高強度鋼筋混凝土梁之 裂縫發展與控制 · 手冊建議, 4.3.2 0.35 ' 1.5 cvs ser w f...

38
高強度鋼筋混凝土梁之 高強度鋼筋混凝土梁之 裂縫發展與控制 裂縫發展與控制 邱建國 Associate Professor, Department of Civil and Construction Engineering, Taiwan-TECH. Life-Cycle of Structure Engineering 2015/12/11

Upload: others

Post on 20-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • 高強度鋼筋混凝土梁之高強度鋼筋混凝土梁之裂縫發展與控制裂縫發展與控制

    邱建國Associate Professor,Department of Civil and Construction Engineering,Taiwan-TECH.

    Life-Cycle ofStructure Engineering

    2015/12/11

  • ContentContent

    Destination

    D i C dDesignCodes

    Experimentp

    ShearCrackControl

    FlexuralCrackControl

    ConclusionsConclusions

    1

  • DestinationDestinationDestinationDestination

    l l k lPerformance

    ① FlexuralCrackControl(ACI318)

    ② ShearCrackControl(AIJ2010)

    ③ Damage Evaluation

    Service-ability

    Repar-abilitySafety

    ③ DamageEvaluationCrackWidthsandDeformation

    Crack widthExperiment

    Design Damage Evaluation

    Ref:日本建築學會‧鋼筋混凝土建築物之耐震性能評價指針,2004,5.梁部材の性能評価法,pp.129~168 2

  • Shear Crack ControlShear Crack ControlAllowable shear force corresponding to

    Shear Crack ControlShear Crack ControlAIJ(2010)

    i fAllowableshearforcecorrespondingtoserviceabilityensuring

    Reinforcement

    Allowableshearforcecorrespondingtoreparabilityensuring

    Concrete

    3

  • Shear Crack ControlShear Crack ControlShear Crack ControlShear Crack ControlAIJ(2010)According the research conducted by Simazaki (2009), if the long-termg y ( ), gloading is less than VAL1, the maximum shear crack width can becontrolled within 0.3 mm. If the short-term loading of a medium-magnitude is less than VSL1, the residual maximum shear crack widthcan be controlled within 0.3 mm.

    4

  • Flexural Crack ControlFlexural Crack ControlFlexural Crack ControlFlexural Crack ControlACI-318 (2005) 280380( ) 2.5 cs cf

    Ref Robert J Frosch (1999)

    280300( )

    s

    s

    f

    sf

    (1) Model:

    Ref.RobertJ.Frosch (1999)

    fsc s c c

    s

    fw S SE

    CrackwidthgrowslinearlyN.A

    h

    c

    dd c

    1max c c

    h cw w wd c

    2

    Ref:Robert J. Frosch, 1999, Another Look at Cracking Control in Reinforced Concrete, ACI Structural Journal 5

  • Flexural Crack ControlFlexural Crack ControlFlexural Crack ControlFlexural Crack ControlACI-318 (2002&2005)

    (2) Crackspacing

    Ref.RobertJ.Frosch(1999) Fromthebarcentertothefarthest

    concrete element

    d *d2*dC

    concreteelement

    sh c fw S * 2 21 c cd d d

    d1*2dC

    sControl !

    maxs

    cw cS

    d E* 2 22 ( )2c

    sd d

    Control !

    f s2 22 ( )2

    smax c

    s

    f sw dE

    Ref:Robert J. Frosch, 1999, Another Look at Cracking Control in Reinforced Concrete, ACI Structural Journal 6

  • Flexural Crack ControlFlexural Crack ControlC 318 2002 & 200ACI-318 (2002&2005)

    Cs s

    250 300 252s 380 ‐ 2.5Cf f

    0280 300 28380 2 5C

    0.41 mm

    0 41 0 53

    (3) Crackcontrol

    Ref.RobertJ.Frosch (1999) Cs ss 380 ‐ 2.5C

    f f 0.41‐0.53 mm

    2 22 ( )2

    smax c

    s

    f sw dE

    2 22 ( )2max s

    cw Es d

    f

    2 sf

    Crackwidth:0.41 mmTensilestressofmainbars:0.6fy

    Ref:Robert J. Frosch, 1999, Another Look at Cracking Control in Reinforced Concrete, ACI Structural Journal

    cC 代替 cd7

  • Experiment Experiment ppSpecimenDesign

    Chiuetal.(2013)Yielding stress 685、785MPaReinforcement size D32(#10)、D25(#8)

    Stirrup ratioStirrup ratio

    2000 mm2000 mm

    2000 mm

    Hinge

    Roller

    Number:10Concretecover:4cm

    Compressive strength 70、100MPaSection size

    Chiuetal.(2015) Chiuetal.(2014)

    N b

    Shear span to depth ratioShear span to depth ratioConcrete coverConcrete cover

    Chengetal.(2014)400~2000Hinge

    Roller Number:10Concretecover:4cm

    g2000 mm

    Number:3

    Number:2Concretecover:2、3cm

    Cyclic loadingCyclic loading

    u be :3Concretecover:3cm

    8

  • Experiment Experiment ppMeasurementsystem

    1. Crackmeasurement 2. NDI

    等剪力段 等彎矩段Moment-equivalentShear-

    l等剪力段 等彎矩段

    剪力裂縫量測處regionequivalent

    region

    撓曲裂縫量測處3. Strainofreinforcement

    9

  • Shear CrackExperimental DataExperimental DataShearCrack

    TensileStrengthofConcrete

    ShearCrackStrengthofC tConcrete

    10

  • Shear CrackExperimental DataExperimental DataShearCrack

    UltimateShearStrengthofConcrete

    11

  • Shear CrackExperimental DataExperimental DataShearCrack

    12

  • Shear Crack ControlShear Crack ControlDesign FormulaDesign Formula

    10

    Averageshearstress andMaximum Shear crack width

    v/v c

    r

    MaximumShearcrackwidth(Reinforcement785MPa)

    1v

    1

    1E-008 1E-007 1E-006 1E-005 0.0001(wps,max/d)*(pw)

    1313

  • Shear CrackExperimental DataExperimental Data

    AllowableShearStress(Maximum shear crack width0 3 mm)

    ShearCrack

    1.2

    (Maximumshearcrackwidth0.3 mm)

    1

    0.6

    0.8

    P wf s

    0.4P

    0.2

    140 0.004 0.008 0.012pw

    0(MPa)

  • Shear CrackExperimental DataExperimental DataShearCrack

    Allowable Shear Stress Allowable Shear StressAllowableShearStress(Maximumshearcrackwidth 1.0 mm)

    AllowableShearStress(Maximumresidual

    shear crack width 0 415

    shearcrackwidth 0.4mm)

  • Shear Crack ControlShear Crack ControlDesign FormulaDesign Formula

    Performance Allowable shear stress (MPa)

    Long- Serviceability

    Shear crackstrength

    -term

    ServiceabilityMaximumMaximum shearshear

    crackwidthcrackwidth0 40 40.4mm0.4mm

    ShortR bilit

    Maximum sheark idth-

    termReparability crackwidth

    1.0mm

    16

  • Shear Crack ControlShear Crack ControlDesign Formula

    1.8

    2.0

    pwu,b/D=0.50pwu,b/D=0.55

    Design Formula

    1 4

    1.6

    pwu,b/D=0.60pwu,b/D=0.65pwa,b/D=0.50pwa,b/D=0.55

    Serviceability

    1.2

    1.4

    Rat

    io(%

    ) pwa,b/D=0.60pwa,b/D=0.65

    0.8

    1.0

    Stir

    rups

    R

    SeismicDesign

    :2.5%685

    Assumption

    f MP

    0.4

    0.6

    S 6850.125 ( 785 )550

    y

    sa yt yt

    f MPaf f f MPaf MPa

    0.22

    2

    5501300 /1000 1.2 300 /

    su

    a

    u

    f MPaw kgf mw kgf m

    0

    10 11 12 13 14 15 16 17 18

    Ln/D 17

  • Shear Crack ControlShear Crack ControlDesign FormulaDesign Formula

    0 4 mmb/D:0.45-0.55B/L: 0.5-1.0

    Randomvariables

    0.4 mm B/L:0.5 1.0DeadLoad:800-1100kgf/mLiveLoad:200-400kgf/m2

    fy:685Mpafyt:785Mpaf 550 MP

    0.3 mm

    fsu:550MPafsa:0.125or0.15fyt

    L/DMCSmax (L/D) = 12max (L/D) = 12 (0.9997, 0.40mm)(0.9997, 0.40mm)

    Reliability

    18

  • Flexural Crack ControlFlexural Crack Control

    '0 35 0 33 f A f手冊建議, 4.3.2

    '0.351.5

    c v sserw

    f A fvb s

    0.35 0.331.5

    c v sserw

    f A fvb s

    f為剪力鋼筋之容許應力,最大值為0 15f[解說]設計剪應力之計算可參考ACI318之建議,v=V/(bwd)。計算梁構件於靜載重與活載重下之斷面剪應力時,不須考慮兩載

    fs為剪力鋼筋之容許應力,最大值為0.15fyt

    重之載重放大因子。式(4.3.1)之前項為混凝土之容許應力,依實驗結果可知,其與構件之剪力跨距與深度比有密切相關,就一

    般中長梁而言則建議採用0.35[3]。由式(4.3.1)可知,梁構件可藉由剪力鋼筋之用量以提升其容許應力。若梁構件之跨深比增加,

    為有效控制靜載重與活載重下之剪力裂縫,則具所需之剪力鋼

    筋用量亦會增加,並會大於耐震設計下剪力鋼筋量;反之,若

    19

    能將梁構件之跨深比降至12以下,則耐震設計下剪力鋼筋需求會主控設計,而不須檢核本節規定[3]。

  • Experimental DataExperimental DataExperimental DataExperimental DataFlexuralCrack

    600

    700

    (MPa

    ) Flexural crack

    400

    500

    stre

    ss f

    s(

    200

    300

    rcem

    ent s

    本研究試體

    102年試體[17]

    103年試體[18]

    0

    100

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Rei

    nfor 103年試體[18]

    文獻[21]

    Maximum crack width (mm)

    Crack width is proportional to reinforcement stress

    20

  • Experimental DataExperimental DataExperimental DataExperimental DataStable →Crack number not increased →Crack spacing turns to be constantFlexuralCrackStable →Crack number not increased →Crack spacing turns to be constant

    400

    500

    acin

    g

    2C100

    400500

    acin

    g

    3C100

    0

    100

    200

    300

    Avg.

    Cra

    ck S

    pa

    0100200300

    0 2 4 6 8 10 12 14 16 18 20Avg.

    Cra

    ck S

    pa

    300ng

    175R100500g

    275R100500

    325R70

    0 2 4 6 8 10 12 14 16 18 20Av

    Cuvature : rad/m ()0 2 4 6 8 10 12 14 16 18 20Av

    Cuvature : rad/m ()

    0100150200250300

    Cra

    ck S

    paci

    n

    100

    200

    300

    400

    500

    Cra

    ck S

    paci

    ng

    200

    300

    400

    500

    rack

    Spa

    cing

    A k i C k b /S f h i l i

    050

    0 2 4 6 8 10 12 14

    Avg.

    C

    Cuvature : rad/m (‰)

    0

    100

    0 2 4 6 8 10 12 14 16 18 20Avg

    . C

    Cuvature : rad/m ()0

    100

    0 3 6 9 12 15 18 21 24 27 30Avg

    . Cr

    Cuvature : rad/m ()

    Average crack spacing=Crack numbers/Span of the moment-equivalent region

    21

  • AverageAverage CCrack Spacingrack SpacingAverage Average CCrack Spacingrack SpacingCrack width=(strain)(crack spacing)

    ACI 318(2002&2005)

    AIJ-2010(附錄)

    JSCE-2007

    CEB-FIP

    Broms

    趙唯堅與丸山

    22

  • Fl l C k A C k S i

    Experimental DataExperimental Data

    ACI-318: 2 2( )sd * *1 2[ ]

    Flexural Crack-Average Crack Spacing

    ACI 318:

    本研究試體 文獻[17] 文獻[18] 文獻[21] 本研究試體 文獻[17] 文獻[18] 文獻[21]

    ( )2c

    d 1 2[ , ]

    140

    160

    180

    paci

    ng(m

    m)

    140

    160

    180

    g. S

    paci

    ng ModifiedUnconservative

    80

    100

    120

    rim

    ent A

    vg. S

    p

    80

    100

    120

    xper

    imen

    t Avg

    6060 80 100 120 140 160 180E

    xper

    ACI -318 Avg. Spacing

    6060 80 100 120 140 160 180

    Ex

    ACI -318 Avg. Spacing (Modified)

    d1*d2*dC

    s 23

  • Fl l C k A C k S i

    Experimental DataExperimental Data

    AIJ 2010 (附錄) JSCE 2007

    Flexural Crack-Average Crack Spacing

    AIJ-2010 (附錄) JSCE-2007

    本研究試體 文獻[17] 文獻[18] 文獻[21] 本研究試體 文獻[17] 文獻[18] 文獻[21]

    140

    160

    180

    Spac

    ing

    [ ] [ ] [ ]

    140

    160

    180

    Spac

    ing

    [ ] [ ] [ ]

    80

    100

    120

    erim

    ent A

    vg.

    60

    80

    100

    120

    rim

    ent A

    vg.

    60

    80

    60 80 100 120 140 160 180

    Exp

    e

    AIJ - 2010 Avg. Spacing

    40

    60

    40 60 80 100 120 140 160 180Exp

    erJSCE -2007 Avg. Spacing

    24

  • Fl l C k A C k S i

    Experimental DataExperimental Data

    180.

    本研究試體 文獻[17] 文獻[18] 文獻[21]

    Flexural Crack-Average Crack Spacing

    CEB-FIP100120140160

    peri

    men

    t Avg

    .Sp

    acin

    g

    6080

    60 80 100 120 140 160 180

    Exp

    Model Code 2010 Avg. Spacing

    Broms 趙唯堅與丸山

    160180

    vg.

    本研究試體 文獻[17] 文獻[18] 文獻[21]

    140160180

    Avg.

    g

    本研究試體 文獻[17] 文獻[18] 文獻[21]

    80100120140

    Exp

    erim

    ent A

    vSp

    acin

    g

    6080

    100120140

    Exp

    erim

    ent

    Spac

    ing

    6060 80 100 120 140 160 180

    E

    Broms. 研究建議 Avg. Spacing

    6060 80 100 120 140 160 180趙唯堅與丸山久一研究建議 Avg. Spacing

    25

  • Fl l C k Width

    Experimental DataExperimental DataFlexural Crack Width

    ACI 318 (2002 & 2005)

    ACI 318

    4

    5

    h R

    atio

    ode)

    ACI - 318

    4

    5

    h R

    atio

    ode)

    ACI - 318 (Modified)

    Modified. 1.15ExpCode

    wAvg

    W . 1.06Exp

    Code

    wAvg

    W

    1

    2

    3

    Cra

    ck W

    idth

    (Exp

    . / C

    o

    1

    2

    3

    Cra

    ck W

    idth

    (Exp

    . / C

    o

    Unconservative

    0

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    f / fd2* using

    0

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    fs / fyusing max{d1*,d2*} fs / fy fs / fy

    26

  • Fl l C k A C k S i

    Experimental DataExperimental Data

    AIJ-2010(附

    Flexural Crack-Average Crack Spacing

    (錄)JSCE-2007

    5

    o

    AIJ - 2010

    h 0 0002

    5

    o

    JSCE - 2007

    h 0 0002

    2

    3

    4

    k W

    idth

    Rat

    ioE

    xp. /

    Cod

    e)

    εsh=0.0002εsh=0.0004

    2

    3

    4

    k W

    idth

    Rat

    ioE

    xp. /

    Cod

    e)

    εsh=0.0002εsh=0.0004

    0

    1

    2

    0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1

    Cra

    ck (E

    0

    1

    2

    0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1C

    rack (E

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    fs / fy

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    fs / fy

    Good prediction Good prediction in low stress0.002, . 0.87Expsh

    Code

    wAvg

    w

    Good prediction generally

    Good prediction in low stress0.004, . 0.68Expsh

    Code

    wAvg

    w

    27

  • Fl l C k A C k S i

    Experimental DataExperimental Data

    CEB-FIP 5CEB-FIP 2010

    Flexural Crack-Average Crack Spacing

    CEB-FIP

    2

    3

    4

    Wid

    th R

    atio

    p. /

    Cod

    e)

    0

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Cra

    ck

    (Ex

    fs / fy

    Broms 趙唯堅與丸山fs fy

    4

    5

    Rat

    iode

    )

    Broms. 相關研究

    4

    5

    atio

    )

    趙唯堅 & 丸山久一相關研究

    εsh=0.0002εsh=0 0004

    0

    1

    2

    3

    Cra

    ck W

    idth

    R(E

    xp. /

    Cod

    1

    2

    3ra

    ck W

    idth

    Ra

    (Exp

    . / C

    ode) εsh=0.0004

    00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    C

    fs / fy

    00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Cr

    fs / fy 28

  • Flexural Crack ControlFlexural Crack ControlDesign Formula

    Problems: 5

    o

    ACI - 318

    0 4 0 88Expswf f A

    Design Formula

    2

    3

    4

    k W

    idth

    Rat

    ioE

    xp. /

    Cod

    e)(1) Low stress level

    (2) Section parameter

    0.4 , . 0.88Exps yy code

    f f Avgf w

    0

    1

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Cra

    ck (E

    d * d

    Improving:Crack spacing

    Assumption:Bi linear fs / fyd2* used

    275R100

    Bi-linearAverage stress:263MPa

    300

    400

    500

    ack

    Spac

    ing

    3

    ϕ209sf MPa

    0

    100

    200

    0 2 4 6 8 10 12 14 16 18 20

    Avg.

    Cra

    1

    0 0 4

    ϕ

    Cuvature : rad/m () 0 0.4fs / fy

    29

  • Flexural Crack ControlFlexural Crack ControlDesign Formula

    4

    5

    o

    Modified

    0 82Expw

    Avg

    Design Formula

    Problems:

    2

    3

    4

    ck W

    idth

    Rat

    iE

    xp. /

    Cod

    e)

    . 0.82Code

    Avgw

    ( ) sma cf sw d 2 22

    (1) Low stress level

    0

    1

    0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1

    Cra

    c (E

    ( ) max cs

    w dE2 2

    ( / ), / . s y s yf f f f3 5 0 0 40 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    fs / fy(2) Section parameter0.8

    d1*d2*dC :預測偏低

    * *2 1d d

    0.4

    0.6

    0.8

    縫寬

    度(m

    m)

    using d1*

    s * *

    ( )

    d dsd d d

    2 1

    2 2 2 20

    0.2

    0 100 200 300 400 500 600 700

    最大

    裂縫

    ACI-318

    30

    ( )

    c c

    c

    c

    d

    d d

    s

    d

    22

    0 100 200 300 400 500 600 700最大鋼筋應力 (MPa)

  • Flexural Crack ControlFlexural Crack ControlDesign Formula

    ( ) smax cs

    f sw dE2 22

    2

    Design Formula

    Proposed formulap

    . cs cf 280380 2 5

    s

    s

    f

    s f280300

    31

    s

  • Flexural Crack ControlFlexural Crack Control

    280380 2 5 s C手冊建議, 4.3.2 300 280

    s380 2.5 cs

    s Cf

    s

    sf

    fs為在使用載重下算得之鋼筋應力,若其小於0 4f時 須以0 4f取代之於0.4fy時,須以0.4fy取代之

    [解說] 依現階段之實驗結果可知,梁撓曲裂縫控制可延用ACI318之規定。然[ ]而於使用載重下梁之鋼筋應力偏低,則依式計算所得之撓曲裂縫間距會有過

    小之疑慮,而造成裂縫寬度之計算值亦偏小而不保守;因此,fs若其小於0.4fy時 須以0 4f代入式 以決定鋼筋中心距 之最大容許值[4]時,須以0.4fy代入式,以決定鋼筋中心距s之最大容許值[4]。

    [解說] 依ACI318-02可知,式之成立條件為假設鋼筋中心距s之一半會大於撓曲受拉鋼筋中心至最近受拉面之距離 且依現階段之實驗結果可知 若鋼筋曲受拉鋼筋中心至最近受拉面之距離,且依現階段之實驗結果可知,若鋼筋

    中心距s之一半小於撓曲受拉鋼筋中心至最近受拉面之距離時,則依式計算所得之撓曲裂縫間距會有過小之疑慮;因此,本手冊建議鋼筋中心距s之選取不

    32宜小於2Cc[4]。

  • ConclusionsConclusions

    ( ) 280380 2 5

    Spacingofreinforcement

    ( ) .

    ( )

    cs

    s cf

    s f

    380 2 5

    280300

    33

    ( )sf

  • Th kThank you

    Life-Cycle ofStructure EngineeringStructure Engineering

    34

  • Past ResearchesPast ResearchesFlexuralCrackPast ResearchesPast Researches

    Bengt.B.Broms (1965)

    Specimens

    1.Stablestate:140~210MPa2 C k i 2d2.Crackspacing:2dc3.Crackwidthisproportionaltothesteelstress 35

  • 文獻回顧撓曲裂縫發展

    文獻回顧各國撓曲裂縫控制規範 剪力裂縫控制 損傷評估

    美國ACI-318規範 歐洲EuroCode 2規範 日本AIJ-2010附錄 日本JSCE-2007

    (1)滿足最小鋼筋量(2)應力限制(3)限制鋼筋直徑及間距

    不計算裂縫寬度

    鋼筋應力

    (MPa) wk=0.4mm wk=0.3mm wk=0.2mm160 40 32 25

    鋼筋最大直徑 (mm)鋼筋應力(MPa) wk=0.4mm wk=0.3mm wk=0.2mm

    鋼筋最大間距 (mm)

    160 40 32 25220 32 25 16240 20 16 12280 16 12 8320 12 10 6

    160 300 300 200220 300 250 150240 250 200 100280 200 150 50320 150 100 -

    360 10 8 5400 8 6 4450 6 5 -

    360 100 50 -

    36

  • 文獻回顧撓曲裂縫發展

    文獻回顧各國撓曲裂縫控制規範 剪力裂縫控制 損傷評估

    美國ACI-318規範 歐洲EuroCode 2規範 日本AIJ-2010附錄 日本JSCE-2007

    縫寬度

    抗壓及抗拉 抗剪

    SD295 195 195

    長期容許應力鋼筋型號

    裂縫寬度0.3~0.4mm 附錄鋼筋混凝土標準規範

    SD295 195 195SD345 215(*195) 195SD390 215(*195) 195SD490 215(*195) 195SD785 580 580

    以上之鋼筋為()內數值

    可適用混凝土抗壓強度*D29以上之鋼筋為()內數值 60~100MPa

    Ace=(2Cb+ϕ)b

    xn

    Ace (2Cb+ϕ)b

    D sd

    ϕ

    cb

    bcs

    37