt

1E

d s

dtd (6.42)

s d ( ).

E

ddt

ddt

(6.43)

E (6.44)

6.7.2 Voigt

, 6.2

Voigt

: S

: d

2

: = S + d (6.45)

, (6.39), (6.40) 2

= S = d

E ddt

(6.46)

Maxwell Voigt

3 (Maxwell )

(6.47)

dtdE

dtd

dRe (6.47)

6.2 Voigt model (2 )

110

Page 122: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

e, d 2 , ER

6.7.3 Maxwell

(t) u(t) (t)

(creep function) c(t)

. Creep ,

, Maxwell (6.42)4

ssss

sssss

1 (6.48)

(t)=u(t) 1/s , (6.48) s ,

sEssssss 11111111

222 (6.49)

tctu

Ett 11

(t>0) (6.50)

(creep) c(t)= (t/ +1/E)u(t)

6.7.4 Maxwell

Maxwell (t)=u(t) (t)

(relaxation function) k(t)

(6.48) (s) 1/s

(s)

4 t f(t) Laplace f (s) s

, 0

)()( dtetfsf st

111

Page 123: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

111

11

11 sE

ssssss

sss (6.51)

/tEet (t>0) (6.52)

( ) k t Eet

(1) Voigt c(t), k(t)

. (t) u(t) ,

)()()(

)(11)( /

tEuttk

tueE

tc t

(E.6.1)1,2

(2)

(3) Newton

(4) Newton

(5)

(6) ( )

(7) zz=0( ) (O-xy)

(8) Maxwell Voigt .

( )E

(9) (6.17) ,

ijjiijkljkiljlik eeee 2 (E.6.2)

(10) (6.31), (6.32) , .

)1(2E ,

)1)(21(E (E.6.3)1,2

112

Page 124: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

7.

7.1

1.10

7.1.1

(a)

,

,

113

Page 125: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(b)

7.1.2

NEWTON

114

Page 126: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

1. ( ).

2.

= × ( ) 3. (

).

7.1.3 ( )

N j p j , (7.1) .

mj : j , v j : j ( ) .

v j ,

.

p j mj v j (7.1)

p (7.2) .

N

jj

N

jj m

11vpp (7.2)

N ( )

,

, ( 3 )

N

3 , v3 , v3

, d p = m3 v 3

, 3

115

Page 127: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, d p

1 ,

7.1.4

3 ( ) ,

1 1.11 I F I , F I t

. F IJ p IJ=F IJ t

t , I J .

, .

1.11 , F IJ p IJ=F IJ t

01

tIJ

N

I

N

JI Fr (7.3)

(torque)

(moment of inertia)

( )

116

Page 128: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

7.1

V

S

T

,

7.2

7.1 V, S Ss

T F V ,

Sh h

dV ,

, dV

V S

3

:

K

G

E

V

Vjj dVvvK

21

(j: ) (7.4)

117

Page 129: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

vj dV

V

G x dVV

(7.5)

xx gz

V

E dVV

(7.6)

V (7.4),(7.5),(7.6) K+G+E

K+G+E

(7.7)

Q, W (.)

D( )/Dt 4.2

WQEGKDtD

(7.7)

QW

(7.7)

, 2 vjvj

( )

( ) 2

dV

118

Page 130: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, V dV

(7.7) , dV

V (7.7)

Gauss

7.3 Gauss

7.3.1

Gauss

( )

(7.8)

Gauss

,

.

y= y(xk) y/ xk

y= y(x) y(xk) (k=1,2,3) (7.9)

y x=(x1, x2, x3)

y/ xk L

dy= ( y/ xk)dxk

LL

dxxydx

xydx

xydyyy 3

32

21

112 x (7.10)

(nabla)

y = ek ( y/ xk )

y , (7.11)

119

Page 131: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

y = f(x) (7.11)

dy/dx = f ' (x)

2

1

)('12

x

x

dxxfyy (7.12)

1

y ( ) y x [ x1 ,

x2] y x1, x2

, y2 y1

,

(7.10) y(x) , F= y

, ( y2 y1

)

7.3.2

,

Gauss

A(xk) (k=1,2,3) F= A/ xk ,

dA

33

22

11

dxxAdx

xAdx

xAdx

xAdA k

k

(7.13)

, x2, x3 x1 dA1 , L: [a,b]

, (7.14) .

b

aab

A

Adx

xAAAdAb

a1

1111

1

1

(7.14)

120

Page 132: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

7.2 V , L

dx2dx3

(7.14) dx2dx3

3211

3211 dxdxdxxAdxdxAA

b

aab (7.15)

x2x3 V

V

b

aVab dxdxdx

xAdxdxAA 321

13211 (7.16)

L V

, ( A/ x1) dx1dx2dx3 V

L (x1=a, b)

A dx2dx3 V

A 1b A1a 1 L

x 1 x1

7.2 V L a,b

x1

x2

x3x1=x1

dx2dx3

x1=bx1=a

L

V x2x3

() V

bdSb

adSa

nb

na

P(x1,x2,x3)

: V: S

e1

121

Page 133: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

A L , 1

(7.16) (7.17)

VVab dxdxdx

xAdxdxAA 321

132 (7.17)

7.2 , L a, b

, dSa, dSb n a, n b

, ( ) a,b ,

d S e 1

a,b n1= dx2dx3/dS ,

d S e 1 = dx2dx3 = n e 1dS = n1 dS (7.18)

a,b n x 1 1 x1=b n1>0 x1=a n1<0

a,b (7.17)

(Ab Aa) dx2dx3 = Abn1b dSb + Aan1a dSa (7.19)

a,b V :

(7.17) V S d S

, A d S e 1 =An1 dS S

(7.17) (7.20)

VS

dxdxdxxAdSAn 321

11 (7.20)

V A

1 , e1 n n1 , n1

. V S

122

Page 134: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(7.20) , x1

V S .

, k=1 k=2,3

(7.20) , , k=1,2,3 (7.21)

dV= dx1dx2dx3

V kSk dV

xAdSAn (k=1,2,3) (7.20)

Vk

S k dVxAdSAn (k=1,2,3) (7.21)

(7.20), (7.21) Gauss 2 . Gauss

A F F = A/ xk ,

J =V

FdV (7.22)

J

, (7.4)~(7.6)

7.3.3 Gauss

(a) A (uj)

A , u= (uj) ,

(7.21) A= uj (j=1,2,3) .

Vk

j

S kj dVxu

dSnu (7.23)

j=k , (7.24) , Gauss

2 Green , Stokes , Gauss

(7.21)

123

Page 135: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

.

dVxu

xu

xudS

dVxudSnu

VS

Vk

kS kk

3

3

2

2

1

1nu (7.24)

(7.24) V S

S V

,

0

uk/ xk (= div u) . V

div u >0

(b) A

A= , ek (7.25) .

Vk

kS kk dVx

dSn ee (7.25)

(gradient) , grad (= )

(7.10) 3

(c) A (uj) ( )

(7.23) , j, k , ei ijk uk/ xj

(2.20) ei ijk uk/ xj = u (= rot u) rot u

, u

VSS

Vj

kijkiS jkiijk

dVdSdS

dVxudSnu

unuun

ee (7.26)

124

Page 136: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(7.26)

rot u

( )

u , 2 = rot u

.

,

(d) A 2 Cij

Vk

ij

S kij dVxC

dSnC (7.27)

i=k

7.4

O-X1X2X3

t=t0 P

X1=a1, X2=a2. X3=a3

(a1,a2,a3)

P

(7.28) P’

xi xi a1,a2,a3,t i 1,2,3 (7.28)

7.3

X3, x3

X2, x2

X1, x1

t=0

t=t

P(a1, a2, a3)

P’(x1, x2, x3)

D

D’

xk=xk (a1, a2, a3, t), k=1,2,3

Xk=ak

125

Page 137: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(7.28) D (a1,a2,a3) D' (x1,x2,x3)

1 1 . D

D'

xi (a1,a2,a3,t) 1 . ,

, dt=t t0 , 1

(

) , D

(Jacobian determinant) (7.29) 0

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

ax

ax

ax

ax

ax

ax

ax

ax

ax

ax

(7.29)

(7.28) (material description) Lagrange

a1,a2,a3 vi

i (7.30), (7.31) .

vi a1,a2 ,a3,txi

t a1 ,a2 a3

(7.30)

i a1,a2 ,a3,tvi

t a1 ,a2a3

2xi

t 2a1 ,a2 a3

(7.31)

x=(x1,x2,x3) t (spatial

description) [Euler ]

t x

vi (x1,x2,x3,t)

(7.32) .

txvvt

tvt

dtdvt

k

ik

iii ,,,, xxxx (7.32)

126

Page 138: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

t x=(xi) t+dt xi+vidt

. x=(xk) , vk dxk=vkdt

Taylor , t+dt ( )

, .

txvdtvx

txvdtt

txvtxv

txvdttdtvxvdtdt

tdvtdv

kikk

kikiki

kikkii

i

,,,,

,,,, xx (7.33)

(7.33) (7.32) . (7.32)

( ) ( )

. (7.32)

f(x1,x2,x3,t)

t f(x,t)

(Material derivative) , Df/Dt (7.32)

(7.33) d( )/dt , D( )/Dt

f(x,t) (7.34)

Df x1, x2 , x3, tDt

ft x fixed

fx1

x1

tfx2

x2

tfx3

x3

t

ft x fixed

fx1

v1fx2

v2fx3

v3

ft x fixed

fxk

vk (7.34)

,

. ,

(7.28) xk , t : vk =

dxk/dt = dak/dt , t0 ak

127

Page 139: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

Euler f , xk t

, f xk t . f f ,

.

f = ( f/ t) t + ( f/ xk) xk (7.35)

xk xk xk+ xk

t xk/ t ,

f/ t ( t +0)

f/ t , xk/ t xk

vk .

f = ( f/ t) t + ( f/ xk) vk t (7.36)

t, xk t t+ t , vk t

xk/ t = vk

, t ,

xk+vk t t t

, Euler

,

xk/ t = vk Lagrange

Euler , xk/ t = vk

f/ t ,

. ,

. Lagrange (

) D( )/Dt

.

Df/Dt = ( f/ t) + vk ( f/ xk) (7.37)1

Df/Dt = ( f/ t) +v f (7.37)2

? ,

,

128

Page 140: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

dV , A

V :

VAdVtJ )(

, , .

( ) ,

,

, (FEM)

(FDM)

7.5

A J(t)

J(t)

V V

dVtAdxdxdxtxxxAtJ ),(),,,()( 321321 x (7.38)

),,,( 321 txxxA xk , t (k=1,2,3)

t dt t+dt J(t)

t , V , t+dt V+ V

dt

(7.39)

VV Vdt

dVtAdVdttAdtd

DtDJ ),(),(lim

0xx (7.39)

V 7.4

V V (7.40) (7.40)

V A

(7.40) 7.4

V .

129

Page 141: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

VV Vdt

V V Vdt

dVdttAdtddVtAdVdttA

dtd

dVtAdVdttAdVdttAdtd

DtDJ

),(),(),(lim

),(),(),(lim

0

0

xxx

xxx

(7.40)

(7.40)

dV=vjnjdSdt (i=1,2,3) (7.41)

. dxi=vj dt dS

nj dS vj

. (7.40) (7.42)

V Sjj

V Vjjdt

dSnvtAdVtA

dSdtnvtAdtddV

tA

DtDJ

),(

),(lim0

x

x(7.42)1,2

Sjj

Sjj dSdtnvdSdxnV

7.4 vj V

130

Page 142: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(7.42) Leibniz

(7.42) . Avj Gauss

(7.43)

DDt

AdVV

At

dVV xi

VAvi dV (7.43)

(7.44), (7.45)

V j

jj

jV

dVxv

AvxA

tAAdV

DtD

DtDJ

(7.44)

VV j

j

V

dVADtDAdV

xv

ADtDAAdV

DtD vdiv

(7.45)

(7.45) A J

v

7.6 , Leibniz

Gauss , 7.3.1

Leibniz ,

. (7.42) (3 )

1

tattaF

tbttbFdx

tF

dxtxFxt

xdxtFdxtxF

ttb

ta

tb

ta

tb

ta

tb

ta

)),(()),((

),(),(

)(

)(

)(

)(

)(

)(

)(

)(

(7.46)

3 http://en.wikipedia.org/wiki/Leibniz_integral_rule .

131

Page 143: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(7.46) x t F(x,t) x=[a,b]

t Leibniz . a, b

t (7.46) (7.42)

FS

jdSAn (7.47)

a, b

F vj V (7.47) V 7.4

dt +0

, (7.46) (7.42) ,

.

(7.46)

, x = [a(t),b(t)] , t

.

tFF

tx

tFF

xtx

tFF

tF

t

(7.48)

(7.48) Leibniz (

) (7.42)

(7.42)

,

7.7

132

Page 144: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

7.7.1

t V m , V

(7.49) .

m dVV

(7.49)

x,t t x

m 0

DmDt

0 (7.50)

(7.42)

tdV

VvinidS

S0 (7.51)

(7.43) .

0dVxv

tV i

i (7.52)

V 0

.

0i

i

xv

t (7.53)

(7.51) (7.53) , (equations of continuity)

133

Page 145: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

7.7.2

Newton

Pi Fi (7.54)

DPi

DtFi (i=1,2,3) (7.54)

, dVvPV

ii (7.55)

, V

iS

ii dVXdSTF (7.56)

vi Xi

Ti dS

nj , ji Cauchy

jjii nT (j=1,2,3: , i=1,2,3: ) (7.57)

(7.54) (7.55),(7.56)

Vi

Si

Vi dVXdSTdVv

DtD

i=1,2,3) (7.58)

vi (7.45) .

(7.57) (7.27)

dVXx

dVvvxt

v

Vi

j

ji

Vji

j

i (7.59)

(7.60) (7.60)

0 0 4 (3.17) 3 .

134

Page 146: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(7.61) (j=1,2,3: , i=1,2,3: ) .

0dVXx

vvxt

v

Vi

j

jiji

j

i (7.60)

ij

jiji

j

i Xx

vvxt

v(7.61)

(7.61)

ij

ji

j

ij

i

j

ji X

xxvv

tv

xv

tv (7.62)

(7.62) , (7.53) 0 . ,

Euler (Eulerian equation of motion) (7.63) .

ij

jii

j

ij

i XxDt

Dvxvv

tv

(7.63)

O-x1,x2,x3 (7.64)

33

33

2

23

1

133

23

32

2

22

1

122

13

31

2

21

1

111

XxxxDt

Dv

XxxxDt

Dv

XxxxDt

Dv

(7.64)

(7.64) 0 . (7.59)~(7.64) , : ij= ji i, j

(7.64)

.

7.8

135

Page 147: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

7.2 (7.7) ,

7.1 h=(hi)

ni dS nihidS

(7.65)

V i

i

Sii dV

xhdSnhQ (7.65)

7.1 ,

vi , (7.66) .

dVvx

dVvF

dSvndVvFdSvTdVvFW

Viji

jVii

Sijji

Vii

Sii

Vii

(7.66)

Fi ( ), iT ni

dS , (.) (7.4)~(7.6) (7.66) (7.7) ,

dVvx

dVvFdVxhdVdVdVvv

DtD

Viji

jVii

V i

i

V VVii2

1

(7.67)

dVvx

vFxhdVvv

DtD

Viji

jii

i

i

Vii2

1

(7.67)

136

Page 148: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

K, G, E

dVDt

Dxv

DtD

dVxv

DtD

DtD

DtDE

dVDtD

xv

DtD

dVxv

DtD

DtD

DtDG

dVDt

vvDvvxv

DtD

dVxvvv

DtvvDvv

DtD

DtDK

V k

k

V k

k

V k

k

V k

k

V

iiii

k

k

V k

kii

iiii

21

21

21

21

21

(7.53) , 0 (7.67)

dVvx

vFxhdV

DtD

DtDvv

DtD

Viji

jii

i

i

Vii2

1

(7.68)

j

iji

j

jiiii

i

iii x

vx

vvFxh

DtD

DtDvv

DtD

21

(7.69)

(7.63)

j

ijiii

ii

i

iii x

vFXDtDvv

xh

DtD

DtDvv

DtD

21

(7.70)

Xi

(7.71) (7.72) .

137

Page 149: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

iii x

FX (7.71)

j

ijii

i

i

iii x

vvDtDv

xh

DtD

tvv

DtD

21

(7.72)

12

Dvi2

DtDvi

Dtvi t

0

j

iji

i

i

xv

xh

DtD

(7.73)

ji i,j ,

Vij , (7.75)

i

j

j

ijiij x

vxvVV

21

(7.74)

jijii

i Vxh

DtD

(7.75)

(7.75) ,

(7.7)

( )

138

Page 150: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(1) .

(2) ( )

.

(3) V

dVtxAJ ),(

DtDJ

.

3.1 Leibniz , A t

V t .

3.2 Gauss ,

DJ/Dt .

(4) , 3.1, 3.2 .

(5) F = (2x1)e1+(3x1x2 + x3x22) e3 , V S

J

V : P(0,0,0) Q(1,1,1) 1

S: V 6

SS

dxdxFdxdxFdxdxFdJ 213132321SF (E.7.1)

J .

(6) (5) , Gauss J .

(7) V S .

S

kkS

dSnxdJ Sx (E.7.2)

x=(x1, x2, x3) nk dS

(8) (7.52)

0k

k

xv

DtD

(E.7.3)

(9) (7.63) 0 ,

139

Page 151: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

Gauss Cauchy ,

( )

(2

)

140

Page 152: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

8.

8.1

,

.

.

, uj

vj (j=1,2,3)

, .

Euler Hooke .

.

.

Almansi (Euler ) , . , (4.17)2

eij12

u j

xi

uix j

ukxi

ukx j

(8.1)

2

eij12

u j

xi

uix j

(8.2)

. vi ui ,

vi=Dui t, x j

Dtuit

x j

tuix j

uit

v juix j

(8.3)

vj ui/ xj , 2

141

Page 153: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, (8.4) .

viuit

(8.4)

i vi . ,

i=Dvi t, x j

Dtvit

x j

tvix j

vit

v jvix j

(8.5)

vj vi/ xj , 2

, (8.6) .

ivit

(8.6)

Euler

ij

iji X

x (8.7)

Hooke

i

j

j

iij

k

kijijkkij x

uxu

Gxu

Gee 2 (8.8)

ijj

i

ik

k

iji

j

jj

iij

jk

k

ii

j

j

iij

k

k

ji

Xxx

uG

xxu

G

Xxx

uxx

uGxx

u

Xxu

xu

Gxu

x

22

222

(8.9)

142

Page 154: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

e = uk/ xk

ijj

i

i

i Xxx

uG

xeG

tu 2

2

2

(8.10)

. Navier . (8.10)

(nabula) (8.11) .

G 2ui1

1 2exi

Xi

2uit2 (i=1,2,3) (8.11)

, (E.6.3) ( +G) .

(8.11) tui ,x 2 .

,

ui x = (x1,x2,x3) t

2 .

* : . ( )

( =0) , .

* : . ( )

, , .

2 .

(8.11) .

.

1. ( , ).

2. , .

3. ( 3 = 0 ) , ( 3

= 0) . 2 1 ,

.

4. ( ).

143

Page 155: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

8.2

0323133 .

.

x3 x1-x2 .

Hooke 3 Hooke

.

313122113333

232311332222

121233221111

21,1

21,1

21,1

Ge

Ee

Ge

Ee

Ge

Ee

(8.12)1~6

0323133 , (8.13) .

0,

0,121,1

31221133

23112222

1212221111

eE

e

eE

eG

eE

e

(8.13)1~6

(8.13) , .

1212

1122222

2211211

1

1

1

eE

eeE

eeE

(8.14)1~3

2 Euler (8.15) .

(8.16)

144

Page 156: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

22

2

22

22

1

12

21

2

12

21

1

11

tuX

xx

tuX

xx (8.15)1,2

2

1

1

212

2

222

1

111 2

1,,xu

xue

xue

xue (8.16)

u1,u2 Navier (8.17) [

] .

22

2

22

2

1

1

222

22

21

22

21

2

12

2

1

1

122

12

21

12

11

11

tuX

xu

xu

xG

xu

xuG

tuX

xu

xu

xG

xu

xuG

(8.17)

8.3

, 3

0,0 33

2

3

1 uxu

xu

(8.18)

u1,u2 x1,x2 .

0323133 eee (8.19)

. 3 3

. 3

3 (x1x2 ) .

Hooke . (8.12)

, (8.19) e33 =0

221133 (8.20)

145

Page 157: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

.

112222112

112222

221122112

221111

111

111

EEe

EEe

(8.21)

(8.21)

221122

221111

1121

1121

eeE

eeE

(8.22)

. 2 Euler (8.15) (8.22) ,

(8.16) u1,u2 Navier (8.23)

.

22

2

22

2

1

1

222

22

21

22

21

2

12

2

1

1

122

12

21

12

211

211

tuX

xu

xu

xG

xu

xuG

tuX

xu

xu

xG

xu

xuG

(8.23)

(8.23) (8.17) , 2

,

8.4 Airy

2 (8.17), (8.23)

( ) ,

. , .

146

Page 158: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

, ,

(8.14),(8.21) .

.

(stress

function)

,

, 2 ( ,

) Airy

, (8.15)

0 ,

, (8.24)

0j

ji

x (8.24)

. , 2

x1=x, x2=y .

, u1=u, u2=v

0

0

2

22

1

12

2

21

1

11

xx

xx (8.25)

0

0

yx

yx

yyxy

yxxx

(8.25)’

(x,y) , (8.26)

. x y .

147

Page 159: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

yxxy xyyyxx

2

2

2

2

2

,, (8.26)

(8.25)’

x

2

y2 y

2

x y

3

x y2

3

x y2 0 (8.27)1

x

2

x y y

2

x2

3

x2 y

3

y x2 0 (8.27)2

(8.26)

x,y

(8.26) ,

(8.13), (8.21)

, 1*

. 3

2 ,

:

. (8.16) u, v , (8.28)

u,v

(8.29) .

yu

xve

yve

xue xyyyxx 2

1,, (8.28)

2exy

x y12

2

x yuy

2

x yvx

12

2

y2

ux

2

x2

vy

12

2exx

y2

2eyy

x2

(8.29)

1* (E.4.5) 3 .

148

Page 160: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(8.29) Hooke (8.13) .

ExEyGyxxxyyyyxxxy

2

2

2

22

22

2G=E/(1+ ) ,

2

2

2

2

2

2

2

22

2

2

2

22

12

12

xxyyyx

xyyx

xxyyyyxxxy

xxyyyyxxxy

(8.30)

. , (8.25)’

000

222

2

2

2

22

2

2

2

2

yxxxyy

yxxyyxxy

xyxxxyyy

xyxxyyxyyyxx

(8.31)

(8.32) .

022

2

2

2

2

yxxyxyyyxx (8.32)

(8.26) ,

4

y4

4

x4 24

x2 y2 0 (8.33)

, (8.33) (8.34)

.

02

,

2

x2

2

y2 (8.34)

149

Page 161: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(8.34) (bi-harmonic function)

. (8.26)

, Airy .

u, v

,

(harmonic function)

1 (8.35)

0 (8.35)

8.1

8.1

(x,y)

.

x y

x , (8.36) .

2

x2

2

y2 x

2 xx2

2 xy2 x

xx y

xy

xx

xx

y y

2x

x2

x2 x2

y2

(8.36)

150

Page 162: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

0004

24

222

2222

22

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

4

4

22

4

4

4

2

2

2

2

2

2

2

2

4

4

22

4

4

4

2

2

2

2

2

3

3

3

4

4

22

4

4

4

2

2

2

2

4

4

22

4

22

4

2

3

2

3

4

4

3

3

2

2

2

2

3

3

2

3

2

3

2

2

3

3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

yxx

yxyxx

x

yxyxx

yxx

yxxyxyxx

yxx

yxxyxyxx

xyx

yx

xyx

yxx

yxyxxx

xxyx

yx

yxyx

y

yxx

yxxx

xxxyx

yx

xx

xyyx

xx

xx

yx

xx

xyx

(8.37)

, , 0

, x

y

8.2

a22

x2 b2xy c22

y2

(8.38)

Airy . ,

. 0 .

151

Page 163: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

22

222

222

222

222

2

2

222

222

2

2

2

2222

22

ca

ycxybxay

ycxybxax

ycxybxayx

, 2 =0

. , .

(8.38) (8.26) ,

222 ,, bac xyyyxx (8.39)

.

,

2211 acEEx

ue yyxxxx (8.40)

2211 caEEy

ve xxyyyy (8.41)

22 caEE

e yyxxzz (8.42)

G

bGx

vyue xy

xy 2221 2 (8.43)

u , (8.40) x

u x, y xE

c2 a2 c1 y (8.44)

v , (8.41) y

v x, y yE

a2 c2 c3 x (8.45)

c1(y), c3(x) , (8.44), (8.45)

(8.43) , (8.46) .

152

Page 164: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

12

uy

vx

12

dc1dy

dc3dx

b22G

(8.46)

(8.46) 1 , c1(y) y 1 c3(x) x

1 . .

c1 c4y c5c3 c6x c7

(8.47)

c4~c7 (8.46) .

c4 c6b2G

(8.48)

( ) , 0 .

c5 c7 0 (8.49)

. (8.48) ,

u x, yxE

c2 a2 c4y

v x, yyE

a2 c2 c4b2G

x (8.50)

2 0 .

, (8.51) .

z12

vx

uy

(8.51)

(8.51) (8.50)

vx

uy

c4b2

Gc4 0 (8.52)

c4 .

153

Page 165: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

c4b2

2G (8.53)

, u, v (8.54) .

u x, yxE

c2 a2b22G

y

v x, yyE

a2 c2b22G

x (8.54)

8.3

, 2

. , x=y=0 u=v=0

.

AxyAyAxb

AxyyAyyxAa

xyyyxx

xyyyxx

2,,)(

,3

,32)(

22

2332

(8.55)1,2

.

(8.25)’ .

(a)

03

0

022320

223

2

232

AyAyyy

Axyx

Ayx

AxyAxyxyy

Ayyxx

Ayx

yyxy

yxxx

(b)

02220

42220

2

2

AyAyyy

Axyx

Ayx

AxAxAxxyy

Axx

Ayx

yyxy

yxxx

154

Page 166: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(a) (b)

.

(a) . 2 Hooke

(a) ,

2

323

332

122

1

32

311

31

321

AxyEGx

vyue

yyxyEA

Eyve

yyyxEA

Exue

xyxy

xxyyyy

yyxxxx

(8.56)1~3

. u (8.56)1 x .

ycxyxyyxEA

dxyyyxEAdx

xuu

1333

332

332

31

332

(8.57)

v (8.56)2 y

xcyyxyEA

dyyyxyEAdy

yvv

24

224

323

122

2121

32

31

(8.58)

(8.57) (8.58) c1 c2 .

(8.56)3 0 0 .

(8.56)3 (8.57), (8.58) ,

xcdxdyyxy

xEA

ycdydxyxyyx

yEA

xv

yu

24

224

1333

122

2121

332

31

155

Page 167: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2

2123

12

1231

AxyE

xcdxdyc

dydxyx

EA

xv

yu

3

3

21x

EAxc

dxdyc

dyd (8.59)

, (8.60)

xv

yu

(8.60)

0 xv

yu , .

xcdxdxy

EAyc

dydxyxyx

EA

22

1223 2

31

2321 2

31 xyx

EAxc

dxdyc

dyd (8.61)

(8.59), (8.61) , c1, c2

.

231 3

1 xyxEAyc

dyd (8.62)

(8.63) . c3

333

1 3cxyyx

EAc (8.63)

156

Page 168: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

c2

22 xy

EAxc

dxd (8.64)

x , (8.65) . c4

422

2 2cyx

EAc (8.65)

u, v (8.57), (8.58) c1, c2

33

333333

13

32

3

cxyEA

cxyyxEAxyxyyx

EAu

(8.66)

422

4

4224224

16

212

262

61

2

cyxyEA

cyxEAyyxy

EAv

(8.67)

c3, c4 ,

: x=y=0 u=v=0 , c3=c4=0

. u, v .

8.4 3

L a z=0~L .

(1) (u,v,w) . c

u= czy, v= czx, w=0 (8.68)

(2) .

(3) .

157

Page 169: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(4) z=L ( ) .

1) (8.68) , .

20

21

21,

20

21

21

,021

21,00

,0,0

cycyzu

xwecxcx

yw

zve

czczxv

yue

zzwe

czxyy

veczyxx

ue

zxyz

xyzz

yyxx

Hooke (8.12) 0 .

yz, zx .

GcyGcxGe zxxzyzyzzy

yxxyzzyyxx

,2

,0,0

2) (7.64)

00

,000

,000

zGcx

yGcy

xzyx

Gcxzyxzyx

Gcyzyxzyx

zzyzxz

zyyyxy

zxyxxx

,

3) : z=L n (0,0,1) , z=0

(0.0,-1)

Cauchy

z=L : 00

0000

100 GcxGcyGcxGcy

GcxGcy

, z=0 z=L

, r=(x, y) 90°

158

Page 170: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(r=a) n ,

(8.69) .

0,sin,cos0,,ay

axn (8.69)

a , x , x=a

cos , y=a sin Cauchy

0cossincossinsincos

,000

0000

0sincos

GcaxyGct

tGaxGcy

GcxGcy

z

z

(8.70)

, 0

4) z=L .

t = (-Gcy, Gcx, 0) dS=dxdy

0

0

,00

22

22

22

22

xa

xa

a

aAA

zy

xa

xa

a

aAA

zx

AAzz

dyxdxGcdxdyGcxdxdy

ydydxGcdxdyGcydxdy

dxdydxdy

(8.71)1~3

(x, y, L) , dS dM ,

r = (x, y, 0)

32222

3

321

00 eeeee

trM

dSyxGcdSGcyGcxdSGcxGcy

yx

dSd

(8.72)

159

Page 171: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

dS dM , M =(0, 0, Mz)

442

00

3

22

22

4aGcaGcddrrGc

dxdyyxGcdMM

aAA

zz

(8.73)

8.5

,

0,, 22zzxyyzxzyyxx xy

0000

,000

,000

2

2

zyxzyx

zx

yxzyx

zyy

xzyx

zzyzxz

zyyyxy

zxyxxx

, ,

(8.74) .

021,1

021,11

021,11

313122

232322

121222

Gexy

EEe

Geyx

EEe

Gexy

EEe

yyxxzzzz

xxzzyyyy

zzyyxxxx

(8.74)1~6

(8.74) , (E.4.5) .

,

160

Page 172: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

00,0

00,0

00,0

yye

xe

ze

zyxe

yxe

ze

ye

yxze

xze

ye

xe

xzye

zxxyzxyzz

yzxyzxyy

xyzxyzxx

EEze

xe

xze

EEye

ze

zye

EEExe

ye

yxe

xxzzzx

zzyyyz

yyxxxy

202,02

220,02

422,02

2

2

2

2

2

2

2

2

2

2

2

2

. , .

, .

,

.

8.5 (Principle of Saint-Venant)

A

A’ A A’

,

2

.

.

161

Page 173: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(a)

(b)

8.1

A

A

p0

F=p0A

p0

p0F

p0

A

A

M=FdL

F

F

dLdLF

FMM h

h

8.1 (a) (b)

(a) 2

( ) ( )

(b) 2

162

Page 174: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2

(1) Airy (x,y) xx, yy, xy

1. = A y2 + B x2

2. = ex sin(y)

3. = x ex cos(y)

(2) =Ay3+Cx3 Airy

xx, yy, xy .

exx, eyy, exy .

(3) Airy 4

.

(4) (Saint-Venant)

(5) (E.8.1) ,

.

Vijij dVeE

21

(E.8.1)

(6.18), (6.19) .

(6) u

a, b, c , E

u u1,u2,u3

ax by,by cz,cz ax (E.8.2)

(7) Airy .

163

Page 175: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

)cosh()sin( kykx (E.8.3)

, 2

)cosh(kyky eeky , k

(8) O (0,0,0) x3

RR

xA

Rxx

AR

xxAuuu 43,,,, 3

23

332

331

321 , (E.8.4)

A , 23

22

21 xxxR

: ,)3,2,1,:(, 21 kn

Rnx

xRnRR

xRx

xR

nk

k

nn

k

k

k

52

21

32

5121

323

21

1

33 RxxRxRxxxRxRxx

x

(9) Airy ( 11, 22, 12) (u1,u2)

21

222

1

22xpxp

(E.8.5)

(x1, x2)= (0,0) (u1,u2)= (0,0) , x1=x,

x2=y

164

Page 176: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

9.

9. 1

6

Newton Newton1*

ij p ij Vkk ij 2 Vij p ijvk

xkij

vi

x j

vj

xi

(9.1)

Euler (7.63)

Dvi

DtXi

pxi xi

vk

xk xk

vk

xi xk

vi

xk

(9.2)

Xi

( : ) (7.53)

t

vk

xk

0 vk

xk

0 (9.3)

(9.2)

Dvi

DtXi

pxi

2vi

xk xk

(9.4)

3 /

/ 3 Laplace

ij (6.6)

165

1

Page 177: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

*2 vi (i=1,2,3), p 4

(9.3) (9.4) 4

9. 2

vn s

vn fvt f

vt s0

0

it̂

ijiji tt ˆ (9.5)

Newton (9.1) (9.5)

Laplace2

x12

2

x22

2

x32

2

xk xk

166

Page 178: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

jiji

ji

j

j

ijij

k

kjiji

npn

nxv

xvn

xvnpt

'

ˆ (9.6)

ij'

0 ii pnt̂

9.1(a) 9.1(b)

9.1(c) 9.1(d)

167

Page 179: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

[ ( )2 ] = [ ]

p1 p2

9.1(a) dx dy

9.1(b)

x-z y-z

x-z 9.1(c) dy

9.1(d) dyd

R1 dx R1d d dx/R1

dyd dydx/R1 y-z

dydx/R2 dxdy

dydx/R1+ dydx/R2 dxdy

1R1

1R2

p1 p2 (9.7)

Laplace

R1 R2 p1- p 2>0

R1= R2= p1= p 2

nk ik2

ik1 0

Laplace

168

Page 180: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

nk ik2

ik1 1

R1

1R2

ni (9.8)

p1 p2 ni ik2 ' ik

1 ' nk1R1

1R2

ni (9.9)

ij ' 0 (9.7)

9. 3 Reynolds

V L L V

(9.4)

LVttVppVvuLxx iiii /',/',/',/' 2 (9.10)

''

'''

'' 2

kk

i

i

i

xxu

VLxp

DtDu

(9.11)

2

Reynolds Re

Re VL VL

vi

169

Page 181: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

ui 'xi '

0 (9.12)

(9.11) (9.12)

Reynolds

Reynolds

(9.11)

Reynolds

Reynolds

u2

u y V2

V/L

V 2

V LVL

(9.13)

Reynolds

(1) 10 2mm/sec

Reynolds m 1.4

(1.4 10 2 g / cm sec )

(2)

Reynolds 50km/h 6m

Reynolds 20 1.808 10 4

g/cm sec) = 0.150st (cm2/sec)

170

Page 182: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

9. 4

Navier-Stokes Reynolds

Navier-Stokes

pxi

2vi

xk xk

0 (9.14)

2h

9.2

x 0

v1=v(x2), v2=v3=0, v1(h)=0, v1(-h)=0

Navier-Stokes

px1

2v1

x22 0 (9.15)

px2

0 (9.16)

px3

0 (9.17)

171

Page 183: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(9.16) (9.17) p x1 (9.15)

x12 p x1

2 0 p x1

(9.15)

d2v1

dx22

1 dpdx1

const (9.18)

x2

v1 A Bx2x2

2

2dpdx1

(9.19)

A B A h2 2 dp dx1 , B 0

v11

2dpdx1

h2 x22 (9.20)

Navier-Stokes

Dvi

DtXi

ij

x j

(E9.1)

r, ,z x,y,z

x r cosy r sinz z

rx

xr

cos ,ry

yr

sin

xyr2

sinr

,y

xr2

cosr

(E9.2)

172

Page 184: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

x, y r,

xrx r x

cosr

sinr

yry r y

sinr

cos(E9.3)

vx vr cos v sinvy vr sin v cosvz vz

(E9.4)

rr xx cos2yy sin2

xy sin 2

xx sin2yy cos2

xy sin 2

r yy xx cos sin xy cos 2 (E9.5)

zr zx cos zy sin

z zx sin zy cos

zz zz

xxvx

x, yy

vy

y, zz

vz

z,

xy12

vx

yvy

x, yz

12

vy

zvz

y, zx

12

vz

xvx

z

(E9.6)

(E9.3) (E9.4) (E9.6)

173

Page 185: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

xx cosr

sinr

vr cos v sin

cos2 vr

rsin2 vr

r1r

vcos sin

vr

1r

vr vr

,

yy sin2 ur

rcos2 vr

r1r

vcos sin

vr

1r

vr vr

,

xysin 2

2vr

r1r

v vr

rcos 2

rvr

1r

vr vr

(E9.7)

zz, zy, zx

rrvr

r,

vr

r1r

v, zz

vz

z

r12

1r

vr vr

vr

, zr12

vr

zvz

r,

z12

1r

vz vz

(E9.8)

Dvi

Dtai x

axvx

tvx

vx

xvy

vx

yvz

vx

z(E9.9)

(E9.4) (E9.5) (E9.9)

174

Page 186: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

ax tvr cos v sin

vr cos v sin cosr

sinr

vr cos v sin

vr sin v cos sinr

cosr

vr cos v sin

vz zvr cos v sin

cosvr

tvr

vr

rvr

vr v2

rvz

vr

z

sinvt

vrvr

vr

v vrvr

vzvz

(E9.10)

ax ar cos a sin (E9.11)

arvr

tvr

vr

rvr

vr v2

rvz

vr

z

arvt

vrvr

vr

v vrvr

vzvz

(E9.12)

azvz

tvr

vz

rvr

vz vzvz

z(E9.13)

ij

x j

(E9.3) (E9.5)

xx

xxy

yxz

z

175

Page 187: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

rr

r1r

r rr

rrz

zcos

1r

r

r2 r

rz

zsin

(E9.14)

vr

tvr

vr

rvr

vr v2

rvz

vr

zXr

rr

r1r

r rr

rrz

zvt

vrvr

vr

v vrvr

vzvz

X1r

r

r2 r

rz

z

vz

tvr

vz

rvr

vz vzvz

zXz

zr

r1r

z zz

zrz

r

(E9.15)

rr p 2 err p 2vr

r

p 2 e p 2vr

r1r

v

zz p 2 ezz p 2vz

z

r 2 er1r

vr vr

vr

z 2 e z1r

vz vz

zr 2 ezrvr

zvz

r

(E9.16)

(E9.15) Navier-Stokes

176

Page 188: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

vr

tvr

vr

rvr

vr v2

rvz

vr

zXr

pr

2vrvr

r2

2r2

v

vt

vrvr

vr

v vrvr

vzvz

X1r

p 2v2r2

vr vr2

vz

tvr

vz

rvr

vz vzvz

zXz

pz

2vz

(E9.17)

22

r2

1r r

1r2

2

2

2

z2 (E9.18)

R

U

vz = vr , vr r = vr z

2vr

z2

pr

,pz

0 (E9.21)

1r

rvr

rvz

z0 (E9.22)

z 0 vr vz 0,z h vr 0, vz U,r R p p0

(E9.23)

177

Page 189: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

h p0 (1)

vr1

2pr

z z h (E9.24)

(2) z

U1r

ddr

rvr dz0

h h3

12 rddr

ddpdr

(E9.25)

p p03 Uh3 R2 r2 (E9.26)

F3 UR4

2h3 (E9.27)

h

x-y x z

9.3

178

Page 190: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

vx=v(z) Navier-Stokes

d 2vdz2 g sin 0,

dpdz

g cos 0 (E9.31)

zx= dv/dz=0 zz=-p=-p0 p0

z=0 v=0

p p0 g h z cos , vgsin2

z 2h z (E9.32)

y

Q vdz0

h gh2 sin3

(E9.33)

(3) Couette

9.4

rad/sec

T

R1

R2

(4) Navier-Stokes

a b

9. 5

9.4 Couette

179

Page 191: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

ij p ij (9.21)

Dvi

DtXi

pxi

(9.22)

p vi Xi

v1

x1

v2

x2

v3

x3

0vi

xi

0 (9.23)

(9.23)

v3=0 v1 v2 x1 x2

(9.23)

u1

x1

v2

x2

0 (9.24)

x1, x2 v1,v2

v1 x2

, v2 x1

(9.25)

(9.24) x1, x2

9.25) (9.22)

180

Page 192: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

2

t x2 x2

2

x1 x2 x1

2

x22 X1

1 px1

2

t x1 x2

2

x12 x1

2

x1 x2

X21 p

x2

(9.26)

0 p

t2

x2

2

x1 x1

2

x2

0 (9.27)

22

x12

2

x22 (9.28)

dx1

v1

dx2

v2

(9.29)

v2dx1 v1dx2 0 (9.25)

x1

dx1 x2

dx2 d 0 (9.30)

x1, x2

9. 6

181

Page 193: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

I C v dlC

viCdxi (9.31)

C v dl

Stokes C

I C v n dSS

curlv i ni dSS (9.32)

S C ni

curlv i eijkv j ,k curlv

C

DDt

v dlc

(9.33)

C

DDt

vi dxiC

DDtC

vidxiDvi

Dtdxi vi

Ddxi

DtC(9.34)

Ddxi Dt dxi dvi

(9.22) Dvi/Dt (9.34)

DDt

vi dxiC

1 pxi

Xi dxi vidviC

dpC

Xi dxiC

12

dv2

C

(9.35)

182

Page 194: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

3 v2

0 2 0

DDt

vi dxiC

dpC

(9.36)

(barotropic) (9.36) 0

DDt

vi dxiC0 (9.37)

Helmholtz

0 0

0

(9.32) 0

9. 7

0

v curlv 0 (9.38)

eijkvj ,k 0 (9.39)

2

3

183

Page 195: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

v1

x2

v2

x1

0 (9.40)

(9.25) (9.40)

2

x12

2

x22 0 (9.41)

Laplace

3

0,0,03

1

1

3

2

3

3

2

1

2

2

1

xv

xv

xv

xv

xv

xv

(9.42)

v grad

(9.42)

2

x12

2

x22

2

x32 0 (9.43)

Laplace

Euler

184

Page 196: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

0

9.4 O

xy x,y,z 2

ax by cz Ax2 By2 Cz2 Dxy Eyz Fzx

=0

z=0 vz z 0 x y z 0 x y 0a = b = c = 0, C = - A - B, E = F = 0

Dxy x y

Ax2 By2 A B z2

z A=B

A x2 y2 2z2

vx 2Ax, vy 2Ay, vz 4Az

dxvx

dyvy

dzvz

dx2Ax

dy2Ay

dz4Az

x2z=c1 y2z=c2 3

y B=0

A x2 y2

xz=const

185

Page 197: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

(5) z

(a) 1

4log x2 y2 1

2log r r2 x2 y2

(b) x

(c) Arn cos n tan 1 yx

(d) cos

r

ur r, u

1r

(6) 2

v1 y, v2 x

, v3 0

9.4

186

Page 198: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

=

(a) c

(b) y

(c) Arn sin n

(d) sin

r

(7) (5)

(a) 0

(b)

187

Page 199: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

本書は 2011 年 4 月 1日、長岡技術科学大学より UD Project の一冊として刊行

されたものの復刊です。

連続体力学の基礎

れんぞくたいりきがくのきそ

Fundamentals of Continuum Mechanics

2015 年 6 月 19 日 初版発行©

著 者 古 口 日出男

永 澤 茂

発行者 福 田 雅 夫

発行所 GIGAKU Press

(長岡技術科学大学出版会)

〒940-2188 新潟県長岡市上富岡町 1603-1

長岡技術科学大学内

電話 0258-47-9266

[email protected]

Printted in Japan

ISBN978-4-907996-09-3

Page 200: 連続体力学の基礎 - nagaokaut.ac.jplib.nagaokaut.ac.jp/gigaku-press/wp-content/uploads/2015/...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤

ISBN:978-4-907996-3