類比積體電路實驗室...

86
Ching-Yuan Yang National Chung-Hsing University Department of Electrical Engineering Basic Operational Amplifier Design 類比積體電路實驗室 學前訓練專題

Upload: others

Post on 07-Sep-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

Ching-Yuan Yang

National Chung-Hsing UniversityDepartment of Electrical Engineering

Basic Operational Amplifier Design

類 比 積 體 電 路 實 驗 室

學前訓練專題

Page 2: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

1 Ching-Yuan Yang / EE, NCHUAIC Lab.

設計規格

Design a two-stage CMOS Op Amp: (CL = 1pF) VDD = −VSS = 1.5V Small signal gain Av ≥ 60dBGainbandwidth GB ≥ 10MHzSR ≥ 20 V/µs phase margin ≥ 65o

−0.7V ≤ ICMR ≤ 0.7V Pdiss ≤ 3mW Setting timeCMRRPSRROutput swingOutput resistanceOffsetNoiseLayout area

Page 3: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

2 Ching-Yuan Yang / EE, NCHUAIC Lab.

Block Diagram of a Two-Stage Opamp

First gain stage: a differential-input single-ended output stage.Second gain stage: a CS stage with an active load.

CC is included to ensure stability when the opamp is used with feedback.Miller capacitance

Output buffer: (In this work, not be included)

A1Vin −A2

CC

1 Vout

Differentialinput stage

Secondgain stage

Outputbuffer

Page 4: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

3 Ching-Yuan Yang / EE, NCHUAIC Lab.

- A CMOS realization of a two-stage amplifier (unbuffer)

M10

M11

M14 M12

M13M15

RB

M5

M1 M2

M4M3 M7

Vin− Vin+

M16

CC

M6

VDD

Vout

Bias circuitry Differential-inputfirst stage

Common-sourcesecond stage

CL

Page 5: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

4 Ching-Yuan Yang / EE, NCHUAIC Lab.

- Opamp gain

The gain of the 1st stage: Av1 = gm1(rds2 // rds4)where

The gain of the 2nd stage: CS gain stage

Av2 = −gm7(rds6 // rds7)

The gain of the 3rd stage: CD buffer stage

1 11 1

2 22

biasm p ox D p ox

idsi DGi ti

Di

IW Wg C I CL L

Lr V VI

µ µ

α

= =

≈ +

83

8 8 9

mv

L m ds ds

gAG g g g

≈+ + +

Page 6: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

5 Ching-Yuan Yang / EE, NCHUAIC Lab.

- Frequency response

Miller’s theorem: Ceq = CC(1 + A2) ≈ CCA2

1st stage gain:

The overall gain:

11 1 1 1 2 1

1 1m out out ds ds

in eq eq

vA g Z Z r rv sC sC

= = − = ≈where

≡ = ≈ 12 1 2

2( ) out m

vin C

v gA s A A Av sC A

1( ) mv

C

gA ssC

= unit gain freq. 1mu

C

gC

ω =

M5

M1 M2

M4M3

VDD

Vbias

−A2

CC

Vout

V1 V2

i = gm1vin

+Vin−

Page 7: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

6 Ching-Yuan Yang / EE, NCHUAIC Lab.

Slew Rate

Vin

Vout

Vin

Vout

t

tSR

Exponential

M1 M2

M4M3 M7

Vin− Vin+

M6

VDD

Vout

Vbias

CC

ISS

Ix C2

Io2

Log(SR)

Log(C2)

SRint

SRext

Page 8: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

7 Ching-Yuan Yang / EE, NCHUAIC Lab.

- Slew rate

The slew rate is the maximum rate at which the output changes when input signals are large.The internal slew rate is generally limited by the current available to charge and discharge CC from input stage.

Since ISS = 2ID1, we have

The only way of improving the slew rate for the two-stage opamp is to increase VOD1, ωu , or both.

,max

max

CCout SS

C C

Idv ISRdt C C

= = =

12 D

C

ISRC

= unit gain freq. 1mu

C

gC

ω =

= = =

=

1 11

11

1

11

1

2 2

2

2

D u Du OD u

mp ox D

DOD

p ox

I ISR Vg WC I

LIV WC

L

ω ω ωµ

µwhere

Page 9: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

8 Ching-Yuan Yang / EE, NCHUAIC Lab.

The external slew rate is limited by the current available to charge and discharge C2 .

6 ,max2 6ext

2 2 2

D xo D SSI II I ISRC C C

− −= = =

M1 M2

M4M3 M7

Vin− Vin+

M6

VDD

Vout2

Vbias

CC

ISS

IxC2

Io2

Page 10: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

9 Ching-Yuan Yang / EE, NCHUAIC Lab.

Systematic Offset Voltage

The systematic input referred dc offset can be expressed as

The systematic offset voltage is caused by asymmetry in the dc biasing of V1 and V2.

= +

= =

∆ = − = −

∆ = − = −

2

1 2 3 4

1 2 1 2 1 2 1

3 4 3 4 3 1 2

1 (1 )2

( )2

( )2

D OD DS

SSD D

SSD D

I KV V

II I I V V

II I I V V

λ

λ λ λ λ

λ

λ

−− −− = ⋅ ∆ − ∆ = ⋅ + −,1 2

, 1 2 3 4 1 3 2 11

1 ( ) ( )( )2

ODOS s

m

VV I I V V

gλ λ

M5

M1 M2

M4M3 M7

Vin− Vin+

M6

VDD

Vout2

Vbias

Vos

V1CCV2

ISS

Page 11: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

10 Ching-Yuan Yang / EE, NCHUAIC Lab.

To ensure that no systematic input-offset voltage exists, when the differential input voltage is zero (ie., when Vin+ = Vin−), the output voltage of the first stage, VGS7, should be that which is required to make ID7 equal to its bias current, ID6.

Since , we see that

Further, to minimize process induced variations choose L3 = L4 = L7.

However, this constraint may conflict with frequency response and noise constraints.

67

7

2( / )

DGS tn

n ox

IV VC W Lµ

= +

47 3 4 4

4

2( / )

DGS DS GS GS tn

n ox

IV V V V VC W Lµ

= = = +and

+ = + =6 64 4

4 7 4 7

22( / ) ( / ) ( / ) ( / )

D DD Dtn tn

n ox n ox

I II IV VC W L C W L W L W Lµ µ

6 6 6

4 5 5

( / )/2 ( / ) /2

D D

D D

I I W LI I W L

= = 67

4 5

( / )( / ) 2( / ) ( / )

W LW LW L W L

=

Page 12: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

11 Ching-Yuan Yang / EE, NCHUAIC Lab.

n-channel or p-channel Input Stage in Two-Stage Opamp

Comparing the nMOST-input opamps, the pMOST-input opamps haveSimilar dc voltage gain.Smaller gm1 and larger gm7.Larger unity-gain frequency since ωu ≈ ωp2 and ωp2 = gm7 /C2.Better slew rate since both VOD1 and ωu is larger.

N-channel source-follower output stage is preferable because of less of a voltage drop.Better 1/f noise performance.Poor thermal noise performance.

= >1 , ,( )OD u OD p OD nSR V V Vω

Page 13: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

12 Ching-Yuan Yang / EE, NCHUAIC Lab.

Compensation the Two-Stage Opamp

= =1616 16

1( / )Z ds

n ox effR r

C W L Vµ

M5

M1 M2

M4M3 M7

Vin− Vin+

M6

VDD

Vout2

Vbias1

M16

CC

Vbias2

Page 14: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

13 Ching-Yuan Yang / EE, NCHUAIC Lab.

- A small-signal model of the two-stage opamp for compensation analysis

=

= + +

=

= + +

1 4 2

1 2 4 7

2 6 7

2 7 6 2

ds ds

db db gs

ds ds

db db L

R r rC C C CR r rC C C C

=+ +

1 7 1 27

21 2

1

1

Cm m

mout

in

sCg g R RgV

V b s b swhere

= + + + +

= + +1 1 1 2 2 7 1 2

2 1 2 1 2 1 2

( ) ( )( )

C C m C

C C

b R C C R C C g R R Cb R R C C C C C C

= 0ZR

gm1VinR1 C1

CC

gm7V1R2 C2

Vout

v1 v2RZ

Page 15: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

14 Ching-Yuan Yang / EE, NCHUAIC Lab.

Using dominant-pole approximation, ie., ωp1 << ωp2,

If gm7R2 >> 1, R1 ~ R2, and C1 ~ C2 ~ CC , then

= + + = + + ≈ + +

22

1 21 2 1 1 2

( ) 1 1 1 1p p p p p

s s s sD s b s b sω ω ω ω ω

≈ =+ + + +

+ + + +≈ =

+ +

−=

11 1 1 2 2 7 1 2

1 1 2 2 7 1 212

2 1 2 1 2 1 2

7

1 1( ) ( )( ) ( )

( )

pC C m C

C C m Cp

C C

mz

C

b R C C R C C g R R CR C C R C C g R R Cb

b R R C C C C C CgC

ω

ω

ω

≈ = ⋅

≈ ≈+ + +

11

7 1 2 0

7 72

1 2 1 2 1 2

1 1mp

m C C

m C mp

C C

gg R R C C A

g C gC C C C C C C C

ω

ω

Page 16: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

15 Ching-Yuan Yang / EE, NCHUAIC Lab.

Load Compensation

RZ = 1/gm7, eliminate the right-half-plane zero together.RZ > 1/gm7, and move the right-half-plane zero to the left-half-plane to cancel the nondominant pole, ωp2.

Unfortunately, C2 is often not know, especially when no output stage is present.Choose RZ even larger to move the left-half-plane to a frequency slightly greater than ωt .

−=

−7

1(1/ )z

C m ZC g Rω

+= +

1 2

7

1 1Zm C

C CRg C

≈ = = =11

1

1 1 1' 1.2 1.21.2

mz u Z

Z C Z C C m

g RR C R C C g

ω ω

Page 17: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

16 Ching-Yuan Yang / EE, NCHUAIC Lab.

Making Compensation Independent of Process and Temperature

= =

=

1616 16

7 7 7

1( / )

( / )

Z dsn ox OD

m n ox OD

R rC W L V

g C W L Vµ

µ

= =7 77

16 16

( / ) constant( / )

ODZ m

OD

W L VR gW L V

How to make compensation independent of process and temperature?

Make Va = Vb, ie., VOD13 = VOD7.

= 137

7 13

22( / ) ( / )

DD

n ox n ox

IIC W L C W Lµ µ

= = 67 7

13 13 11

( / )( / )( / ) ( / )

D

D

W LI W LI W L W L

=6 11

7 13

( / ) ( / )( / ) ( / )W L W LW L W L

VOD12 = VOD16

= =7 13 12

16 12 13

( / )( / )

OD OD

OD OD

V V W LV V W L

= 1277

16 13

( / )( / )( / ) ( / )Z m

W LW LR gW L W L

M11

M12

M13 M7

M16

CC

M6Vbias1

VbVa

Page 18: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

17 Ching-Yuan Yang / EE, NCHUAIC Lab.

Biasing on Opamp to Have Stable Transconductances

ID15 = ID13 VGS13 = VGS15 + ID15RBVOD13 = VOD15 + ID15RB

= +13 1515

13 15

2 2( / ) ( / )

D DD B

n ox n ox

I I I RC W L C W Lµ µ

= +13 1313

13 15

2 2( / ) ( / )

D DD B

n ox n ox

I I I RC W L C W Lµ µ

− =

⋅ 13

1513 13

( / )2 1( / )2 ( / ) B

n ox D

W L RW LC W L Iµ

=

13

1513

( / )2 1( / )

mB

W LW L

gR

gm13 is determined by geometric ratios only, independent of power-supply voltages, process parameters, temperature, or any other parameters with large variability.

M10 M11

M14 M12

M13M15

RB

VDD

Page 19: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

18 Ching-Yuan Yang / EE, NCHUAIC Lab.

For the special case of (W/L)15 = 4(W/L)13, we have

=131

mB

gR

gm13, and all other transconductances are stabilized since all transistor currents are derived from the same biasing network, and, therefore, the ratios of the currents are mainly dependent on geometry.

For all n-channel transistors,

For all p-channel transistors,

Note that this bias network needs start-up circuitry.

= × 1313 13

( / )( / )p i Di

mi mn D

W L Ig g

W L Iµµ

= × 1313 13

( / )( / )

i Dimi m

D

W L Ig gW L I

M10 M11

M14 M12

M13M15

RB

VDD

Page 20: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

19 Ching-Yuan Yang / EE, NCHUAIC Lab.

Technique to Make gm Dependent on a Resistor

Assuming λ = 0, then Iout = IREF and VGS1 = VGS2 + ID2RS

Neglecting body effect, we have

That is,

It is often desirable to bias the transistors such that their transconductance does not depend on the temperature, process, or supply voltage.

Any transistor with VGS = VGS1 will have a current flow that makes the transconductance

equal , independent of the supply voltage and MOS

device parameters. In reality, the value of RS does vary with temperature and process.

SoutTHNoxn

outTH

Noxn

out RIVLWKC

IVLWC

I++=+ 21 )/(

2)/(

2µµ

SoutNoxn

out RIKLWC

I=

11)/(

2

2111

)/(2

−⋅=

KRLWCI

Snoxnout µ

The current is independent of the supply voltage (but still a function of process and temperature).

−=

=

KRI

LWCg

SD

Noxnm

1122 11 µ

VDDM3M4

M1 M2RS

IoutIREF

PLW

PLW

NLW

NLWK

Page 21: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

20 Ching-Yuan Yang / EE, NCHUAIC Lab.

Technique to Make gm Dependent on a Resistor

Addition of RS to define the currents (assuming λ ≠ 0). Determine ∆Iout/∆VDD.

R1 = ro1 || (1/gm1), R3 = ro3 || (1/gm3)

143

4 RVgRI

rVV X

mouto

XDD =+−

The equivalent transconductance of M2 and RS is 2222

222 )( oSmbmoS

om

X

outm rRggrR

rgVIG

+++==

Thus, ( )

1

341424

11−

−= Rg

RrGrVI

momoDD

out → 0, if ro4 = ∞.

Page 22: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

21 Ching-Yuan Yang / EE, NCHUAIC Lab.

Technique to Make gm Dependent on a ResistorAddition of RS to define the currents

Addition of start-up device

An important issue in supply-independent biasing is the

existence of “degenerate” bias points. For example, if all the

transistors carry zero current when the supply is turned on,

they may remain off indefinitely because the loop can support

a zero current in both branches.

In other words, the circuit can settle in one of two different

operating condition.

The diode-connected device M5 provides a current path

from VDD through M3 and M1 to ground upon start-up.

This technique is practical on if VTH1 +VTH5 + |VTH3| < VDDand VGS1 +VTH5 + |VGS3| > VDD, the latter to ensure M5

remains off after start-up.

Page 23: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

22 Ching-Yuan Yang / EE, NCHUAIC Lab.

TWO-STAGE OP AMP DESIGN

Page 24: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

23 Ching-Yuan Yang / EE, NCHUAIC Lab.

Unbuffered, Two-Stage CMOS Op Amp

Notation:

of the ith transistorLWLWS

i

ii /==

Page 25: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

24 Ching-Yuan Yang / EE, NCHUAIC Lab.

DC Balance Conditions for the Two-Stage Op AmpFor best performance, keep all transistors in saturation. M4 is the only transistor that cannot be forced into saturation by internal connections or external voltages. Therefore, we develop conditions to force M4 to be in saturation.

1) First assume that VSG4 = VSG6. This will cause “proper mirroring”in the M3-M4 mirror. Also, the gate and drain of M4 are at the same potential so that M4 is “guaranteed” to be in saturation.

2) If VSG4 = VSG6, then

3) However,

44

66 I

SSI

=

)2( 45

75

5

77 I

SSI

SSI

=

=

4) For balance, I6 must equal I7 which is called the “balance conditions”.

5) So if the balance conditions are satisfied, then VDG4 = 0 and M4 is saturated.

5

7

4

6 2SS

SS

=

Page 26: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

25 Ching-Yuan Yang / EE, NCHUAIC Lab.

Design Relationships for the Two-Stage Op AmpSlew rate (Assuming I7 >> I5 and CL > Cc)

First-stage gain

Second-stage gain

Gain-bandwidth

Output pole

RHP zero

60° phase margin requires that if all other roots are ≥ 10GB.

Positive ICMR

Negative ICMR

Saturation voltage

It is assumed that all transistors are in saturation for the above relationships.

cCISR 5=

)(2

425

1

42

11 λλ +

=+

=I

ggg

gA m

dsds

mv

)( 766

6

76

62 λλ +

=+

=I

ggg

gA m

dsds

mv

c

m

CgGB 1=

L

m

Cgp 6

2−

=

c

m

Cgz 6

1 =

=

c

Lmm C

Cgg 26 2.2

(min)1(max)033

5(max) TTDDin VVIVV +−−=

β

)(5(max)11

5(min) satDSTSSin VVIVV +++=

β

βDS

satDSIV 2

)( =

Page 27: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

26 Ching-Yuan Yang / EE, NCHUAIC Lab.

Op Amp Specifications

The following design procedure assumes that specifications for the following parameters are given.

1. Gain at dc, Av(0)

2. Gain-bandwidth, GB

3. Phase margin (or settling time)

4. Input common-mode range, ICMR

5. Load Capacitance, CL

6. Slew-rate, SR

7. Output voltage swing

8. Power dissipation, Pdiss

Page 28: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

27 Ching-Yuan Yang / EE, NCHUAIC Lab.

Unbuffered Op Amp Design ProcedureThis design procedure assumes that the gain at dc (Av), unity gain bandwidth (GB), input common mode range (Vin(min) and Vin(max)), load capacitance (CL), slew rate (SR), settling time (Ts), output voltage swing (Vout(max) and Vout(min)), and power dissipation (Pdiss) are given. Choose the smallest device length which will keep the channel modulation parameter constant and give good matching for current mirrors.

1. From the desired phase margin, choose the minimum value for Cc, i.e. for a 60o phase margin we use the following relationship. This assumes that z ≥ 10GB.

Cc > 0.22CL2. Determine the minimum value for the “tail current” (I5) from the largest of the two values.

I5 = SR⋅Cc or

3. Design for S3 from the maximum input voltage specification.

4. Verify that the pole of M3 due to Cgs3 and Cgs4 (= 0.67W3L3Cox) will not be dominant by assuming it to be greater than 10 GB.

5. Design for S1 (S2) to achieve the desired GB.

⋅+

≈s

SSDD

TVV

I2

105

2(min)1(max)03(max)3

33 ]['

2TTinDD VVVVK

IS+−−

=

GBCg

gs

m 102 3

3 >

51

1211 '

IK

gSSCGBg mcm ==⋅=

Page 29: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

28 Ching-Yuan Yang / EE, NCHUAIC Lab.

6. Design for S5 from the minimum input voltage. First calculate VDS5(sat) then find S5.

7. Find S6 by letting the second pole (p2) be equal to 2.2 times GB and assuming that VSG4 = VSG6.

8. Calculate I6 from

Check to make sure that S6 satisfies the Vout(max) requirement and adjust as necessary.9. Design S7 to achieve the desired current ratios between I5 and I6.

S7 = (I6 /I5)S5 (Check the minimum output voltage requirements)10. Check gain and power dissipation specifications.

11. If the gain specification is not met, then the currents, I5 and I6, can be decreased or the W/L ratios of M2 and/or M6 increased. The previous calculations must be rechecked to insure that they are satisfied. If the power dissipation is too high, then one can only reduce the currents I5 and I6. Reduction of currents will probably necessitate increase of some of the W/L ratios in order to satisfy input and output swings.

12. Simulate the circuit to check to see that all specifications are met.

2)(55

55(max)1

1

5(min))(5 )('

2 mV100satDS

TSSinsatDS VKISVIVVV =≥−−−=

β

6

44626 2.2

m

m

c

Lmm g

gSSCCgg =

=

66

26

6 '2 SKgI m=

))(( )()(

265

766325

62SSDDdiss

mmv VVIIP

IIggA ++=

++=

λλλλ

Page 30: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

29 Ching-Yuan Yang / EE, NCHUAIC Lab.

Example 6.3-1 - Design of a Two-Stage Op Amp

Using the material and device parameters given in Tables 3.1-2 and 3.2-1, design an amplifier similar to that shown in Fig. 6.3-1 that meets the following specifications. Assume the channel length is to be 1µm.

A v > 5000V/V VDD = 2.5V VSS = -2.5V 60o phase marginGB = 5MHz CL = 10pF SR > 10V/µsVout range = ±2V ICMR = -1 to 2V Pdiss ≤ 2mW

Solution1.) The first step is to calculate the minimum value of the compensation capacitor Cc, which is

Cc > (2.2/10)(10 pF) = 2.2 pF2.) Choose Cc as 3pF. Using the slew-rate specification and Cc calculate I5.

I5 = (3x10-12)(10 x 106) = 30 µA3.) Next calculate (W/L)3 using ICMR requirements.

4.) Now we can check the value of the mirror pole, p3, to make sure that it is in fact greater than 10GB.Assume the Cox = 0.4fF/µm2. The mirror pole can be found as

or 448 MHz. Thus, p3, is not of concern in this design because p3 >> 10GB.

15)/()/( 15]55.085.025.2[1050

1030)/( 4326

6

3 ===+−−⋅×

×= −

LWLWLW

(rads/sec) 1081.2)667.0(2'2

29

33

33

3

33 ×==

−≈

ox

p

gs

m

CLWISK

Cgp

Page 31: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

30 Ching-Yuan Yang / EE, NCHUAIC Lab.

5.) The next step in the design is to calculate gm1 to getgm1 = (5x106)(2π)(3x10-12) = 94.25µS

Therefore, (W/L)1 is

6.) Next calculate VDS5,

Using VDS5 calculate (W/L)5 from the saturation relationship.

7.) For 60o phase margin, we know thatgm1 ≥ 10gm1 ≥ 942.5µS

Assuming that gm6 = 942.5µS and knowing that gm4 = 150µS, we calculate (W/L)6 as

3)/()/( 379.2151102)25.94(

'2)/()/( 21

2

1

21

21 ==≈=⋅⋅

=== LWLWIK

gLWLWN

m

35.085.0310110

1030)5.2()1( 6

6

5 =−⋅×

×−−−−= −

DSV

5.4)/( 5.449.4)35.0(10110

)1030(2)/( 526

6

5 =≈=⋅×

×= −

LWLW

9425.9410150

)105.942(15)/( 6

6

6 ≈=××

= −

LW

Page 32: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

31 Ching-Yuan Yang / EE, NCHUAIC Lab.

8) Calculate I6 using the small-signal gm expression:

If we calculate (W/L)6 based on Vout(max), the value is approximately 15. Since 94 exceeds the specification and maintains better phase margin, we will stay with (W/L)6= 94 and I6 = 95µA.With I6 = 95µA the power dissipation is Pdiss = 5V·(30µA+95µA) = 0.625mW.

9) Finally, calculate (W/L)7

Let us check the Vout(min) specification although the W/L of M7 is so large that this is probably not necessary. The value of Vout(min) is

which is less than required. At this point, the first-cut design is complete.10.) Now check to see that the gain specification has been met

which meets specifications. An easy way to increase the gain would be to increase the W and L values by a factor of two which because of the decreased value of λwould multiply the above gain by a factor of 20.

A 95A5.949410502)105.942(

6

26

6 µµ ≈=⋅×⋅

×= −

I

14)/( 1425.14103010955.4)/( 76

6

7 =≈=

××

= −

LWLW

V351.014110

952)(7(min) =

⋅⋅

== satDSout VV

V/V 696,7)05.004.0(1095)05.004.0(1015

)1025.94)(1025.94(66

66

=+×⋅+×

××= −−

−−

vA

Page 33: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

32 Ching-Yuan Yang / EE, NCHUAIC Lab.

The final step in the hand design is to establish true electrical widths and lengths based upon ∆L and ∆W variations. In this example ∆L will be due to lateral diffusion only. Unless otherwise noted, ∆W will not be taken into account. All dimensions will be rounded to integer values. Assume that ∆L = 0.2µm. Therefore, we have

W1 = W2 = 3(1 − 0.4) = 1.8µm ≈ 2µm W3 = W4 = 15(1 − 0.4) = 9µm W5 = 4.5(1 − 0.4) = 2.7µm ≈ 3µm W6 = 94(1 − 0.4) = 56.4µm ≈ 56µm W7 = 14(1 − 0.4) = 8.4µm ≈ 8µm

The figure below shows the results of the first-cut design. The W/L ratios shown do not account for the lateral diffusion discussed above. The next phase requires simulation.

Page 34: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

33 Ching-Yuan Yang / EE, NCHUAIC Lab.

Incorporating the Nulling Resistor into the Miller Compensated Two-Stage Op AmpCircuit:

We saw earlier that the roots were:

where Av = gm1gm6RIRII. (Note that p4 is the pole resulting from the nullingresistor compensation technique.)

61 /

1mccz gCCR

z−−

=

cv

m

cv

m

CAg

CAgp 22

1 −=−=

IzCRp 1

4 −=

L

m

Cgp 6

2 −=

Page 35: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

34 Ching-Yuan Yang / EE, NCHUAIC Lab.

Design of the Nulling Resistor (M8)

In order to place the zero on top of the second pole (p2), the following relationship must hold

The resistor, Rz, is realized by the transistor M8 which is operating in the active region because the dc current through it is zero. Therefore, Rz, can be written as

The bias circuit is designed so that voltage VA is equal to VB.

∴ |VGS10| − |VT| = |VGS8| − |VT| VSG11 = VSG6

In the saturation region

Equating the two expressions for Rz gives

666 '211

ISKCCC

CCC

gR

pc

cL

c

cL

mz

+=

+=

( )TPSGpD

DSz VVSKdi

dvRDSV −

=== 888

8

'1

08

=

6

6

6

10

11

11

LW

II

LW

10

10

810

10

8

81010

1010

'21

2'

'1

)/('2

IKS

SISK

SKR

VVLWK

IVV

P

P

Pz

TGSP

TGS

==

−==−

10

6610

8

8

IISS

CCC

LW

cL

c

+

=

Page 36: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

35 Ching-Yuan Yang / EE, NCHUAIC Lab.

Example 6.3-2 - RHP Zero Compensation

Use results of Ex. 6.3-1 and design compensation circuitry so that the RHP zero is moved from the RHP to the LHP and placed on top of the output pole p2. Use device data given in Ex. 6.3-1.

Solution

The task at hand is the design of transistors M8, M9, M10, M11, and bias current I10. The first step in this design is to establish the bias components. In order to set VA equal to VB, then VSG11 must equal VSG6. Therefore,

S11 = (I11 /I6)S6

Choose I11 = I10 = I9 = 15µA which gives S11 = (15µA/95µA)94 = 14.8 ≈ 15.

The aspect ratio of M10 is essentially a free parameter, and will be set equal to 1. There must be sufficient supply voltage to support the sum of VSG11, VSG10, and VDS9. The ratio of I10 / I5 determines the (W/L) of M9. This ratio is

(W/L)9 = (I10/I5)(W/L)5 = (15/30)(4.5) = 2.25 ≈ 2

Now (W/L)8 is determined to be

663.5µA15

µA95941pF10pF3

pF3)/( 8 ≈=⋅⋅

+

=LW

Page 37: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

36 Ching-Yuan Yang / EE, NCHUAIC Lab.

It is worthwhile to check that the RHP zero has been moved on top of p2. To do this, first calculate the value of Rz. VSG8 must first be determined. It is equal to VSG10, which is

Next determine Rz

The location of z1 is calculated as

The output pole, p2, is

Thus, we see that for all practical purposes, the output pole is canceled by the zero that has been moved from the RHP to the LHP.

The results of this design are summarized below.W8 = 6 µm W9 = 2 µm W10 = 1 µm W11 = 15 µm

V474.17.0150

152)/('

21010

1010 =+

⋅⋅

=+= TPP

GS VLWK

IV

( ) Ω=−⋅

=−

= k590.4)7.0474.1(63.550

1'

1108 TPSGP

z VVSKR

rad/sec 1046.94/

1 6

61 ×−=

−−

=mccz gCCR

z

rad/sec 1025.94 662 ×−=−=

L

m

Cgp

Page 38: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

37 Ching-Yuan Yang / EE, NCHUAIC Lab.

An Alternate Form of Nulling Resistor

To cancel p2,z1 = p2

Which gives

In the previous example,gm6 = 942.5µS, Cc = 3pF and CL = 10pF.

Choose I6B = 10µA to get

or

Bmcm

Lcz gCg

CCR66

1=

+=

+

=Lc

cmBm CC

Cgg 66

6

66

6

6666

22 L

IWKCC

CL

IWKCCCgg DP

Lc

c

B

BDBP

Lc

cmBm

+

=+

=

m48 6.47941095

133

6

2

6

6

6

62

6

6 µ==⋅

=

+

= BA

A

BLc

c

B

B WLW

II

CCC

LW

Page 39: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

38 Ching-Yuan Yang / EE, NCHUAIC Lab.

Programmability of the Two-Stage Op AmpThe following relationships depend on the bias current, IBias, in the following manner and allow for programmability after fabrication.

Illustration of the Ibias dependence

BiasIIImIImIv I

RRggA 1 )0( ∝=

Biasc

mI ICgGB ∝=

( )( ) BiasBiasSSDDdiss IIKKVVP ∝+++= 1 21

Biasc

Bias ICIKSR ∝= 1

BiasBiasout IIK

R 12

1

2

∝=λ

5.12

1 1Bias

Bias

Bias

cIIImII

II

ICRRg

p ∝∝=

Biasc

mII ICgz ∝=

Page 40: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

39 Ching-Yuan Yang / EE, NCHUAIC Lab.

Simulation of the Electrical Design

Area of source or drain = AS = AD = W[L1 + L2 + L3]where

L1 = Minimum allowable distance between the contact in the S/D and the polysilicon (5µm)L2 = Width of a minimum size contact (5µm)L3 = Minimum allowable distance from the contact in S/D to the edge of the S/D (5µm)∴ AS = AD = Wx15µm

Perimeter of the source or drain = PD = PS = 2W + 2(L1+L2+L3)∴ PD = PS = 2W + 30µm

Illustration:

Page 41: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

40 Ching-Yuan Yang / EE, NCHUAIC Lab.

5-to-1 Current Mirror with Different Physical Performances

Page 42: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

41 Ching-Yuan Yang / EE, NCHUAIC Lab.

1-to-1.5 Transistor Matching

The layout of two transistors with a 1.5 to 1 matching using centroidgeometry to improve matching.

Page 43: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

42 Ching-Yuan Yang / EE, NCHUAIC Lab.

Reduction of Parasitics

The major objective of good layout is to minimize the parasitics that influence the design.Typical parasitics include:

Capacitors to ac groundSeries resistance

Capacitive parasitics is minimized by minimizing area and maximizing the distance between the conductor and ac ground.Resistance parasitics are minimized by using wide busses and keeping the bus length short.For example:

At 2mΩ /square, a metal run of 1000µm and 2µm wide will have 1Ω of resistance.At 1 mA this amounts to a 1 mV drop which could easily be greater than the least significant bit of an analog-digital converter. (For example, a 10 bit ADC with VREF = 1V has an LSB of 1mV)

Page 44: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

43 Ching-Yuan Yang / EE, NCHUAIC Lab.

Technique for Reducing the Overlap Capacitance

Square Donut Transistor:

Note: Can get more W/L in less area with the above geometry.

Reduction of Cgd by a donut shaped transistor.

Page 45: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

44 Ching-Yuan Yang / EE, NCHUAIC Lab.

Chip Voltage Bias Distribution Scheme

Generation of a reference voltage which is distributed on the chip as a current to slave bias circuits.

Page 46: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

45 Ching-Yuan Yang / EE, NCHUAIC Lab.

SIMULATION AND MEASUREMENT OF OP AMPS

Page 47: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

46 Ching-Yuan Yang / EE, NCHUAIC Lab.

Simulation and Measurement Considerations

Objectives:

The objective of simulation is to verify and optimize the design.

The objective of measurement is to experimentally confirm the specifications.

Similarity Between Simulation and Measurement:

Same goals

Same approach or technique

Differences Between Simulation and Measurement:

Simulation can idealize a circuit

Measurement must consider all nonidealities

Page 48: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

47 Ching-Yuan Yang / EE, NCHUAIC Lab.

Simulating or Measuring the Open-Loop Transfer Function of the Op AmpCircuit (Darkened op amp identifies the op amp under test):

Simulation:This circuit will give the voltage transfer function curve. This curve should identify:1) The linear range of operation2) The gain in the linear range3) The output limits4) The systematic input offset voltage5) DC operating conditions, power dissipation6) When biased in the linear range, the small-signal frequency response can be

obtained.7) From the open-loop frequency response, the phase margin can be obtained (F = 1).

Measurement:This circuit probably will not work unless the op amp gain is very low.

Page 49: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

48 Ching-Yuan Yang / EE, NCHUAIC Lab.

A More Robust Method of Measuring the Open-Loop Frequency ResponseCircuit:

Resulting Closed-Loop Frequency Response:

Make the RC product as large as possible.

Page 50: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

49 Ching-Yuan Yang / EE, NCHUAIC Lab.

Example 6.6-1 – Measurement of the Op Amp Open-Loop GainDevelop the closed-loop frequency response for op amp circuit shown which is used to measure the open-loop frequency response. Sketch the closed-loop frequency response of the magnitude of Vout/Vin if the low frequency gain is 4000 V/V, the GB = 1MHz, R = 10MΩ, and C = 10µF. (Ignore RL and CL)SolutionThe open-loop transfer function of the op amp is

The closed-loop transfer function of the op amp can be expressed as

Substituting, Av(s) gives,

The magnitude of the closed-loop frequency response is plotted above.

( ) ππ

500102

)0(/)(

6

=+

=sAGBs

GBsAv

v

[ ] [ ]01.0

)(01.0

)01.0(

/1)(

)/1()/1(

/)()/1()()/1(

)/1(/1)(

)/1(/1)(

+++−

=++

+−=

+++−

=

+

+−

=

+

+−

=

sAs

s

RCsARCs

RCsRCsARCssARCs

vv

vvRCs

RCsAvvsCR

sCsAv

vv

v

v

IN

OUT

INOUTvINOUTvOUT

)72.1529)(04.41()01.0(102

102)500)(01.0(102102

6

4

46

+++×−

=

×+++×−×−

=

sss

sss

vv

IN

OUT

π

ππππ

Page 51: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

50 Ching-Yuan Yang / EE, NCHUAIC Lab.

Simulation and Measurement of Open-Loop Frequency Response with Moderate Gain Op Amps

Make R as large and measure vout and vi to get the open loop gain.

Page 52: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

51 Ching-Yuan Yang / EE, NCHUAIC Lab.

Simulation or Measurement of the Input Offset Voltage of an Op Amp

Types of offset voltages:1) Systematic offset - due to mismatches in current mirrors, exists even with

ideally matched transistors.2) Mismatch offset - due to mismatches in transistors (normally not available in

simulation except through Monte Carlo methods).

Page 53: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

52 Ching-Yuan Yang / EE, NCHUAIC Lab.

Simulation of the Common-Mode Voltage Gain

Make sure that the output voltage of the op amp is in the linear region.

Page 54: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

53 Ching-Yuan Yang / EE, NCHUAIC Lab.

Measurement of CMRR and PSRRConfiguration:

Note that vI ≈ vOS / 1000 or vOS ≈ 1000vI

How Does this Circuit Work?CMRR: PSRR:1.) Set VDD’ = VDD + 1V 1.) Set VDD’ = VDD + 1V

VSS’ = VSS + 1V VSS’ = VSS

vOUT’ = vOUT + 1V vOUT’ = 0V2.) Measure vOS called vOS1 2.) Measure vOS called vOS3

3.) Set VDD’ = VDD − 1V 3.) Set VDD’ = VDD − 1VVSS’ = VSS − 1V VSS’ = VSS

vOUT’ = vOUT − 1V vOUT’ = 0V4.) Measure vOS called vOS2 4.) Measure vOS called vOS4

5.) 5.)

Note:PSRR− can be measured similar to PSRR+ by changing only VSS.

The ±1V perturbation can be replaced by a sinusoid to measure CMRR or PSRR as follows:

12

2000OSOS vv

CMRR−

=34

2000OSOS vv

PSRR−

=+

.1000M and ,1000 ,1000

os

cm

os

dd

os

dd

vvRRC

vvPSRR

vvPSRR ⋅

=⋅

=⋅

= ++

I

PS

ps

out

id

out

I

CM

icm

out

id

out

cm

vd

vv

vvvv

PSRR

vv

vvvv

AACMRR

∆∆

=

=

∆∆

=

==

Page 55: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

54 Ching-Yuan Yang / EE, NCHUAIC Lab.

How Does the Previous Idea Work?

A circuit is shown which is used to measure the CMRR and PSRR of an op amp. Prove that the CMRR can be given as

SolutionThe definition of the common-mode rejection ratio is

However, in the above circuit the value of vout is the same so that we get .But vid = vi and vos ≈ 1000 vi = 1000 vid vid = vos / 1000 .Substituting in the previous expression gives,

os

icm

vvCMRR 1000

=

==

icm

out

id

out

cm

vd

vvvv

AACMRR

id

icm

vvCMRR =

os

icm

os

icm

vv

vvCMRR 10001000/

==

Page 56: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

55 Ching-Yuan Yang / EE, NCHUAIC Lab.

Simulation of CMRR of an Op Amp

None of the above methods are really suitable for simulation of CMRR.Consider the following:

cmv

cmcm

v

cmout

cmcmoutvcmvout

VAAV

AAV

VAVAVVAVVAV

±≈

=

±−=

+

±−=

1

2)( 21

21

out

cm

cm

v

VV

AACMRR ==∴

Page 57: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

56 Ching-Yuan Yang / EE, NCHUAIC Lab.

CMRR of Ex. 6.3-1 using the Above Method of Simulation

Page 58: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

57 Ching-Yuan Yang / EE, NCHUAIC Lab.

Direct Simulation of PSRR

Circuit:

ddv

dddd

v

ddout

ddddoutvddddvout

VAAV

AAV

VAVAVAVVAV±

≈+±

=

±−=±−=

1

)( 21

out

dd

dd

v

VV

AAPSRR ==+∴ and

out

ss

ss

v

VV

AAPSRR ==−

Works well as long as CMRR is much greater than 1.

Page 59: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

58 Ching-Yuan Yang / EE, NCHUAIC Lab.

Simulation or Measurement of ICMR

Initial jump in sweep is due to the turn-on of M5.Should also plot the current in the input stage (or the power supply current).

Page 60: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

59 Ching-Yuan Yang / EE, NCHUAIC Lab.

Measurement or Simulation of the Open-Loop Output Resistance

Method 1:

Method 2:

−= 1

02

01

VVRR Lout or vary RL until VO2 = 0.5VO1 Rout = RL

v

o

o

v

oout A

RR

ARR

R 100100100

111

++=

Page 61: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

60 Ching-Yuan Yang / EE, NCHUAIC Lab.

Measurement or Simulation of Slew Rate and Settling Time

If the slew rate influences the small signal response, then make the input step size small enough to avoid slew rate (i.e. less than 0.5V for MOS).

Page 62: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

61 Ching-Yuan Yang / EE, NCHUAIC Lab.

Measurement of Phase Margin from Overshoot

It can be shown (Appendix C) that:

For example, a 5% overshoot corresponds to a phase margin of approximately 64°.

[ ]

−−

=

−+=

2

241-

1100exp

21457.2958cos

ζπζ

ζζ

(%) Overshoot

(Degree) Margin Phase

Page 63: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

62 Ching-Yuan Yang / EE, NCHUAIC Lab.

Example 6.6-2: Simulation of the CMOS Op Amp of Ex. 6.3-1.

The op amp designed in Example 6.3-1 and shown in Fig. 6.3-3 is to be analyzed by SPICE to determine if the specifications are met. The device parameters to be used are those of Tables 3.1-2 and 3.2-1. In addition to verifying the specifications of Example 6.3-1, we will simulate PSRR+ and PSRR−.

Solution/SimulationThe op amp will be treated as a subcircuit in order to simplify the repeated analyses. Table 6.6-1 gives the SPICE subcircuit description of Fig. 6.3-3. While the values of AD, AS, PD, and PS could be calculated if the physical layout was complete, we will make an educated estimate of these values by using the following approximations.

AS = AD ≈ W[L1 + L2 + L3]PS = PD ≈ 2W + 2[L1 + L2 + L3]

Page 64: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

63 Ching-Yuan Yang / EE, NCHUAIC Lab.

where L1 is the minimum allowable distance between the polysilicon and a contact in the moat (Rule 5C of Table 2.6-1), L2 is the length of a minimum-size square contact to moat (Rule 5A of Table 2.6-1), and L3 is the minimum allowable distance between a contact to moat and the edge of the moat (Rule 5D of Table 2.6-1).

Op Amp Subcircuit:

.SUBCKT OPAMP 1 2 6 8 9M1 4 2 3 3 NMOS1 W=3U L=1U AD=18P AS=18P PD=18U PS=18UM2 5 1 3 3 NMOS1 W=3U L=1U AD=18P AS=18P PD=18U PS=18UM3 4 4 8 8 PMOS1 W=15U L=1U AD=90P AS=90P PD=42U PS=42UM4 5 4 8 8 PMOS1 W=15U L=1U AD=90P AS=90P PD=42U PS=42UM5 3 7 9 9 NMOS1 W=4.5U L=1U AD=27P AS=27P PD=21U PS=21UM6 6 5 8 8 PMOS1 W=94U L=1U AD=564P AS=564P PD=200U PS=200UM7 6 7 9 9 NMOS1 W=14U L=1U AD=84P AS=84P PD=40U PS=40UM8 7 7 9 9 NMOS1 W=4.5U L=1U AD=27P AS=27P PD=21U PS=21UCC 5 6 3.0P.MODEL NMOS1 NMOS VTO=0.70 KP=110U GAMMA=0.4 LAMBDA=0.04 PHI=0.7+MJ=0.5 MJSW=0.38 CGBO=700P CGSO=220P CGDO=220P CJ=770U CJSW=380P+LD=0.016U TOX=14N.MODEL PMOS1 PMOS VTO=-0.7 KP=50U GAMMA=0..57 LAMBDA=0.05 PHI=0.8+MJ=0.5 MJSW=.35 CGBO=700P CGSO=220P CGDO=220P CJ=560U CJSW=350P +LD=0.014U TOX=14NIBIAS 8 7 30U.ENDS

Page 65: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

64 Ching-Yuan Yang / EE, NCHUAIC Lab.

PSPICE Input File for the Open-Loop Configuration:

EXAMPLE 6.6-2 OPEN LOOP CONFIGURATION.OPTION LIMPTS=1000VIN+ 1 0 DC 0 AC 1.0VDD 4 0 DC 2.5VSS 0 5 DC 2.5VIN - 2 0 DC 0CL 3 0 10PX1 1 2 3 4 5 OPAMP

…(Subcircuit of previous slide)

….OP.TF V(3) VIN+.DC VIN+ -0.005 0.005 100U.PRINT DC V(3).AC DEC 10 1 10MEG.PRINT AC VDB(3) VP(3).PROBE (This entry is unique to PSPICE).END

Page 66: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

65 Ching-Yuan Yang / EE, NCHUAIC Lab.

Open-loop transfer characteristic of Example 6.6-2:

Page 67: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

66 Ching-Yuan Yang / EE, NCHUAIC Lab.

Open-loop transfer frequency response of Example 6.3-1:

Page 68: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

67 Ching-Yuan Yang / EE, NCHUAIC Lab.

Input common mode range of Example 6.3-1:

EXAMPLE 6.6-2 UNITY GAIN CONFIGURATION..OPTION LIMPTS=501VIN+ 1 0 PWL(0 -2 10N -2 20N 2 2U 2 2.01U -2 4U + -2 4.01U -.1 6U -.1 6.0 1U .1 8U .1 8.01U -.1 10U -.1)VDD 4 0 DC 2.5 AC 1.0VSS 0 5 DC 2.5CL 3 0 20PX1 1 3 3 4 5 OPAMP

…(Subcircuit of Table 6.6-1)

….DC VIN+ -2.5 2.5 0.1.PRINT DC V(3).TRAN 0.05U 10U 0 10N.PRINT TRAN V(3) V(1).AC DEC 10 1 10MEG.PRINT AC VDB(3) VP(3).PROBE.END

Page 69: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

68 Ching-Yuan Yang / EE, NCHUAIC Lab.

Positive PSRR of Example 6.3-1:

Page 70: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

69 Ching-Yuan Yang / EE, NCHUAIC Lab.

Negative PSRR of Example 6.3-1:

Page 71: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

70 Ching-Yuan Yang / EE, NCHUAIC Lab.

Large-signal and small-signal transient response of Example 6.3-1:

Why the negative overshoot on the slew rate?If the current sink, M7, cannot sink sufficient current then the output stage is slewing and it can only respond to changes at the output via the external feedback path to the input of the amplifier which involves a delay.Note that –dvout/dt ≈ − 2V/0.3µs = − 6.67V/µs. For a 10pF capacitor this requires 66.7µA and only 95µA − 66.7µA = 28µA is available for Cc.For the positive slew rate, M6 can provide whatever current is required by the capacitors and can immediately respond to changes at the output.

Page 72: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

71 Ching-Yuan Yang / EE, NCHUAIC Lab.

Comparison of the Simulation Results with the Specifications of Example 6.3-1:

Specification(Power supply = 2.5V)

Design(Ex. 6.3-1)

Simulation(Ex. 6.6-2)

Open Loop Gain >5000 10,000

GB (MHz) 5 MHz 5 MHz

Input CMR (Volts) -1V to 2V -1.2 V to 2.4 V

Slew Rate (V/µsec) >10 (V/µsec) +10, -7 (V/µsec)

Pdiss (mW) < 2mW 0.625mW

Vout range (V) 2V +2.3V, -2.2V

PSRR+ (0) (dB) - 87

PSRR- (0) (dB) 106-

Phase margin (degrees) 60o 65o

Output Resistance (kΩ) 122.5kΩ-

Page 73: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

72 Ching-Yuan Yang / EE, NCHUAIC Lab.

Why is the negative-going overshoot larger than the positive-going overshoot on the small-signal transient response of Example 6.6-2 (right-hand figure of page 6.6-24)?SolutionConsider the following circuit and waveform:

During the rise time, iCL = CL(dvout / dt) = 10pF(0.2V/0.1µs) = 20µA and iCc = 3pF(2V/µs) = 6µA ∴ i6 = 95µA + 20µA + 6µA = 121µA gm6 = 1066µS (nominal was 942.5µS)During the fall time, iCL = CL(−dvout / dt) = 10pF(−0.2V/0.1µs) = −20µA and iCc = −3pF(2V/µs) = −6µA ∴ i6 = 95µA − 20µA − 6µA = 69µA gm6 = 805µSThe dominant pole is p1 ≈ (RI gm6 RII Cc)−1 where RI = 0.649MΩ, RII = 122.5kΩ, and Cc = 3pF. ∴ p1(95µA) = 4,160 rad/sec, p1(121µA) = 3,678 rad/sec, and p1(69µA) = 4,870 rad/sec .Thus, the phase margin is less during the fall time than the rise time.

Page 74: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

73 Ching-Yuan Yang / EE, NCHUAIC Lab.

Analog Cells/Macros Layout

Page 75: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

74 Ching-Yuan Yang / EE, NCHUAIC Lab.

Two-Stage OTA

Page 76: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

75 Ching-Yuan Yang / EE, NCHUAIC Lab.

Page 77: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

76 Ching-Yuan Yang / EE, NCHUAIC Lab.

Page 78: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

77 Ching-Yuan Yang / EE, NCHUAIC Lab.

Layout of Differential Pair OP Amplifier Example

Page 79: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

78 Ching-Yuan Yang / EE, NCHUAIC Lab.

Layout of Differential Pair OP Amplifier Example

Case1 Case2

Case3

Page 80: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

79 Ching-Yuan Yang / EE, NCHUAIC Lab.

Layout of Differential Pair

Input stage M1&M2, common centroid to reduce offset, don’t use minimum size for process variation.M3&M4, symmetric, same orientation.No signal crossing allowed between M1&M3, M2&M4.Node N2 can only use metal wire as short as possible, avoid crossing.Capacitor layout in Well connected to independent power line not sharing with OP power line independent well to M5 and M7 to avoid noise.Substrate of M1&M2 connected to N1 ( triple well required ), notthe power line.Keep input and output nodes away, put the capacitor between them.Put the capacitor between M6 and M7 ( case3 ), to avoid latch up.

Page 81: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

80 Ching-Yuan Yang / EE, NCHUAIC Lab.

Output node connected to capacitor bottom plate to avoid the substrate noise coupled to input stage and be amplified.Don’t cross input and output wire to avoid feedback oscillation.Keep drain nodes of MOS as small as possible to reduce the output capacitance.Divide the compensation capacitor into multiple units to avoid antenna effect.

Page 82: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

81 Ching-Yuan Yang / EE, NCHUAIC Lab.

A one-stage circuit for low-frequency applications

Page 83: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

82 Ching-Yuan Yang / EE, NCHUAIC Lab.

A conventional two-stage circuits

Page 84: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

83 Ching-Yuan Yang / EE, NCHUAIC Lab.

Page 85: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

84 Ching-Yuan Yang / EE, NCHUAIC Lab.

Page 86: 類比積體電路實驗室 學前訓練專題cc.ee.nchu.edu.tw/~aiclab/public_htm/Internal/messages/...Design a two-stage CMOS Op Amp: (C L = 1pF) zV DD = −V SS = 1.5V zSmall signal

85 Ching-Yuan Yang / EE, NCHUAIC Lab.

Current Mirror

Layout of current mirror without ∆W correction techniques.

Layout of current mirror with ∆W correction techniques.