engineering mathematics i -...

25
Bong-Kee Lee School of Mechanical Systems Engineering Chonnam National University Engineering Mathematics I 4. Systems of ODEs. Phase Plane. Qualitative Methods School of Mechanical Systems Engineering Engineering Mathematics I 4.0 Basics of Matrices and Vectors 행렬(matrix) 요소(entry), 행(row), 열(column), 정방행렬(square matrix) 열벡터(column vector), 행벡터(row vector) nn n n n n jk a a a a a a a a a a A 2 1 2 22 21 1 12 11 n x x x x 2 1 n v v v v 2 1

Upload: others

Post on 25-Sep-2019

10 views

Category:

Documents


0 download

TRANSCRIPT

Bong-Kee Lee School of Mechanical Systems Engineering

Chonnam National University

Engineering Mathematics I

4. Systems of ODEs. Phase Plane. Qualitative Methods

School of Mechanical Systems Engineering Engineering Mathematics I

4.0 Basics of Matrices and Vectors

행렬(matrix)

– 요소(entry), 행(row), 열(column), 정방행렬(square matrix)

– 열벡터(column vector), 행벡터(row vector)

nnnn

n

n

jk

aaa

aaa

aaa

aA

21

22221

11211

nx

x

x

x

2

1

nvvvv

21

School of Mechanical Systems Engineering Engineering Mathematics I

4.0 Basics of Matrices and Vectors

행렬과 벡터의 연산

– 상등성(equality)

– 덧셈(addition), 스칼라곱(scalar multiplication), 행렬의 곱(matrix multiplication)

2222212112121111

2221

1211

2221

1211,,,, babababaBA

bb

bbB

aa

aaA

22222121

12121111

2221

1211

2221

1211

baba

baba

bb

bb

aa

aaBA

2221

1211

2221

1211

acac

acac

aa

aaccA

n

m

mkjmjk bacABC1

2222122121221121

2212121121121111

2221

1211

2221

1211

babababa

babababa

bb

bb

aa

aaAB

School of Mechanical Systems Engineering Engineering Mathematics I

4.0 Basics of Matrices and Vectors

행렬과 벡터의 연산

– 전치(transposition)

– 역행렬(inverse of a matrix), 단위행렬(unit matrix)

21

2

1

2212

2111

2221

1211, vvv

v

vv

aa

aaA

aa

aaA TT

AIAAI

I

10

01

IAAAAABIBAAB 111

1112

2122

211222111112

21221

2221

1211

1

det

1

aa

aa

aaaaaa

aa

AA

aa

aaA

School of Mechanical Systems Engineering Engineering Mathematics I

4.0 Basics of Matrices and Vectors

행렬과 벡터의 연산

– 1차 독립(linearly independent)

– 고유값(eigenvalue), 고유벡터(eigenvector)

0

0

21

2

2

1

1

n

n

n

ccc

vcvcvc

xxA

eigenvalue eigenvector

0det

0

0

IA

xIA

xxA

characteristic equation

eigenvalue

eigenvector

School of Mechanical Systems Engineering Engineering Mathematics I

4.0 Basics of Matrices and Vectors

행렬과 벡터의 연산

– 고유값(eigenvalue), 고유벡터(eigenvector)

8.0

1

64.1

1or

8.0

1

8.0ii

1

2

5

1or

1

2

1

22

20

0

2.36.1

42

2.36.1

0.40.2

2i

8.0,2

06.18.22.16.1

0.40.4det

2.16.1

0.40.4

example

2

2

2

2

2

1

21

21

21

2

1

1

21

2

xx

xxxx

x

x

xx

xxxx

xx

x

xxIA

IAA

characteristic equation eigenvalues

eigenvector

eigenvector

School of Mechanical Systems Engineering Engineering Mathematics I

4.0 Basics of Matrices and Vectors

연립미분방정식(systems of DEs)

– 두 개 이상의 미지함수를 갖는 두 개 이상의 상미분방정식

– 미분 • 요소(또는 성분)가 변수인 행렬(또는 벡터)의 도함수는 각각의 요

소를 미분하여 구함

2221212

2121111

'

'

yayay

yayay

nnnnnn

nn

nn

yayayay

yayayay

yayayay

2211

22221212

12121111

'

'

'

yAy

y

aa

aa

yaya

yaya

y

yy

yayay

yayay

2

1

2221

1211

222121

212111

2

1

2221212

2121111

'

''

'

'

t

e

ty

tyty

t

e

ty

tyty

tt

cos

2

'

''

sin

2

2

12

2

1

School of Mechanical Systems Engineering Engineering Mathematics I

4.1 Systems of ODEs as Models

2개 탱크에서의 혼합 문제 탱크 T1과 T2에는 초기에 각각 물 100갤런이 들어 있다. 탱크 T1에는 순수한 물만 들어 있는 반면 탱크 T2에는 150파운드의 비료가 용해되어 있다. 양쪽 탱크의 액체를 분당 2갤런(2 gal/min)의 속도로 순환시키며 고루 섞어주면 탱크 T1의 비료의 양 y1(t)와 탱크 T2

의 비료의 양 y2(t)는 시간 t에 따라 변하게 될 것이다. 탱크 T1의 비료의 양이 적어도 탱크 T2에 남아 있는 비료의 양의 반이 되기 위해서는 얼마 동안 액체를 순환시켜야 하는가?

212

121

gal100

1gal/min2

gal100

1gal/min2outflowinflow'

gal100

1gal/min2

gal100

1gal/min2outflowinflow'

yyy

yyy

yAy

Ay

yy

yyy

yyy

'

02.002.0

02.002.0,

02.002.0'

02.002.0'

2

1

212

211

vector equation

School of Mechanical Systems Engineering Engineering Mathematics I

4.1 Systems of ODEs as Models

2개 탱크에서의 혼합 문제

xxA

exAexAyAy

ex

x

ex

ex

y

yexy

ex

exe

x

x

y

yexy

tt

t

t

t

t

t

t

tt

'&

'

''

assumption

2

1

2

1

2

1

2

1

2

1

2

1

eigenvalue problem

04.0,0

004.002.002.0

02.002.0det

IA

eigenvalues

1

1

1

1

0

0

02.002.0

02.002.0

04.0ii

1

1

1

1

0

0

02.002.0

02.002.0

0i

2

1

1

1

2

1

21

2

1

2

1

1

1

1

2

1

21

2

1

1

x

xx

x

x

xxxx

x

xxIA

x

xx

x

x

xxxx

x

xxIA

eigenvector

eigenvector

School of Mechanical Systems Engineering Engineering Mathematics I

4.1 Systems of ODEs as Models

2개 탱크에서의 혼합 문제

min5.27

3ln04.03

1507575

505.0out find

7575

7575or

1

175

1

175

75,75150

0

1

1

1

10

1500,00conditions initial

1

1

1

1

principleion superposit

04.004.0

1

121

04.0

04.0

2

104.0

21

21

21

21

21

04.0

21

2

2

1

121

t

teey

yyy

e

e

y

yey

cccc

ccccy

yy

eccexcexcy

exy

tt

t

t

t

ttt

t

general solution

about 30min.

particular solution

ty1

ty2

School of Mechanical Systems Engineering Engineering Mathematics I

4.1 Systems of ODEs as Models

전기회로망 아래와 같은 전기회로망에서 전류 I1(t)와 I2(t)를 구하라. 스위치가 닫히는 순간인 t=0에서 모든 전류와 전하는 0이라 가정한다.

12)(' 2111 IIRLI

01

212122 dtIC

IIRIR

gJAJ

gAI

IJ

III

III

III

III

'

8.4

0.12,

2.16.1

0.40.4,

8.42.16.1'

1244'

4.0'4.0'

1244'

1

1

212

211

212

211

nonhomogeneous

ph JJJ

School of Mechanical Systems Engineering Engineering Mathematics I

4.1 Systems of ODEs as Models

전기회로망

tttt

h

t

h

ececexcexcJ

xx

IAexJJ

8.0

2

2

1

2

2

1

1

2

2

1

1

8.0

1

1

2

8.0

1,8.0&

1

2,2

02.16.1

0.40.4

0det:

21

p

p

pp

Jaa

a

gaAgJAJJ

a

aaJgJ

0

3

0

0

8.4

0.12

2.16.1

0.40.4

0'0'

ectorconstant vectorconstant v8.4

0.12:

2

1

2

1

School of Mechanical Systems Engineering Engineering Mathematics I

4.1 Systems of ODEs as Models

전기회로망

tt

tt

tttt

tt

tt

tttt

ph

eeI

eeI

eeaexexJ

ccII

ececI

ececI

ececaexcexcJJJ

8.02

2

8.02

1

8.028.0221

2121

8.0

2

2

12

8.0

2

2

11

8.0

2

2

1

2

2

1

1

44

358or

0

3

4

5

4

854

5,4000conditions initial

8.0

32or

0

3

8.0

1

1

221

general solution

particular solution

School of Mechanical Systems Engineering Engineering Mathematics I

4.1 Systems of ODEs as Models

전기회로망

– 상평면 표현(phase plane representation)

tI1

tI2

1I

2I

상평면(phase plane): I1-I2 plane

궤적(trajectory)

School of Mechanical Systems Engineering Engineering Mathematics I

4.1 Systems of ODEs as Models

상미분방정식의 변환

– n계 상미분방정식 → 1계 연립 상미분방정식

1,,',, nn yyytFy

1

21 ,,', n

n yyyyyy

nn

nn

yyytFy

yy

yy

yy

,,,,'

'

'

'

21

1

32

21

n-th order ODE

n 1st order ODEs

School of Mechanical Systems Engineering Engineering Mathematics I

4.1 Systems of ODEs as Models

상미분방정식의 변환

– 예: 용수철에 매달린 물체

01

det

10

'

''

'

'

''''

''

'

'''or 0'''

2

2

1

21

2

2

1

2

1

212

21

2

21

2

1

m

k

m

c

m

k

m

c

m

c

m

kIA

yAy

y

m

c

m

ky

m

cy

m

k

y

y

yy

y

yy

ym

cy

m

ky

yy

ym

ky

m

cyy

yyy

yy

yy

ym

ky

m

cykycymy

characteristic equation

School of Mechanical Systems Engineering Engineering Mathematics I

4.1 Systems of ODEs as Models

상미분방정식의 변환

– 예: 용수철에 매달린 물체

tt

tt

tt

tt

tttt

ececy

ecec

ecececec

y

y

y

yy

ececexcexcy

xxxx

xxIA

xxxx

xxIA

m

k

m

c

kcm

5.1

2

5.0

1

5.1

2

5.0

1

5.1

2

5.0

15.1

2

5.0

1

2

1

5.1

2

5.0

1

2

2

1

1

1

21

2

12

22

1

21

2

11

11

21

22

2

5.1

2

5.1

1

1

2

'or

5.1

1

1

2

5.1

1023

0

0

5.075.0

15.1:5.1ii

1

202

0

0

5.175.0

15.0:5.0i

5.1,5.005.15.075.020

75.0,2,1 of case for the

21

School of Mechanical Systems Engineering Engineering Mathematics I

4.2 Basic Theory of Systems of ODEs

연립 상미분방정식

– 해 벡터(solution vector) • 어떤 구간 a<t<b 에서 연립 상미분방정식을 만족하는 미분가능한

n개의 함수들의 집합

– 초기조건(initial condition)

nnn

n

n

yyytfy

yyytfy

yyytfy

,,,,'

,,,,'

,,,,'

21

2122

2111

',,','

&

,,,

21

21

n

n

yyy

yyy

nn f

f

f

y

y

y

11

,

ytfy

,'

Tnnn ththhthythy

111 ,,

Tnnn KKKKtyKty

10101 ,,

n개의 미지함수

n개의 미지함수의 도함수

School of Mechanical Systems Engineering Engineering Mathematics I

4.2 Basic Theory of Systems of ODEs

연립 상미분방정식

– 존재성과 유일성 정리

unique. issolution thisand ,conditions initialgiven thesatisfying

interval someon solution a has ODEs of system Then the .

point thecontaining space of domain somein

sderivative partial continuous having functions continuous be Let

theoremuniqueness and existence

0010

211

1

1

1

ttt,K,,Kt

yytyRy

f,,

y

f,,

y

f

,f,f

n

n

n

n

n

n

School of Mechanical Systems Engineering Engineering Mathematics I

4.2 Basic Theory of Systems of ODEs

선형연립방정식(linear system)

– 연립 상미분방정식이 y1,…,yn에 대하여 1차일 경우

nnn

n

n

yyytfy

yyytfy

yyytfy

,,,,'

,,,,'

,,,,'

21

2122

2111

tgytaytay

tgytaytay

nnnnnn

nn

11

111111

'

'

gyAy

'

nnnnn

n

g

g

g

y

y

y

aa

aa

A

11

1

111

,,

homogeneous

nonhomogeneous

0g

0g

School of Mechanical Systems Engineering Engineering Mathematics I

4.2 Basic Theory of Systems of ODEs

선형연립방정식(linear system)

– 선형인 경우의 존재성과 유일성

– 중첩의 원리 or 선형성 원리

unique. issolution this

and ,conditions initial thesatisfying interval on this solution a has

ODEs of systemlinear Then the .point thecontaining

intervalopen an on of functions continuous be s' and s' Let the

caselinear in the uniqueness and existence

0

ty

ttt

tga jjk

.n combinatiolinear any is so interval,

someon systemlinear shomogeneou theof solutions are and If

principlelinearity or principleion superposit

2

2

1

1

21

ycycy

yy

School of Mechanical Systems Engineering Engineering Mathematics I

4.2 Basic Theory of Systems of ODEs

선형연립방정식(linear system)

– 기저(basis) or 기본시스템(fundamental system) • 어떤 구간에서 1차 독립인 n개의 해의 집합

– 일반해(general solution): 기저들의 일차결합

– 기본행렬(fundamental matrix)과 Wronskian • n개의 해를 열로 가지는 행렬

nn yyyy

,,,, 121

n

n

n

n ycycycycy

1

1

2

2

1

1

n

nnn

n

n

n

yyy

yyy

yyy

yyY

21

2

2

2

1

2

1

2

1

1

1

1

tindependenlinearly :,,0

det

1 nyyW

YW

cYy

cccT

n

1

Wronskian

general solution fundamental matrix

School of Mechanical Systems Engineering Engineering Mathematics I

4.3 Constant-Coefficient Systems. Phase Plane Method

상수계수를 갖는 연립방정식

– 제차 선형연립방정식 • 상수계수 → A의 모든 요소가 t에 의존하지 않음

yAy

'

eigenvalue problem

texy

xxA

exAyA

exexy

t

tt

''

tnnt nexyexy

,,111

tn

n

t nexcexcy

11

1

assumption

general solution

0det IA

characteristic equation

School of Mechanical Systems Engineering Engineering Mathematics I

4.3 Constant-Coefficient Systems. Phase Plane Method

상평면법(phase plane method)

– 매개변수표현(매개변수방정식) • t를 매개변수로 이용하여 하나의 곡선으로 표현

• 궤적(trajectory) (궤도(orbit), 경로(path))

• 상평면(phase plane): y1-y2 평면

• 상투영(phase portrait): 상평면을 궤적으로 채움

222121

212111

2

1

2221

1211

2

1

'

''

yaya

yaya

y

y

aa

aa

y

yyAy

ty

tyy

2

1

t

tyty 21 &

ty1

ty2

or

School of Mechanical Systems Engineering Engineering Mathematics I

4.3 Constant-Coefficient Systems. Phase Plane Method

상평면법(phase plane method)

– 상투영: 상평면에서의 궤적

tt

tt

ecec

excexcy

xx

IA

yyy

yyyyyAy

4

2

2

1

2

2

1

1

21

21

212

211

1

1

1

1

1

1,

1

1

4,2

031

13det

3'

3'

31

13'

example

21

c1=0

c2=0

→ 해 전체를 정성적으로 파악하는데 유용함

School of Mechanical Systems Engineering Engineering Mathematics I

4.3 Constant-Coefficient Systems. Phase Plane Method

상평면법(phase plane method)

– 임계점(critical point): dy2/dy1 값이 정의되지 않는 점

– 임계점의 종류 • 비고유마디점(improper node)

• 고유마디점(proper node)

• 안장점(saddle point)

• 중심(centers)

• 나선점(spiral point)

222121

212111

2

1

2221

1211

2

1

'

''

yaya

yaya

y

y

aa

aa

y

yyAy

222121

212111

1

2

1

2

1

2

'

'

'

'

yaya

yaya

y

y

dty

dty

dy

dy

School of Mechanical Systems Engineering Engineering Mathematics I

4.3 Constant-Coefficient Systems. Phase Plane Method

상평면법(phase plane method)

– 비고유마디점(improper node) • 임계점에서 두 개의 궤적을 제외한 모든 궤적이 같은 접선의 극한

방향을 갖는 경우

tt ececy

xx

IA

yyAy

4

2

2

1

21

21

1

1

1

1

1

1,

1

14,2

031

13det

31

13'

example

slope: [1 1]T

(as t→∞, y2 goes to 0 faster)

School of Mechanical Systems Engineering Engineering Mathematics I

4.3 Constant-Coefficient Systems. Phase Plane Method

상평면법(phase plane method)

– 고유마디점(proper node) • 임계점에서 모든 궤적들이 각각 한정된 극한방향을 가지는 경우

로 임의로 주어진 방향에 대하여 그 방향을 극한방향으로 가짐

tt ececy

xx

IA

yyAy

1

0

0

1

1

0,

0

11

010

01det

10

01'

example

21

21

21

1221

2211 &

ycyc

ecyecy tt

School of Mechanical Systems Engineering Engineering Mathematics I

4.3 Constant-Coefficient Systems. Phase Plane Method

상평면법(phase plane method)

– 안장점(saddle point) • 임계점에서 두 개의 들어오는 궤적과 두 개의 나가는 궤적이 존재

하고 임계점 근방의 모든 다른 궤적들은 임계점을 우회하는 경우

tt ececy

xx

IA

yyAy

1

0

0

1

1

0,

0

11,1

010

01det

10

01'

example

21

21

21

constccyy

ecyecy tt

2121

2211 &

School of Mechanical Systems Engineering Engineering Mathematics I

4.3 Constant-Coefficient Systems. Phase Plane Method

상평면법(phase plane method)

– 중심(centers) • 무한히 많은 닫힌 궤적에 의해 둘러싸여진 임계점

itit ei

cei

cy

ix

ixii

IA

yyAy

2

2

2

1

21

21

2

1

2

1

2

1,

2

12,2

04

1det

04

10'

example

constyy

yyyy

yyyy

2

2

2

1

2211

1221

2

12

''4

4'&'

School of Mechanical Systems Engineering Engineering Mathematics I

4.3 Constant-Coefficient Systems. Phase Plane Method

상평면법(phase plane method)

– 나선점(spiral point) • t→∞에 따라 궤적들이 임계점 근방에서 나선형을 그리며 임계점

에 접근 또는 임계점에서 멀어지는 경우

titi ei

cei

cy

ix

ixii

IA

yyAy

1

2

1

1

21

21

11

1,

11,1

011

11det

11

11'

example

tcer

tryy

yyyyyy

yyyyyy

,,scoordinatepolar

''

'&'

21

2

2

2

12211

212211

School of Mechanical Systems Engineering Engineering Mathematics I

4.3 Constant-Coefficient Systems. Phase Plane Method

상평면법(phase plane method)

– 고유벡터가 기저를 형성하지 않는 경우 • 퇴화마디점(degenerate node)

xuIAeuAeuex

euAtexeuAtexAyAyeutexexy

texyeutexy

xxx

xxIA

IA

yyAy

ttt

ttttttt

ttt

222

22

21

2

1

21

2

'&'

!assumption

?,1

1

11

113

0321

14det

21

14'

example

real double root

important !

School of Mechanical Systems Engineering Engineering Mathematics I

4.3 Constant-Coefficient Systems. Phase Plane Method

상평면법(phase plane method)

– 고유벡터가 기저를 형성하지 않는 경우 • 퇴화마디점(degenerate node)

tt

tt

tt

ttt

etcec

tecec

etcec

eutexcexcycycy

u

uu

u

u

xuIA

3

2

3

1

3

2

3

1

3

2

3

1

1

2

1

1

2

2

1

1

2

1

2

1

1

1

0

1

1

1

1

1

0

1

1

321

134

general solution

School of Mechanical Systems Engineering Engineering Mathematics I

4.4 Criteria for Critical Points. Stability

임계점에 대한 판별기준

2

21

21

21

21

2

21

21

21

2

2

2

2211

2211

2

211222112211

2

2221

1211

2221

1211

4

1

2

1,

2

1

22

40

4

det

0det

0det

'

q

p

qp

p

pp

pqppqp

qp

Aq

aap

Aaa

aaaaaaaa

aaIA

yaa

aayAy

School of Mechanical Systems Engineering Engineering Mathematics I

4.4 Criteria for Critical Points. Stability

임계점에 대한 판별기준

– 임계점에 대한 고유값 판별기준(Table 4.1)

임계점의 종류 p q Δ λ1 & λ2

(a) 마디점 q > 0 Δ ≥ 0 실수, 같은 부호

(b) 안장점 q < 0 실수, 반대 부호

(c) 중심 p = 0 q > 0 순허수

(d) 나선점 p ≠ 0 Δ < 0 복소수(순허수

가 아님)

School of Mechanical Systems Engineering Engineering Mathematics I

4.4 Criteria for Critical Points. Stability

안정성(stability)

– 임계점의 분류하기 위한 또 다른 방법

– 안정성 • 어느 순간의 물리적 시스템의 작은 변화(작은 외란)가 이후의 모

든 시간에서 시세틈의 거동에 단지 작은 변화만을 주는 것

– 임계점의 안정성 분류 • 안정적 임계점(stable critical point)

• 불안정적 임계점(unstable critical point)

• 안정적 흡인 임계점(stable and attractive critical point)

School of Mechanical Systems Engineering Engineering Mathematics I

4.4 Criteria for Critical Points. Stability

안정성(stability)

– 임계점에 대한 안정성 판별 기준(Table 4.2)

안정성의 형태 p q

(a) 안정적 흡인 임계점 p < 0 q > 0

(b) 안정적 임계점 p ≤ 0 q > 0

(c) 불안정적 임계점 p > 0 q < 0 or

School of Mechanical Systems Engineering Engineering Mathematics I

4.4 Criteria for Critical Points. Stability

안정성(stability)

– 용수철에 달린 물체의 자유운동

m

k

m

c

m

kq

m

cp

m

k

m

c

m

c

m

kIA

y

m

c

m

ky

y

m

c

m

ky

m

cy

m

k

y

y

yy

y

y

y

yy

ym

ky

m

cykycymy

4,,01

det

1010

''

''

'

0'''0'''

2

2

2

1

21

2

2

1

(1) no damping (c=0): p=0, q>0 → center (2) underdamping (c2<4mk): p<0, q>0, Δ<0 → stable & attractive (spiral point) (3) critical damping (c2=4mk): p<0, q>0, Δ=0 → stable & attractive (node) (4) overdamping (c2>4mk): p<0, q>0, Δ>0 → stable & attractive (node)

School of Mechanical Systems Engineering Engineering Mathematics I

4.5 Qualitative Methods for Nonlinear Systems

비선형연립방정식에 대한 정성법

– 정성법(qualitative method) • 방정식의 해를 실제로 구하지 않으면서 해에 대한 정성적인 정보

를 얻는 방법

• 연립방정식의 해를 해석적으로 구하기 어렵거나 불가능한 경우에 유용함

• 비선형연립방정식(nonlinear system)이 가지는 해의 성질을 이해하는데 많은 도움을 줌

2122

2111

,'

,''

yyfy

yyfyyfy

School of Mechanical Systems Engineering Engineering Mathematics I

4.5 Qualitative Methods for Nonlinear Systems

비선형연립방정식에 대한 정성법

– 비선형연립방정식의 선형화(linearization) • 임계점 근처에서의 비선형연립방정식을 선형연립방정식으로 변

2221212

2121111

2122221212

2112121111

2122

2111

'

'

'

,'

,'

'

,'

,'

'

yayay

yayay

yAy

yyhyayay

yyhyayay

yhyAy

yyfy

yyfy

yfy

point. spiral aor (3) aspoint critical of kind

same thehavemay (1) then s;eigenvalueimaginary pureor equal has ifoccur Exceptions

(3). of system linearized theof thoseas same theare (1) ofpoint

critical theofstability and kind then the(2),in 0det if and ,0,0:point critical theof

odneighborho ain sderivative partial continuous have and continuous are (1)in and If

ionlinearizat

0

21

A

AP

ff

(1) (2) (3)

School of Mechanical Systems Engineering Engineering Mathematics I

4.5 Qualitative Methods for Nonlinear Systems

자유비감쇠진자의 선형화

L

gkk

LmmgamF

where0sin''

''sin

tkBtkAk sincos0''

sin0

,2,1,0 where0,:0''sin'''

''

'&

21

2

21

21

nnyyky

yy

yy

critical points

mathematical model

nonlinear

04,0/,00

10'

6

1sinsin0,0for

,0,4,0,2,0,01

1

3

111

kLgkqpyk

yAy

yyyy

→ center

School of Mechanical Systems Engineering Engineering Mathematics I

4.5 Qualitative Methods for Nonlinear Systems

자유비감쇠진자의 선형화

→ saddle point

04,0/,00

10'

6

1sinsinsin

'',0,for

,0,3,0,2

1

3

1111

21

kLgkqpyk

yAy

yyyyy

yy

School of Mechanical Systems Engineering Engineering Mathematics I

4.5 Qualitative Methods for Nonlinear Systems

감쇠진자의 선형화

L

gkkc

LmcmgamF

where0sin'''

'''sin

yck

yAy

yck

yAy

10'

,0,3,0,2

10'

,0,4,0,2,0,01

→ spiral point (c>0)

→ saddle point (c>0)

School of Mechanical Systems Engineering Engineering Mathematics I

4.5 Qualitative Methods for Nonlinear Systems

Lotka-Volterra 개체군 모델

– 포식자-먹이 개체군 모델: 눈토끼(y1) vs. 스라소니(y2)

2212122

2112111

,'

,'

lyykyyyfy

ybyayyyfy

School of Mechanical Systems Engineering Engineering Mathematics I

4.6 Nonhomogeneous Linear Systems of ODEs

비제차 선형연립방정식

0

0

'

g

g

gyAy

homogeneous

nonhomogeneous

gyAyy

yAyy

yyy

p

h

ph

'

'

general solution

(i) method of undetermined coefficients (ii) method of variation of parameters

School of Mechanical Systems Engineering Engineering Mathematics I

4.6 Nonhomogeneous Linear Systems of ODEs

비제차 선형연립방정식

– 미정계수법(method of undertermined coefficients)

2

6

3

322&

1

12

'&

22'

~:ii

1

1

1

1:i

2

6

31

13'example

21

21

2

1222

22

222

222

4

2

2

1

2

vv

vv

v

v

a

agevAeveu

aa

auuuA

gevAteuAgyAy

evteueuy

evteuyegy

ececyy

yyyeygyAy

ttt

ttpp

tttp

ttptp

tthh

pht

School of Mechanical Systems Engineering Engineering Mathematics I

4.6 Nonhomogeneous Linear Systems of ODEs

비제차 선형연립방정식

– 미정계수법(method of undertermined coefficients)

ttttph

ttttph

eteececyyy

vk

eteececyyy

vk

k

kvvva

vv

vv

v

v

a

a

224

1

2

1

224

1

2

1

12

21

21

2

1

2

2

1

12

1

1

1

1

2

2 ,2for

4

0

1

12

1

1

1

1

4

0 ,0for

44,2

2

6

3

32

School of Mechanical Systems Engineering Engineering Mathematics I

4.6 Nonhomogeneous Linear Systems of ODEs

비제차 선형연립방정식

– 매개변수변환법(method of variation of parameters)

tt

tt

tt

tt

ttt

tt

ppp

pp

tt

tt

tt

tt

tthh

pht

ee

ee

ee

ee

eee

eeY

gYuguYguYguAYuYuY

AYyyYyyY

guAYgyAyuYuYy

tutYyy

ctYc

c

ee

ee

ecec

ececececycycyy

yyyeygyAy

44

22

22

44

6

1

42

42

1

1

2121

2

1

42

42

4

2

2

1

4

2

2

14

2

2

1

2

2

1

1

2

2

1

2

1

'''''

'''

' & '''

:ii

1

1

1

1:i

2

6

31

13'example

xyxvxyxuxy

xycxycxy

p

h

21

2211

School of Mechanical Systems Engineering Engineering Mathematics I

4.6 Nonhomogeneous Linear Systems of ODEs

비제차 선형연립방정식

– 매개변수변환법(method of variation of parameters)

tttt

ttttph

tt

ttt

ttt

ttt

tt

p

t

t

t

tt

t

tt

tt

eteecec

eet

tececyyy

eet

t

eete

eete

e

t

ee

eeuYy

e

ttd

eu

ee

e

ee

eegYu

224

2

2

1

424

2

2

1

42

422

422

242

42

20~

2

22

2

44

22

1

2

2

1

12

1

1

1

1

2

2

22

22

1

1

1

1

2

2

22

22

222

222

22

2

22

2~

4

2

4

2

2

6

2

1'