entering the sixth mass extinction

24
ENVIRONMENTAL SCIENCES Accelerated modern humaninduced species losses: Entering the sixth mass extinction Gerardo Ceballos, 1 * Paul R. Ehrlich, 2 Anthony D. Barnosky, 3 Andrés García, 4 Robert M. Pringle, 5 Todd M. Palmer 6 The oft-repeated claim that Earths biota is entering a sixth mass extinctiondepends on clearly demonstrating that current extinction rates are far above the backgroundrates prevailing in the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per 100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this rate with the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing a species as extinct requires meeting stringent criteria. Even under our assumptions, which would tend to minimize evidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to 114 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that have gone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000 years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and the subsequent loss of ecosystem services is still possible through intensified conservation efforts, but that window of opportunity is rapidly closing. INTRODUCTION The loss of biodiversity is one of the most critical current environmental problems, threatening valuable ecosystem services and human well- being (17). A growing body of evidence indicates that current species extinction rates are higher than the pre-human background rate (815), with hundreds of anthropogenic vertebrate extinctions documented in prehistoric and historic times (1623). For example, in the islands of tropical Oceania, up to 1800 bird species (most described in the last few decades from subfossil remains) are estimated to have gone extinct in the ~2000 years since human colonization (24). Written records of extinctions of large mammals, birds, and reptiles date back to the 1600s and include species such as the dodo (Raphus cucullatus, extinguished in the 17th century), Stellers sea cow (Hydrodamalis gigas, extinguished in the 18th century), and the Rodrigues giant tortoise (Cylindraspis peltastes, extinguished in the 19th century). More species extinction records date from the 19th century and include numerous species of mammals and birds. Records of extinction for reptiles, amphibians, freshwater fishes, and other organisms have mainly been documented since the beginning of the 20th century (14, 17). Moreover, even in species that are not currently threatened, the extirpation of popula- tions is frequent and widespread, with losses that far outstrip species- level extinctions (18, 25). Population-level extinction directly threatens ecosystem services and is the prelude to species-level extinction (18). Here, we analyze the modern rates of vertebrate species extinction and compare them with a recently computed background rate for mam- mals (7). We specifically addressed the following questions: (i) Are modern rates of mammal and vertebrate extinctions higher than the highest empirically derived background rates? (ii) How have modern extinction rates in mammals and vertebrates changed through time? (iii) How many years would it have taken for species that went extinct in modern times to have been lost if the background rate had prevailed? These are important issues because the uncertainties about estimates of species loss have led skeptics to question the magnitude of anthropo- genic extinctions (26) and because understanding the magnitude of the extinction crisis is relevant for conservation, maintenance of eco- system services, and public policy. Until recently, most studies of modern extinction rates have been based on indirect estimates derived, for example, on the rates of de- forestation and on species-area relationships (11, 14). Problems related to estimating extinction since 1500 AD (that is, modern extinctions) have been widely discussed, and the literature reflects broad agreement among environmental scientists that biases lead to underestimating the number of species that have gone extinct in the past few centuriesthe period during which Homo sapiens truly became a major force on the biosphere ( 14, 68, 14, 15). However, direct evaluation is complicated by uncertainties in estimating the incidence of extinction in historical time and by methodological difficulties in comparing contemporary ex- tinctions with past ones. Less discussed are assumptions underlying the estimation of background extinction rates. The lower these estimates, the more dra- matic current extinction rates will appear by comparison. In nearly all comparisons of modern versus background extinction rates, the background rate has been assumed to be somewhere between 0.1 and 1 species extinction per 10,000 species per 100 years (equal to 0.1 to 1 species extinction per million species per year, a widely used metric known as E/MSY). Those estimates reflect the state of knowledge avail- able from the fossil record in the 1990s (7, 913). In a recent analysis, which charted the stratigraphic ranges of thousands of mammal species, 1 Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F. 04510, México. 2 Department of Biology, Stanford University, Stanford, CA 94304, USA. 3 Department of Integrative Biology and Museums of Paleontology and Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 947203140, USA. 4 Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Jalisco 48980, México. 5 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA. 6 Department of Biology, University of Florida, Gainesville, FL 326118525, USA. *Corresponding author. E-mail: [email protected] 2015 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 10.1126/sciadv.1400253 RESEARCH ARTICLE Ceballos et al. Sci. Adv. 2015;1:e1400253 19 June 2015 1 of 5

Upload: felipe-adolfo-carrillo-alvarado

Post on 16-Dec-2015

97 views

Category:

Documents


9 download

DESCRIPTION

The oft-repeated claim that Earth’s biota is entering a sixth “mass extinction” depends on clearly demonstrating that current extinction rates are far above the “background” rates prevailing in the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis.

TRANSCRIPT

  • ENV I RONMENTAL SC I ENCES

    Accelerated modern humaninduced specieslosses: Entering the sixth mass extinctionGerardo Ceballos,1* Paul R. Ehrlich,2 Anthony D. Barnosky,3 Andrs Garca,4

    Robert M. Pringle,5 Todd M. Palmer6

    The oft-repeated claim that Earths biota is entering a sixth mass extinction depends on clearly demonstrating thatcurrent extinction rates are far above the background rates prevailing in the five previous mass extinctions. Earlierestimates of extinction rates have been criticized for using assumptions that might overestimate the severity of theextinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a massextinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this ratewith the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing aspecies as extinct requiresmeeting stringent criteria. Even under our assumptions, which would tend tominimizeevidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to114 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that havegone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries,indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and thesubsequent loss of ecosystem services is still possible through intensified conservation efforts, but that windowof opportunity is rapidly closing.

    INTRODUCTIONThe loss of biodiversity is one of themost critical current environmentalproblems, threatening valuable ecosystem services and human well-being (17). A growing body of evidence indicates that current speciesextinction rates are higher than the pre-human background rate (815),with hundreds of anthropogenic vertebrate extinctions documented inprehistoric and historic times (1623). For example, in the islands oftropical Oceania, up to 1800 bird species (most described in the lastfew decades from subfossil remains) are estimated to have gone extinctin the ~2000 years since human colonization (24). Written records ofextinctions of large mammals, birds, and reptiles date back to the 1600sand include species such as the dodo (Raphus cucullatus, extinguishedin the 17th century), Stellers sea cow (Hydrodamalis gigas, extinguishedin the 18th century), and the Rodrigues giant tortoise (Cylindraspispeltastes, extinguished in the 19th century). More species extinctionrecords date from the 19th century and include numerous species ofmammals and birds. Records of extinction for reptiles, amphibians,freshwater fishes, and other organisms have mainly been documentedsince the beginning of the 20th century (14, 17). Moreover, even inspecies that are not currently threatened, the extirpation of popula-tions is frequent and widespread, with losses that far outstrip species-level extinctions (18, 25). Population-level extinction directly threatensecosystem services and is the prelude to species-level extinction (18).

    Here, we analyze the modern rates of vertebrate species extinctionand compare themwith a recently computed background rate formam-

    mals (7). We specifically addressed the following questions: (i) Aremodern rates of mammal and vertebrate extinctions higher than thehighest empirically derived background rates? (ii) How have modernextinction rates in mammals and vertebrates changed through time?(iii) How many years would it have taken for species that went extinctinmodern times to have been lost if the background rate had prevailed?These are important issues because the uncertainties about estimates ofspecies loss have led skeptics to question the magnitude of anthropo-genic extinctions (26) and because understanding the magnitude ofthe extinction crisis is relevant for conservation, maintenance of eco-system services, and public policy.

    Until recently, most studies of modern extinction rates have beenbased on indirect estimates derived, for example, on the rates of de-forestation and on species-area relationships (11, 14). Problems relatedto estimating extinction since 1500 AD (that is, modern extinctions)have been widely discussed, and the literature reflects broad agreementamong environmental scientists that biases lead to underestimating thenumber of species that have gone extinct in the past few centuriesthe period during whichHomo sapiens truly became a major force onthe biosphere (14, 68, 14, 15). However, direct evaluation is complicatedby uncertainties in estimating the incidence of extinction in historicaltime and bymethodological difficulties in comparing contemporary ex-tinctions with past ones.

    Less discussed are assumptions underlying the estimation ofbackground extinction rates. The lower these estimates, the more dra-matic current extinction rates will appear by comparison. In nearly allcomparisons of modern versus background extinction rates, thebackground rate has been assumed to be somewhere between 0.1 and1 species extinction per 10,000 species per 100 years (equal to 0.1 to1 species extinction per million species per year, a widely used metricknown as E/MSY). Those estimates reflect the state of knowledge avail-able from the fossil record in the 1990s (7, 913). In a recent analysis,which charted the stratigraphic ranges of thousands ofmammal species,

    1Instituto de Ecologa, Universidad Nacional Autnoma de Mxico, Mxico D.F. 04510,Mxico. 2Department of Biology, Stanford University, Stanford, CA 94304, USA. 3Departmentof Integrative Biology andMuseums of Paleontology and Vertebrate Zoology, University ofCalifornia, Berkeley, Berkeley, CA 947203140, USA. 4Estacin de Biologa Chamela, Institutode Biologa, Universidad Nacional Autnoma de Mxico, Jalisco 48980, Mxico.5Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544, USA. 6Department of Biology, University of Florida, Gainesville, FL 326118525, USA.*Corresponding author. E-mail: [email protected]

    2015 The Authors, some rights reserved;exclusive licensee American Association forthe Advancement of Science. Distributedunder a Creative Commons AttributionNonCommercial License 4.0 (CC BY-NC).10.1126/sciadv.1400253

    R E S EARCH ART I C L E

    Ceballos et al. Sci. Adv. 2015;1:e1400253 19 June 2015 1 of 5

  • extinction rates were measured over intervals ranging from single yearsto millions of years, and the mean extinction rate and variance werecomputed for each span of time (7). In this way, the background extinc-tion rate estimated for mammals was estimated at 1.8 E/MSY, hererounded upward conservatively to 2 E/MSY (that is, 2 extinctions per100 years per 10,000 species). This is double the highest previous roughestimate.

    Those previously estimated background rateswere primarily derivedfrommarine invertebrate fossils, which are likely to have greater specieslongevity than vertebrates (10, 15). Data deficiencies make it impossibleto conduct empirical analyses (as was done for mammals) for non-mammal terrestrial vertebrates; therefore, we assume the background

    rates of other vertebrates to be similar to those of mammals. This sup-position leads to amore conservative assessment of differences betweencurrent and past extinction rates for the vertebrates as a whole, com-pared with using the very low background extinction rate derived frommarine invertebrates.

    The analysis we present here avoids using assumptions such as lossof species predicted from species-area relationships, which can suggestvery high extinction rates, and which have raised the possibility thatscientists are alarmists seeking to exaggerate the impact of humanson the biosphere (26). Here, we ascertain whether even the lowest esti-mates of the difference between background and contemporary extinc-tion rates still justify the conclusion that people are precipitating a globalspasm of biodiversity loss.

    RESULTS

    Modern and background rates of vertebrate extinctionsModern rates of vertebrate extinction were much higher than abackground extinction rate of 2 E/MSY. Among the vertebrate taxaevaluated by the International Union of Conservation of Nature(IUCN), 338 extinctions have been documented since 1500 [extinct(EX), Table 1]. An additional 279 species have become either extinct inthe wild (EW) or listed as possibly extinct (PE), totaling 617 verte-brate species summed over the three categories. Most extinctions haveoccurred in the last 114 years (that is, since 1900; Table 1). Our esti-mated highly conservative (that is, using data for EX species only)and conservative (that is, by including EX, EW, and PE) modern ex-tinction rates for vertebrates varied from 8 to 100 times higher than thebackground rate (Table 2). This means, for example, that under the 2E/MSY background rate, 9 vertebrate extinctions would have beenexpected since 1900; however, under the conservative rate, 468 morevertebrates have gone extinct than would have if the background ratehad persisted across all vertebrates under that period. Specifically, these468 species include 69 mammal species, 80 bird species, 24 reptiles, 146amphibians, and 158 fish.

    Table 1. Numbers of species used in the Table 2 calculations of highly conservative and conservative modern extinction rates based onthe IUCN Red List (17). For the highly conservative rates, only species verified as extinct (EX) were included; for the conservative extinction rates,species in the categories extinct in the wild (EW) and possibly extinct (PE) were also included.

    Vertebrate taxon

    No. of species, IUCN 2014.3

    Highly conservativerates (EX)

    Conservative rates(EX + EW + PE) No. of species

    evaluated by IUCNSince 1500 Since 1900 Since 1500 Since 1900

    Vertebrates 338 198 617 477 59% (39,223)

    Mammals 77 35 111 69 100% (5,513)

    Birds 140 57 163 80 100% (10,425)

    Reptiles 21 8 37 24 44% (4,414)

    Amphibians 34 32 148 146 88% (6,414)

    Fishes 66 66 158 158 38% (12,457)

    Table 2. Elevation of highly conservative and conservative mod-ern vertebrate extinction rates above background rate of 2 E/MSY (seetable S2 for calculations). For each assessment category, two periods areshown: extinction rates computed from 1500 to the present, and from1900 to the present.

    Animal group

    Elevation of modern rates withrespect to expected rates

    Highly conservative Conservative

    Since 1500 Since 1900 Since 1500 Since 1900

    Vertebrates 8 22 15 53

    Mammals 14 28 20 55

    Birds 13 24 15 34

    Reptiles 5 8 8 24

    Amphibians 5 22 22 100

    Fishes 5 23 12 56

    R E S EARCH ART I C L E

    Ceballos et al. Sci. Adv. 2015;1:e1400253 19 June 2015 2 of 5

  • Variation in modern extinction rates through timeModern extinction rates have increased sharply over the past 200 years(corresponding to the rise of industrial society) and are considerablyhigher than background rates (Fig. 1). Rates of modern extinctions varyamong vertebrate groups (Fig. 1). For example, amphibians, comprisingof ~7300 species, show an accelerating rate of extinction: only 34 extinc-tions have been documented with a high level of certainty since 1500,yet >100 species have likely disappeared since 1980 (17, 23). This maynot only reflect real trends but also a shortage of data for groups forwhich most species are not yet evaluated, such as reptiles and fish(21, 22).

    Modern extinctions if background rate had prevailedOur results indicate that modern vertebrate extinctions that occurredsince 1500 and 1900 AD would have taken several millennia to occurif the background rate had prevailed. The total number of vertebratespecies that went extinct in the last century would have taken about800 to 10,000 years to disappear under the background rate of 2 E/MSY(Fig. 2). The particularly high losses in the last several decades accentu-ate the increasing severity of the modern extinction crisis.

    DISCUSSION

    Arguably the most serious aspect of the environmental crisis is the lossof biodiversitythe other living things with which we share Earth. Thisaffects human well-being by interfering with crucial ecosystem servicessuch as crop pollination and water purification and by destroyinghumanitys beautiful, fascinating, and culturally important livingcompanions (4, 5, 15, 2730).

    Our analysis shows that current extinction rates vastly exceednatural average background rates, even when (i) the background rate isconsidered to be double previous estimates and when (ii) data onmod-

    ern vertebrate extinctions are treated in the most conservative plausibleway. We emphasize that our calculations very likely underestimate theseverity of the extinction crisis because our aim was to place a realisticlower bound on humanitys impact on biodiversity. Therefore, al-though biologists cannot say precisely how many species there are, orexactly how many have gone extinct in any time interval, we can con-fidently conclude that modern extinction rates are exceptionally high,that they are increasing, and that they suggest a mass extinction underwaythe sixth of its kind in Earths 4.5 billion years of history.

    Cum

    ulat

    ive

    extin

    ctio

    ns a

    s %

    of I

    UC

    N-e

    valu

    ated

    spe

    cies 1.60

    1.40

    1.20

    1.00

    0.80

    0.60

    0.40

    0.20

    0 1500-1600 1600-1700 1700-1800 1800-1900 1900-2014

    Time interval

    Mammals

    Birds

    Vertebrates

    Other vertebrates

    Background

    A

    Cum

    ulat

    ive

    extin

    ctio

    ns a

    s %

    of I

    UC

    N-e

    valu

    ated

    spe

    cies 2.50

    2.00

    1.50

    1.00

    0.50

    0.00 1500-1600 1600-1700 1700-1800 1800-1900 1900-2010

    Time interval

    Mammals

    Vertebrates

    Birds

    Other vertebrates

    Background

    B

    Fig. 1. Cumulative vertebrate species recorded as extinct or extinct in the wild by the IUCN (2012). Graphs show the percentage of the number ofspecies evaluated among mammals (5513; 100% of those described), birds (10,425; 100%), reptiles (4414; 44%), amphibians (6414; 88%), fishes (12,457;38%), and all vertebrates combined (39,223; 59%). Dashed black curve represents the number of extinctions expected under a constant standardbackground rate of 2 E/MSY. (A) Highly conservative estimate. (B) Conservative estimate.

    Fishes Amphibians Reptiles Birds Mammals Vertebrates

    10000

    8000

    6000

    4000

    2000

    0

    Tim

    es (y

    ears

    )

    Very conservativeConservative

    Fig. 2. Number of years that would have been required for the ob-served vertebrate species extinctions in the last 114 years to occur un-der a background rate of 2 E/MSY. Red markers, highly conservativescenario; blue markers, conservative scenario. Note that for all vertebrates,the observed extinctions would have taken between 800 to 10,000 years todisappear, assuming 2 E/MSY. Different classes of vertebrates all show qual-itatively similar trends.

    R E S EARCH ART I C L E

    Ceballos et al. Sci. Adv. 2015;1:e1400253 19 June 2015 3 of 5

  • A final important point is that we focus exclusively on species, ignor-ing the extirpation of populationsthe units relevant to ecologicalfunctioning and the delivery of ecosystem services (4, 5, 29). Populationextinction cannot be reliably assessed from the fossil record, precludingany analysis along the lines of that presented here. Also, although it isclear that there are high rates of population extinction (18), existing dataare much less reliable and far harder to obtain than those for species,which will remain true for the foreseeable future. Likewise, we have notconsidered animals other than vertebrates because of data deficiencies.

    The evidence is incontrovertible that recent extinction rates are un-precedented in human history and highly unusual in Earths history.Our analysis emphasizes that our global society has started to destroyspecies of other organisms at an accelerating rate, initiating a mass ex-tinction episode unparalleled for 65 million years. If the currentlyelevated extinction pace is allowed to continue, humans will soon (inas little as three human lifetimes) be deprived of many biodiversitybenefits.Onhuman time scales, this losswould be effectively permanentbecause in the aftermath of past mass extinctions, the living world tookhundreds of thousands to millions of years to rediversify. Avoiding atrue sixth mass extinction will require rapid, greatly intensified effortsto conserve already threatened species and to alleviate pressures on theirpopulationsnotably habitat loss, overexploitation for economic gain,and climate change (3133). All of these are related to human popula-tion size and growth, which increases consumption (especially amongthe rich), and economic inequity (6). However, the window of oppor-tunity is rapidly closing.

    MATERIALS AND METHODS

    To estimate modern extinction rates, we compiled data on the totalnumber of described species and the number of extinct and possiblyextinct vertebrate species from the 2014 IUCN Red List (17). In theIUCNs list, extinct species can be viewed as the minimum numberof actual extinctions during recent human history (that is, since 1500)because it lists species known to be extinct (EX), extinct in the wild(EW), and possibly extinct (PE, a subcategory within criticallyendangered reserved for species thought to be extinct, but not con-firmed) (17) (table S1). We used the IUCN data to calculate modernextinction rates in twoways: (i) we estimate a highly conservativemod-ern extinction rate by using the data exclusively on species listed as EX,and (ii) we calculate a conservative extinction rate by including alsoboth EW and PE species (table S2). Including these latter two categoriesrecognizes that there is only a slim chance that most of the species inthose categories can reestablish viable populations in their native habi-tats. In terms of biological impact and the provision of ecosystemservices, we consider EW and PE species to be functionally equivalentto EX species: even if some individuals still exist, their abundances arenot sufficient to have a substantial influence on ecological function andprocesses.

    The IUCNs list is considered the authoritative, albeit likely conserv-ative, assessment of the conservation status of plant and animal species.About 1.8million species have been described since 1758 (when the cur-rent nomenclature system was developed), of which 1.3 million areanimals (3, 17). Of these animal species, about 39,223 (of the currentlycounted 66,178) vertebrate species have been formally assessed and re-ported in the 2014 IUCNRed List (17). In the IUCN sample, mammals,birds, and amphibians have had between 88 and 100% of their known

    species evaluated, whereas only 44% of reptiles and 38% of fish specieshave been assessed (Table 1). We focus our comparisons on vertebratesbecause they are the group for which the most reliable data exist, bothfossil and modern.

    To produce conservative comparisons with modern extinctions, weassumed a background extinction rate of 2 E/MSY as the highest likelybaseline average background extinction rate (7); that is, we should ex-pect 2 extinctions per 10,000 vertebrate species per 100 years. Thatbackground extinction rate was empirically determined using the ex-ceptionally good fossil records ofmammals, combining extinction countsfrompaleontological databases and published literature on the fossil, sub-fossil, and historical records (7). Using the resulting high background ex-tinction rate provides a stringent test for assessingwhether currentmodernextinction rates indicate that amass extinction event is underway. Previousestimates of background extinction rates for other taxa are invariablylower than the mammal-derived estimate of 2 E/MSY used here.

    SUPPLEMENTARY MATERIALS

    Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/1/5/e1400253/DC1Table S1. Definitions of IUCN categories (17) used to assess modern extinction rates.Table S2. Estimation of modern extinction rates since 1500 and 1900.

    REFERENCES AND NOTES

    1. G. Ceballos, A. Garcia, P. R. Ehrlich, The sixth extinction crisis: Loss of animal populationsand species. J. Cosmology 8, 18211831 (2010).

    2. R. Dirzo, P. H. Raven, Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28,137167 (2003).

    3. G. Mace, K. Norris, A. Fitter, Biodiversity and ecosystem services: A multilayered relation-ship. Trends Ecol. Evol. 27, 1926 (2012).

    4. G. Mace, C. Revenga, E. Ken, Biodiversity, in Ecosystems and Human Well-Being: CurrentState and Trends, G. Ceballos, G. Orians, S. L. Pacala, Eds. (Island Press, Washington, DC,2005), chap. 4, pp. 77121.

    5. G. C. Daily, P. A. Matson, Ecosystem services: From theory to implementation. Proc. Natl.Acad. Sci. U.S.A. 105, 94559456 (2008).

    6. P. R. Ehrlich, A. Ehrlich, Can a collapse of global civilization be avoided? Proc. Biol. Sci. 280,20122845 (2013).

    7. A. D. Barnosky, N. Matzke, S. Tomiya, G. O. Wogan, B. Swartz, T. B. Quental, C. Marshall,J. L. McGuire, E. L. Lindsey, K. C. Maguire, B. Mersey, E. A. Ferrer, Has the Earths sixth massextinction already arrived? Nature 471, 5157 (2011).

    8. R. Dirzo, H. S. Young, M. Galletti, G. Ceballos, J. B. Nick, B. Collen, Defaunation in theAnthropocene. Science 345, 401406 (2014).

    9. R. Leakey, R. Lewis, The Sixth Extinction: Patterns of Life and the Future of Humankind (Doubleday,New York, 1995).

    10. D. M. Raup, A kill curve for Phanerozoic marine species. Paleobiology 17, 3748 (1991).11. R. M. May, J. H. Lawton, E .Stork, Assessing extinction rates, in Extinction Rates, J. H. Lawton,

    R. M. May, Eds. (Oxford University Press, Oxford, 1995), chap. 1. pp. 124.12. S. L. Pimm, G. J. Russell, J. L. Gittleman, T. M. Brooks, The future of biodiversity. Science 269,

    347350 (1995).13. J. Alroy, Constant extinction, constrained diversification, and uncoordinated stasis in North

    American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127, 285311 (1996).14. J. E. M. Baillie, Z. Cokeliss, Extinctions in recent time, in 2004 IUCN Red List of Threatened

    Species: A Global Species Assessment, J. E. M. Baillie, C. Hilton-Taylor, S. N. Stuart, Eds. (IUCN,Gland, Switzerland and Cambridge, UK, 2004); pp. 3350.

    15. R. M. May, Ecological science and tomorrows world. Philos. Trans. R. Soc. Lond. B Biol. Sci.365, 4147 (2010).

    16. H. M. Pereira, P. W. Leadley, V. Proena, R. Alkemade, J. P. Scharlemann, J. F. Fernandez-Manjarrs,M. B. Arajo, P. Balvanera, R. Biggs, W. W. Cheung, L. Chini, H. D. Cooper, E. L. Gilman, S. Gunette,G. C. Hurtt, H. P. Huntington, G. M. Mace, T. Oberdorff, C. Revenga, P. Rodrigues, R. J. Scholes,U. R. Sumaila, M. Walpole, Scenarios for global biodiversity in the 21st century. Science, 330,14961501 (2010).

    17. IUCN, The IUCN Red List of Threatened Species, Version 2014.3 (IUCN, 2014); http://www.iucnredlist.org (downloaded on 11 March 2015).

    R E S EARCH ART I C L E

    Ceballos et al. Sci. Adv. 2015;1:e1400253 19 June 2015 4 of 5

  • 18. G. Ceballos, P. R. Ehrlich, Mammal population losses and the extinction crises. Proc. Natl.Acad. Sci. U.S.A. 106, 38413846 (2009).

    19. J. Schipper, J. S. Chanson, F. Chiozza, N. A. Cox, M. Hoffmann, V. Katariya, J. Lamoreux,A. S. Rodrigues, S. N. Stuart, H. J. Temple, J. Baillie, L. Boitani, T. E. Lacher Jr., R. A. Mittermeier,A. T. Smith, D. Absolon, J. M. Aguiar, G. Amori, N. Bakkour, R. Baldi, R. J. Berridge, J. Bielby,P. A. Black, J. J. Blanc, T. M. Brooks, J. A. Burton, T. M. Butynski, G. Catullo, R. Chapman,Z. Cokeliss, B. Collen, J. Conroy, J. G. Cooke, G. A. da Fonseca, A. E. Derocher, H. T. Dublin,J. W. Duckworth, L. Emmons, R. H. Emslie, M. Festa-Bianchet, M. Foster, S. Foster, D. L. Garshelis,C. Gates, M. Gimenez-Dixon, S. Gonzalez, J. F. Gonzalez-Maya, T. C. Good, G. Hammerson,P. S. Hammond, D. Happold, M. Happold, J. Hare, R. B. Harris, C. E. Hawkins, M. Haywood,L. R. Heaney, S. Hedges, K. M. Helgen, C. Hilton-Taylor, S. A. Hussain, N. Ishii, T. A. Jefferson,R. K. Jenkins, C. H. Johnston, M. Keith, J. Kingdon, D. H. Knox, K. M. Kovacs, P. Langhammer,K. Leus, R. Lewison, G. Lichtenstein, L. F. Lowry, Z. Macavoy, G. M. Mace, D. P. Mallon, M. Masi,M. W. McKnight, R. A. Medelln, P. Medici, G. Mills, P. D. Moehlman, S. Molur, A. Mora, K. Nowell,J. F. Oates, W. Olech, W. R. Oliver, M. Oprea, B. D. Patterson, W. F. Perrin, B. A. Polidoro,C. Pollock, A. Powel, Y. Protas, P. Racey, J. Ragle, P. Ramani, G. Rathbun, R. R. Reeves, S. B. Reilly,J. E. Reynolds III, C. Rondinini, R. G. Rosell-Ambal, M. Rulli, A. B. Rylands, S. Savini, C. J. Schank,W. Sechrest, C. Self-Sullivan, A. Shoemaker, C. Sillero-Zubiri, N. De Silva, D. E. Smith, C. Srinivasulu,P. J. Stephenson, N. van Strien, B. K. Talukdar, B. L. Taylor, R. Timmins, D. G. Tirira, M. F. Tognelli,K. Tsytsulina, L. M. Veiga, J. C. Vi, E. A. Williamson, S. A. Wyatt, Y. Xie, B. E. Young, The status ofthe worlds land and marine mammals: Diversity, threat, and knowledge. Science 322, 225230(2008).

    20. S. L. Pimm, P. Raven, A. Peterson, C. H. ekerciolu, P. R. Ehrlich, Human impacts on the ratesof recent, present, and future bird extinctions. Proc. Natl. Acad. Sci. U.S.A. 103, 1094110946(2006).

    21. N. M. Burkhead, Extinction rates in North American freshwater fishes, 19002010. BioScience62, 798808 (2012).

    22. M. Bhm, B. Collen, J. E. M. Baillie, P. Bowles, J. Chanson, N. Cox, G. Hammerson, M. Hoffmann,S. R. Livingstone, M. Ram, A. G. J. Rhodin, S. N. Stuart, P. P. van Dijk, B. E. Young, L. E. Afuang,A. Aghasyan, A. Garca, C. Aguilar, R. Ajtic, F. Akarsu, L. R. V. Alencar, A. Allison, N. Ananjeva,S. Anderson, C. Andrn, D. Ariano-Snchez, J. C. Arredondo, M. Auliya, C. C. Austin, A. Avci,P. J. Baker, A. F. Barreto-Lima, C. L. Barrio-Amors, D. Basu, M. F. Bates, A. Batistella,A. Bauer, D. Bennett, W. Bhme, D. Broadley, R. Brown, J. Burgess, A. Captain, S. Carreira,M. del Rosario Castaeda, F. Castro, A. Catenazzi, J. R. Cedeo-Vzquez, D. G. Chapple,M. Cheylan, D. F. Cisneros-Heredia, D. Cogalniceanu, H. Cogger, C. Corti, G. C. Costa, P. J. Couper,T. Courtney, J. Crnobrnja-Isailovic, P.-A. Crochet, B. Crother, F. Cruz, J. C. Daltry, R. J. Ranjit Daniels,I. Das, A. de Silva, A. C. Diesmos, L. Dirksen, T. M. Doan, C. K. Dodd Jr., J. S. Doody, M. E. Dorcas,J. D. de Barros Filho, V. T. Egan, E. H. El Mouden, D. Embert, R. E. Espinoza, A. Fallabrino,X. Feng, Z.-J. Feng, L. Fitzgerald, O. Flores-Villela, F. G. R. Frana, D. Frost, H. Gadsden, T. Gamble,S. R. Ganesh, M. A. Garcia, J. E. Garca-Prez, J. Gatus, M. Gaulke, P. Geniez, A. Georges, J. Gerlach,S. Goldberg, J.-C. T. Gonzalez, D. J. Gower, T. Grant, E. Greenbaum, C. Grieco, P. Guo,A. M. Hamilton, K. Hare, S. B. Hedges, N. Heideman, C. Hilton-Taylor, R. Hitchmough,B. Hollingsworth, M. Hutchinson, I. Ineich, J. Iverson, F. M. Jaksic, R. Jenkins, U. Joger, R. Jose,Y. Kaska, U. Kaya, J. S. Keogh, G. Khler, G. Kuchling, Y. Kumluta, A. Kwet, E. La Marca, W. Lamar,A. Lane, B. Lardner, C. Latta, G. Latta, M. Lau, P. Lavin, D. Lawson, M. LeBreton, E. Lehr, D. Limpus,N. Lipczynski, A. S. Lobo, M. A. Lpez-Luna, L. Luiselli, V. Lukoschek, M. Lundberg, P. Lymberakis,R. Macey, W. E. Magnusson, D. L. Mahler, A. Malhotra, J. Mariaux, B. Maritz, O. A. V. Marques,R. Mrquez, M. Martins, G. Masterson, J. A. Mateo, R. Mathew, N. Mathews, G. Mayer, J. R. McCranie,G. J. Measey, F. Mendoza-Quijano, M. Menegon, S. Mtrailler, D. A. Milton, C. Montgomery,S. A. A. Morato, T. Mott, A. Muoz-Alonso, J. Murphy, T. Q. Nguyen, G. Nilson, C. Nogueira,H. Nez, N. Orlov, H. Ota, J. Ottenwalder, T. Papenfuss, S. Pasachnik, P. Passos, O. S. G. Pauwels,N. Prez-Buitrago, V. Prez-Mellado, E. R. Pianka, J. Pleguezuelos, C. Pollock, P. Ponce-Campos,R. Powell, F. Pupin, G. E. Quintero Daz, R. Radder, J. Ramer, A. R. Rasmussen, C. Raxworthy,R. Reynolds, N. Richman, E. L. Rico, E. Riservato, G. Rivas, P. L. B. da Rocha, M.-O. Rdel,L. Rodrguez Schettino, W. M. Roosenburg, J. P. Ross, R. Sadek, K. Sanders, G. Santos-Barrera,H. H. Schleich, B. R. Schmidt, A. Schmitz, M. Sharifi, G. Shea, H.-T. Shi, R. Shine, R. Sindaco,T. Slimani, R. Somaweera, S. Spawls, P. Stafford, R. Stuebing, S. Sweet, E. Sy, H. J. Temple,M. F. Tognelli, K. Tolley, P. J. Tolson, B. Tuniyev, S. Tuniyev, N. zm, G. van Buurt, M. Van Sluys,A. Velasco, M. Vences, M. Vesel, S. Vinke, T. Vinke, G. Vogel, M. Vogrin, R. C. Vogt, O. R. Wearn,Y. L. Werner, M. J. Whiting, T. Wiewandt, J. Wilkinson, B. Wilson, S. Wren, T. Zamin, K. Zhou, G. Zug,The conservation status of the worlds reptiles. Biol. Conserv. 157, 372385 (2013).

    23. S. N. Stuart, J. S. Chanson, N. A. Cox, B. E. Young, A. S. Rodrigues, D. L. Fischman, R. W. Waller, Statusand trends of amphibian declines and extinctions worldwide. Science 306, 17831786 (2004).

    24. D. W. Steadman, Extinction and Biogeography of Tropical Pacific Birds (Chicago UniversityPress, Chicago, 2006).

    25. J. B. Hughes, G. C. Daily, P. R. Ehrlich, Population diversity: Its extent and extinction. Science278, 689692 (1997).

    26. B. Lomborg, The Skeptical Environmentalist: Measuring the Real State of the World (Cam-bridge University Press, Cambridge, UK, 2001).

    27. S. Dullinger, F. Essl, W. Rabitsch, K. H. Erb, S. Gingrich, H. Haberl, K. Hlber, V. Jarosk, F. Krausmann,I. Khn, J. Pergl, P. Pysek, P. E. Hulme, Europes other debt crisis caused by the long legacy offuture extinctions. Proc. Nat. Acad. Sci. U.S.A. 110, 73427347 (2013).

    28. D. S. Karp, H. V. Moeller, L. O. Frishkoff, Nonrandom extinction patterns can modulate pestcontrol service decline. Ecol. Appl. 23, 840849 (2013).

    29. C. D. Mendenhall, D. S. Karp, C. F. Meyer, E. A. Hadly, G. C. Daily, Predicting biodiversitychange and averting collapse in agricultural landscapes. Nature 509, 213217 (2014).

    30. L. O. Frishkoff, D. S. Karp, L. K. MGonigle, C. D. Mendenhall, J. Zook, C. Kremen, E. A. Hadly,G. C. Daily, Loss of avian phylogenetic diversity in Neotropical agricultural systems. Science345, 13431346 (2014).

    31. M. de L. Brooke, S. H. M. Butchart, S. T. Garnett, G. M. Crowley, N. B. Mantilla-Beniers, A. J. Stattersfield,Rates of movement of threatened bird species between IUCN Red List categories and towardextinction. Conserv. Biol. 22, 417427 (2008).

    32. S. Butchart, A. Stattersfield, N. Collar, How many bird extinctions have we prevented? Oryx40, 266278 (2006).

    33. M. Hoffmann, C. Hilton-Taylor, A. Angulo, M. Bhm, T. M. Brooks, S. H. Butchart, K. E. Carpenter,J. Chanson, B. Collen, N. A. Cox, W. R. Darwall, N. K. Dulvy, L. R. Harrison, V. Katariya,C. M. Pollock, S. Quader, N. I. Richman, A. S. Rodrigues, M. F. Tognelli, J. C. Vi, J. M. Aguiar,D. J. Allen, G. R. Allen, G. Amori, N. B. Ananjeva, F. Andreone, P. Andrew, A. L. Aquino Ortiz,J. E. Baillie, R. Baldi, B. D. Bell, S. D. Biju, J. P. Bird, P. Black-Decima, J. J. Blanc, F. Bolaos,W. Bolivar-G, I. J. Burfield, J. A. Burton, D. R. Capper, F. Castro, G. Catullo, R. D. Cavanagh,A. Channing, N. L. Chao, A. M. Chenery, F. Chiozza, V. Clausnitzer, N. J. Collar, L. C. Collett,B. B. Collette, C. F. Cortez Fernandez, M. T. Craig, M. J. Crosby, N. Cumberlidge, A. Cuttelod,A. E. Derocher, A. C. Diesmos, J. S. Donaldson, J. W. Duckworth, G. Dutson, S. K. Dutta,R. H. Emslie, A. Farjon, S. Fowler, J. Freyhof, D. L. Garshelis, J. Gerlach, D. J. Gower, T. D. Grant,G. A. Hammerson, R. B. Harris, L. R. Heaney, S. B. Hedges, J. M. Hero, B. Hughes, S. A. Hussain,M. J. Icochea, R. F. Inger, N. Ishii, D. T. Iskandar, R. K. Jenkins, Y. Kaneko, M. Kottelat,K. M. Kovacs, S. L. Kuzmin, E. La Marca, J. F. Lamoreux, M. W. Lau, E. O. Lavilla, K. Leus, R. L. Lewison,G. Lichtenstein, S. R. Livingstone, V. Lukoschek, D. P. Mallon, P. J. McGowan, A. McIvor,P. D. Moehlman, S. Molur, A. Muoz Alonso, J. A. Musick, K. Nowell, R. A. Nussbaum,W. Olech, N. L. Orlov, T. J. Papenfuss, G. Parra-Olea, W. F. Perrin, B. A. Polidoro, M. Pourkazemi,P. A. Racey, J. S. Ragle, M. Ram, G. Rathbun, R. P. Reynolds, A. G. Rhodin, S. J. Richards,L. O. Rodrguez, S. R. Ron, C. Rondinini, A. B. Rylands, Y. de Mitcheson Sadovy, J. C. Sanciangco,K. L. Sanders, G. Santos-Barrera, J. Schipper, C. Self-Sullivan, Y. Shi, A. Shoemaker, F. T. Short,C. Sillero-Zubiri, D. L. Silvano, K. G. Smith, A. T. Smith, J. Snoeks, A. J. Stattersfield, A. J. Symes,A. B. Taber, B. K. Talukdar, H. J. Temple, R. Timmins, J. A. Tobias, K. Tsytsulina, D. Tweddle,C. Ubeda, S. V. Valenti, P. P. van Dijk, L. M. Veiga, A. Veloso, D. C. Wege, M. Wilkinson, E. A. Williamson,F. Xie, B. E. Young, H. R. Akakaya, L. Bennun, T. M. Blackburn, L. Boitani, H. T. Dublin,G. A. da Fonseca, C. Gascon, T. E. Lacher Jr., G. M. Mace, S. A. Mainka, J. A. McNeely, R. A. Mittermeier,G. M. Reid, J. P. Rodriguez, A. A. Rosenberg, M. J. Samways, J. Smart, B. A. Stein, S. N. Stuart, TheImpact of conservation on the status of the worlds vertebrates. Science 330, 15031509 (2010).

    Acknowledgments:We would like to thank B. Young for helping us with the data on possiblyextinct species published by IUCN. J. Soberon, C. Mendenhall, and J. Pacheco gave valuablesuggestions on the manuscript. Funding: This work has been supported by the Programa deapoyo a proyectos de investigacin e innovacin tecnolgica from UNAM. Competinginterests: The authors declare that they have no competing interests.

    Submitted 23 December 2014Accepted 1 May 2015Published 19 June 201510.1126/sciadv.1400253

    Citation: G. Ceballos, P. R. Ehrlich, A. D. Barnosky, A. Garca, R. M. Pringle, T. M. Palmer,Accelerated modern humaninduced species losses: Entering the sixth mass extinction. Sci.Adv. 1, e1400253 (2015).

    R E S EARCH ART I C L E

    Ceballos et al. Sci. Adv. 2015;1:e1400253 19 June 2015 5 of 5

  • www.advances.sciencemag.org/cgi/content/full/1/5/e1400253/DC1

    Supplementary Materials for Accelerated modern humaninduced species losses: Entering the sixth

    mass extinction

    Gerardo Ceballos, Paul R. Ehrlich, Anthony D. Barnosky, Andrs Garca, Robert M. Pringle, Todd M. Palmer

    Published 19 June 2015, Sci. Adv. 1, e1400253 (2015)

    DOI: 10.1126/sciadv.1400253

    This PDF file includes:

    Table S1. Definitions of IUCN categories (17) used to assess modern extinction rates. Table S2. Estimation of modern extinction rates since 1500 and 1900.

  • SUPPLEMENTARY MATERIALS I. DATA ON CONTEMPORARY EXTINCTIONS (1500 TO PRESENT)

    We obtained the list of vertebrates species considered Extinct (EX), Extinct in the Wild (EW), and Possibly

    Extinct (PE, a subcategory of Critically Endangered, CR) since 1500 from the International Union of

    Conservation of Nature (IUCN). We accessed the IUCN webpage (www.iucn.org; version 2014.3) on

    December 1, 2014. A first list of possible extinct species was kindly provided to us by Dr. Bruce Young, from Natureserve. We then were able to check the status of those species in the IUCN web page. The list of

    all the species included grouped by the IUCN category is included below in sections IV and V. II. BACKGROUND EXTINCTION RATES We used the recent mammal background extinction rate determined by Barnosky et al. (6). Most studies evaluating extinction rates in vertebrates and plants have used background rates assumed to be between 0.1

    and 1 species per million species-years (i.e., between 0.1 and 1 species per 100 years per 10,000 species).

    Those rates were based on the state of knowledge available from the fossil record until the 1990s (9-13). Clearly, the lower these estimates, the more dramatic current extinction rates will appear by comparison.

    The new mammal background extinction rate was based on an analysis of massive databases of mammal

    fossils, subfossils, and modern extinctions. The stratigraphic ranges of thousands of mammal species were

    charted, and extinction rates were measured over intervals ranging from single years to millions of years,

    and the mean extinction rate and variance was computed for each time interval. The estimates indicate that

    the background extinction rate for mammals is closer to 2 extinctions per million species-years (2 E/MSY;

    i.e., two extinctions per 100 years per 10,000 species), which doubles the highest previous estimates. See

    Barnosky et al. (6) for details.

  • Table S1. Definitions of IUCN categories (17) used to assess modern extinction rates.

  • III. COMPARING RECENT AND BACKGROUND EXTINCTION RATES We used two estimates of modern extinction rates; i.e. a very conservative rate (i.e. including only EX

    species) and a conservative rate (i.e. including EX, plus EW and PE species), respectively. Both are defined

    in the text of the paper. Table S2 summarizes the calculations to estimate the modern extinction rates.

    Table S2. Estimation of modern extinction rates since 1500 and 1900. Highly conservative modern extinction rates were calculated using exclusively Extinct species as listed in the stringently evaluated IUCN

    list. Conservative modern extinction rates were calculated using Extinct species plus Extinct in the wild

    (EW) and Possibly extinct species as listed in the IUCN list (2014; see also methods). The 2 E/MY

    background extinction rate is equivalent to 2 extinctions per 10000 species per 100 years.

    1500 TO 2014 Highly conservative

    A B C D E F Elevation

    Animal Evaluate

    d Evaluate

    d Backgroun

    d Centuries Backgroun

    d Extiction

    s

    Group Species Species Extinction

    per Since Extinctions Expected Observed Rates with

    IUCN Divided Century 1500 Expected

    over Extinction

    s Extinction

    s Respect

    by

    10,000 Expected 514 years Since Since to

    Expected

    for 10,000 (Since 1500) 1500 1500

    Species (2 E/MSY) (B x C) (A x D) (F / E) Vertebrates 39223 3.9223 2 5.14 10.28 40.32 338 8 Mammals 5513 0.5513 2 5.14 10.28 5.67 77 14 Birds 10425 1.0425 2 5.14 10.28 10.72 140 13 Reptiles 4414 0.4414 2 5.14 10.28 4.54 21 5 Amphibians 6414 0.6414 2 5.14 10.28 6.59 34 5 Fishes 12457 1.2457 2 5.14 10.28 12.81 66 5

    Conservative A B C D E F Elevation

    Animal Evaluate

    d Evaluate

    d Backgroun

    d Centuries Backgroun

    d Extiction

    s

    Group Species Species Extinction

    per Since Extinctions Expected Observed Rates with

    IUCN Divided Century 1500 Expected

    over Extinction

    s Extinction

    s Respect

    by

    10,000 Expected 514 years Since Since to

    Expected

    for 10,000 (Since 1500) 1500 1500

    Species (2 E/MSY) (B x C) (A x D) (F / E) Vertebrates 39223 3.9223 2 5.14 10.28 40.32 617 15 Mammals 5513 0.5513 2 5.14 10.28 5.67 111 20

  • Birds 10425 1.0425 2 5.14 10.28 10.72 163 15 Reptiles 4414 0.4414 2 5.14 10.28 4.54 37 8 Amphibians 6414 0.6414 2 5.14 10.28 6.59 148 22 Fishes 12457 1.2457 2 5.14 10.28 12.81 158 12

    1900 TO 2014 Highly conservative

    A B C D E F Elevation

    Animal Evaluate

    d Evaluate

    d Backgroun

    d Centuries Backgroun

    d Extiction

    s

    Group Species Species Extinction

    per Since Extinctions Expected Observed Rates with

    IUCN Divided Century 1900 Expected

    over Extinction

    s Extinction

    s Respect

    by

    10,000 Expected 114 years Since Since to

    Expected

    for 10,000 (Since 1900) 1900 1900

    Species (2 E/MSY) (B x C) (A x D) (F / E) Vertebrates 39223 3.9223 2 1.14 2.28 8.94 198 22 Mammals 5513 0.5513 2 1.14 2.28 1.26 35 28 Birds 10425 1.0425 2 1.14 2.28 2.38 57 24 Reptiles 4414 0.4414 2 1.14 2.28 1.01 8 8 Amphibians 6414 0.6414 2 1.14 2.28 1.46 32 22 Fishes 12457 1.2457 2 1.14 2.28 2.84 66 23

    Conservative

    A B C D E F Elevation

    Animal Evaluate

    d Evaluate

    d Backgroun

    d Centuries Backgroun

    d Extiction

    s

    Group Species Species Extinction

    per Since Extinctions Expected Observed Rates with

    IUCN Divided Century 1900 Expected

    over Extinction

    s Extinction

    s Respect

    by

    10,000 Expected 114 years Since Since to

    Expected

    for 10,000 (Since 1900) 1900 1900

    Species (2 E/MSY) (B x C) (A x D) (F / E) Vertebrates 39223 3.9223 2 1.14 2.28 8.94 477 53 Mammals 5513 0.5513 2 1.14 2.28 1.26 69 55 Birds 10425 1.0425 2 1.14 2.28 2.38 80 34 Reptiles 4414 0.4414 2 1.14 2.28 1.01 24 24 Amphibians 6414 0.6414 2 1.14 2.28 1.46 146 100 Fishes 12457 1.2457 2 1.14 2.28 2.84 158 56

  • IV. EXTINCT VERTEBRATES SINCE 1500 ACCORDING TO IUCN (2014) . Group Species Common Name Mammals Bettongia pusilla Nullarbor Dwarf Bettong Mammals Boromys offella Oriente Cave Rat Mammals Boromys torrei Torres Cave Rat Mammals Bos primigenius Aurochs Mammals Brotomys voratus Hispaniolan Edible Rat Mammals Caloprymnus campestris Desert Rat Kangaroo Mammals Chaeropus ecaudatus Pig-footed Bandicoot Mammals Conilurus albipes White-footed Rabbit-rat Mammals Coryphomys buehleri Buhlers Coryphomys Mammals Cryptonanus ignitus Red-bellied Gracile Mouse Opossum Mammals Cryptoprocta spelea Giant Fossa Mammals Cuscomys oblativa

    Mammals Desmodus draculae Giant Vampire Bat Mammals Dusicyon australis Falkland Island Wolf Mammals Gazella bilkis Queen Of Sheba's Gazelle Mammals Gazella saudiya Saudi Gazelle Mammals Geocapromys columbianus Cuban Coney Mammals Geocapromys thoracatus Little Swan Island Hutia Mammals Heteropsomys insulans Insular Cave Rat Mammals Hexolobodon phenax Imposter Hutia Mammals Hippopotamus guldbergi Madagascan Dwarf Hippopotamus Mammals Hippopotamus lemerlei Madagascan Dwarf Hippopotamus Mammals Hippotragus leucophaeus Bluebuck Mammals Hydrodamalis gigas Steller's Sea Cow Mammals Isolobodon montanus Montane Hutia Mammals Isolobodon portoricensis Puerto Rican Hutia Mammals Juscelinomys candango Candango Mouse Mammals Lagorchestes asomatus Central Hare Wallaby Mammals Lagorchestes leporides Eastern Hare Wallaby Mammals Lagostomus crassus

    Mammals Macropus greyi Toolache Wallaby Mammals Macrotis leucura Lesser Bilby Mammals Megalomys desmarestii Desmarests Pilorie Mammals Megalomys luciae Santa Lucian Pilorie Mammals Megaoryzomys curioi Galapgos Giant Rat Mammals Neomonachus tropicalis Caribbean Monk Seal Mammals Neotoma anthonyi Anthony's Woodrat Mammals Neotoma bunkeri Bunkers Woodrat Mammals Neotoma martinensis San Martin Island Woodrat Mammals Neovison macrodon Sea Mink Mammals Nesophontes edithae Puerto Rican Nesophontes Mammals Nesophontes hypomicrus Atalaye Nesophontes Mammals Nesophontes major

    Mammals Nesophontes micrus Western Cuban Nesophontes Mammals Nesophontes paramicrus St. Michel Nesophontes

  • Mammals Nesophontes zamicrus Haitian Nesophontes Mammals Nesoryzomys darwini Darwin's Galapagos Mouse Mammals Nesoryzomys indefessus Indefatigable Galapagos Mouse Mammals Noronhomys vespuccii

    Mammals Notomys amplus Short-tailed Hopping Mouse Mammals Notomys longicaudatus Long-tailed Hopping Mouse Mammals Notomys macrotis Big-eared Hopping Mouse Mammals Notomys mordax Darling Downs Hopping Mouse Mammals Oligoryzomys victus St. Vincent Pygmy Rice Rat Mammals Onychogalea lunata Crescent Nailtail Wallaby Mammals Oryzomys antillarum Jamaican Rice Rat Mammals Oryzomys nelsoni Tres Marias Island Rice Rat Mammals Palaeopropithecus ingens Large Sloth Lemur Mammals Pennatomys nivalis Nevis Rice Rat Mammals Perameles eremiana Desert Bandicoot Mammals Peromyscus pembertoni Pemberton's Deer Mouse Mammals Plagiodontia ipnaeum Samana Hutia Mammals Potorous platyops Broad-faced Potoroo Mammals Prolagus sardus Sardinian Pika Mammals Pseudomys glaucus Blue-grey Mouse Mammals Pseudomys gouldii Gould's Mouse Mammals Pteropus brunneus Percy Island Flying Fox Mammals Pteropus pilosus Large Palau Flying Fox Mammals Pteropus subniger Lesser Mascarene Flying-fox Mammals Pteropus tokudae Guam Flying Fox Mammals Rattus macleari Maclear's Rat Mammals Rattus nativitatis Bulldog Rat Mammals Rucervus schomburgki Schomburgk's Deer Mammals Solenodon marcanoi Marcano's Solenodon Mammals Thylacinus cynocephalus Thylacine Mammals Xenothrix mcgregori Jamaican Monkey Mammals Zalophus japonicus Japanese Sea Lion Aves Aegolius gradyi Bermuda Saw-whet Owl Aves Alectroenas nitidissimus Mauritius Blue-pigeon Aves Alectroenas payandeei Rodrigues Blue-pigeon Aves Alopecoenas ferrugineus Tanna Ground-dove Aves Alopecoenas salamonis Thick-billed Ground-dove Aves Alopochen kervazoi Reunion Shelduck Aves Alopochen mauritiana Mauritius Shelduck Aves Amazona martinicana Martinique Amazon Aves Amazona violacea Guadeloupe Amazon Aves Anas marecula Amsterdam Duck Aves Anas theodori Mauritius Duck Aves Anthornis melanocephala Chatham Bellbird Aves Aphanapteryx bonasia Red Rail Aves Aplonis corvina Kosrae Starling Aves Aplonis fusca Norfolk Island Starling Aves Aplonis mavornata Mysterious Starling

  • Aves Ara tricolor Cuban Macaw Aves Atlantisia podarces St Helena Crake Aves Bermuteo avivorus Bermuda Hawk Aves Bowdleria rufescens Chatham Fernbird Aves Bulweria bifax Small St Helena Petrel Aves Cabalus modestus Chatham Rail Aves Caloenas maculata Liverpool Pigeon Aves Camptorhynchus labradorius Labrador Duck Aves Caracara lutosa Guadalupe Caracara Aves Chaetoptila angustipluma Kioea Aves Chaunoproctus ferreorostris Bonin Grosbeak Aves Chenonetta finschi Finsch's Duck Aves Chloridops kona Kona Grosbeak Aves Chlorostilbon bracei Brace's Emerald Aves Chlorostilbon elegans Caribbean Emerald Aves Ciridops anna Ula-ai-hawane Aves Coenocorypha barrierensis North Island Snipe Aves Coenocorypha iredalei South Island Snipe Aves Colaptes oceanicus Bermuda Flicker Aves Columba jouyi Ryukyu Woodpigeon Aves Columba thiriouxi Mauritius Woodpigeon Aves Columba versicolor Bonin Woodpigeon Aves Conuropsis carolinensis Carolina Parakeet Aves Coturnix novaezelandiae New Zealand Quail Aves Coua delalandei Snail-eating Coua Aves Cyanoramphus ulietanus Raiatea Parakeet Aves Cyanoramphus zealandicus Black-fronted Parakeet Aves Diaphorapteryx hawkinsi Hawkins's Rail Aves Drepanis funerea Black Mamo Aves Drepanis pacifica Hawaii Mamo Aves Dromaius baudinianus Kangaroo Island Emu Aves Dromaius minor King Island Emu Aves Dryolimnas augusti Reunion Rail Aves Dysmorodrepanis munroi Lanai Hookbill Aves Eclectus infectus Oceanic Parrot Aves Ectopistes migratorius Passenger Pigeon Aves Erythromachus leguati Rodrigues Rail Aves Falco duboisi Reunion Kestrel Aves Fregilupus varius Reunion Starling Aves Fulica newtonii Mascarene Coot Aves Gallinula nesiotis Tristan Moorhen Aves Gerygone insularis Lord Howe Gerygone Aves Haematopus meadewaldoi Canarian Oystercatcher Aves Hemignathus ellisianus Greater Akialoa Aves Hemignathus obscurus Lesser Akialoa Aves Hemignathus sagittirostris Greater Amakihi Aves Heteralocha acutirostris Huia Aves Hypotaenidia dieffenbachii Dieffenbach's Rail

  • Aves Hypotaenidia pacifica Tahiti Rail Aves Hypotaenidia poeciloptera Bar-winged Rail Aves Hypotaenidia wakensis Wake Rail Aves Ixobrychus novaezelandiae New Zealand Little Bittern Aves Lophopsittacus bensoni Mauritius Grey Parrot Aves Lophopsittacus mauritianus Broad-billed Parrot Aves Mascarenotus grucheti Reunion Owl Aves Mascarenotus murivorus Rodrigues Owl Aves Mascarenotus sauzieri Mauritius Owl Aves Mascarinus mascarin Mascarene Parrot Aves Mergus australis Auckland Merganser Aves Microgoura meeki Choiseul Pigeon Aves Moho apicalis Oahu Oo Aves Moho bishopi Bishop's Oo Aves Moho braccatus Kauai Oo Aves Moho nobilis Hawaii Oo Aves Mundia elpenor Ascension Crake Aves Myadestes myadestinus Kamao Aves Myadestes woahensis Amaui Aves Myiagra freycineti Guam Flycatcher Aves Nannococcyx psix St Helena Cuckoo Aves Necropsar rodericanus Rodrigues Starling Aves Necropsittacus rodricanus Rodrigues Parrot Aves Nesillas aldabrana Aldabra Warbler Aves Nesoenas cicur Mauritius Turtle-dove Aves Nesoenas duboisi Reunion Pigeon Aves Nesoenas rodericanus Rodrigues Turtle-dove Aves Nestor productus Norfolk Kaka Aves Nyctanassa carcinocatactes Bermuda Night-heron Aves Nycticorax duboisi Reunion Night-heron Aves Nycticorax mauritianus Mauritius Night-heron Aves Nycticorax megacephalus Rodrigues Night-heron Aves Paroreomyza flammea Kakawahie Aves Pezophaps solitaria Rodrigues Solitaire Aves Phalacrocorax perspicillatus Spectacled Cormorant Aves Pinguinus impennis Great Auk Aves Podiceps andinus Colombian Grebe Aves Podilymbus gigas Atitlan Grebe Aves Pomarea fluxa Eiao Monarch Aves Pomarea nukuhivae Nuku Hiva Monarch Aves Pomarea pomarea Maupiti Monarch Aves Porphyrio albus White Swamphen Aves Porphyrio caerulescens Reunion Gallinule Aves Porphyrio kukwiedei New Caledonia Gallinule Aves Porphyrio mantelli North Island Takahe Aves Porphyrio paepae Marquesan Swamphen Aves Prosobonia cancellata Christmas Sandpiper Aves Prosobonia ellisi Moorea Sandpiper

  • Aves Prosobonia leucoptera Tahiti Sandpiper Aves Psephotellus pulcherrimus Paradise Parrot Aves Psittacara labati Guadeloupe Parakeet Aves Psittacula exsul Rodrigues Parakeet Aves Psittacula wardi Seychelles Parakeet Aves Pterodroma rupinarum Large St Helena Petrel Aves Ptilinopus mercierii Red-moustached Fruit-dove Aves Quiscalus palustris Slender-billed Grackle Aves Raphus cucullatus Dodo Aves Rhodacanthis flaviceps Lesser Koa-finch Aves Rhodacanthis palmeri Greater Koa-finch Aves Sceloglaux albifacies Laughing Owl Aves Tachybaptus rufolavatus Alaotra Grebe Aves Threskiornis solitarius Reunion Ibis Aves Traversia lyalli Stephens Island Wren Aves Tribonyx hodgenorum Hodgen's Waterhen Aves Turdus ravidus Grand Cayman Thrush Aves Turnagra capensis South Island Piopio Aves Turnagra tanagra North Island Piopio Aves Upupa antaios St Helena Hoopoe Aves Xenicus longipes Bush Wren Aves Zapornia astrictocarpus St Helena Rail Aves Zapornia monasa Kosrae Crake Aves Zapornia nigra Miller's Rail Aves Zapornia palmeri Laysan Rail Aves Zapornia sandwichensis Hawaiian Rail Aves Zoothera terrestris Bonin Thrush Aves Zosterops strenuus Robust White-eye Reptiles Ameiva cineracea Guadeloupe Ameiva Reptiles Ameiva major Martinique Giant Ameiva Reptiles Bolyeria multocarinata Round Island Burrowing Boa Reptiles Borikenophis sanctaecrucis Saint Croix Racer Reptiles Celestus occiduus Jamaica Giant Galliwasp Reptiles Chioninia coctei Cape Verde Giant Skink Reptiles Cyclura onchiopsis Navassa Rhinoceros Iguana Reptiles Cylindraspis indica

    Reptiles Cylindraspis inepta Reptiles Cylindraspis peltastes Reptiles Cylindraspis triserrata Reptiles Cylindraspis vosmaeri Reptiles Hoplodactylus delcourti Reptiles Leiocephalus eremitus Reptiles Leiocephalus herminieri Reptiles Leiolopisma mauritiana Reptiles Pelusios seychellensis Seychelles Black Terrapin

    Reptiles Phelsuma gigas Gecko Diurne Gant De Rodrigues Reptiles Tachygyia microlepis Tonga Ground Skink Reptiles Tetradactylus eastwoodae Eastwood's Longtailed Seps

  • Reptiles Typhlops cariei Amphibians Atelopus ignescens Quito Stubfoot Toad

    Amphibians Atelopus longirostris Longnose Stubfoot Toad Amphibians Atelopus vogli

    Amphibians Craugastor chrysozetetes McCranie's Robber Frog Amphibians Craugastor escoces Heredia Robber Frog Amphibians Cynops wolterstorffi Yunnan Lake Newt Amphibians Incilius periglenes Golden Toad Amphibians Lithobates fisheri Las Vegas Leopard Frog Amphibians Nannophrys guentheri

    Amphibians Phrynomedusa fimbriata Amphibians Plethodon ainsworthi Ainsworth's Salamander

    Amphibians Pseudophilautus adspersus Amphibians Pseudophilautus dimbullae Amphibians Pseudophilautus eximius Amphibians Pseudophilautus extirpo Amphibians Pseudophilautus halyi Amphibians Pseudophilautus hypomelas Amphibians Pseudophilautus leucorhinus Amphibians Pseudophilautus maia Amphibians Pseudophilautus malcolmsmithi Amphibians Pseudophilautus nanus Amphibians Pseudophilautus nasutus Amphibians Pseudophilautus oxyrhynchus Amphibians Pseudophilautus pardus Amphibians Pseudophilautus rugatus Amphibians Pseudophilautus stellatus Amphibians Pseudophilautus temporalis Amphibians Pseudophilautus variabilis Amphibians Pseudophilautus zal Amphibians Pseudophilautus zimmeri Amphibians Raorchestes travancoricus Amphibians Rheobatrachus silus Southern Gastric Brooding Frog

    Amphibians Rheobatrachus vitellinus Eungella Gastric-brooding Frog Amphibians Taudactylus diurnus Mount Glorious Torrent Frog Fishes Alburnus akili Beyehir Bleak Fishes Alburnus nicaeensis Iznik Shemaya Fishes Anabarilius macrolepis

    Fishes Aphanius splendens Glk Toothcarp Fishes Aplocheilichthys sp. nov. 'Naivasha'

    Fishes Barbus microbarbis Fishes Characodon garmani Parras Characodon

    Fishes Chasmistes muriei Snake River Sucker Fishes Chondrostoma scodrense

    Fishes Coregonus alpenae Longjaw Cisco Fishes Coregonus bezola

    Fishes Coregonus fera Fishes Coregonus gutturosus

  • Fishes Coregonus hiemalis Fishes Coregonus johannae Deepwater Cisco

    Fishes Coregonus nigripinnis Blackfin Cisco Fishes Coregonus oxyrinchus Houting Fishes Coregonus restrictus

    Fishes Cottus echinatus Utah Lake Sculpin Fishes Ctenochromis pectoralis

    Fishes Cyprinodon arcuatus Santa Cruz Pupfish Fishes Cyprinodon ceciliae Villa Lopez Pupfish Fishes Cyprinodon inmemoriam Charco Azul Pupfish Fishes Cyprinodon latifasciatus Parras Pupfish Fishes Cyprinodon spp. Perritos De Sandia Fishes Cyprinus yilongensis

    Fishes Empetrichthys merriami Ash Meadows Poolfish Fishes Etheostoma sellare Maryland Darter Fishes Eudontomyzon sp. nov. 'migratory'

    Fishes Evarra bustamantei Mexican Dace Fishes Evarra eigenmanni Mexican Dace Fishes Evarra tlahuacensis Mexican Dace Fishes Fundulus albolineatus Whiteline Topminnow Fishes Gambusia amistadensis Amistad Gambusia Fishes Gambusia georgei San Marcos Gambusia Fishes Gasterosteus crenobiontus

    Fishes Gila crassicauda Thicktail Chub Fishes Lepidomeda altivelis Pahranagat Spinedace Fishes Mirogrex hulensis Hula Bream Fishes Moxostoma lacerum Harelip Sucker Fishes Notropis amecae Ameca Shiner Fishes Notropis aulidion Durango Shiner Fishes Notropis orca Phantom Shiner Fishes Notropis saladonis Salado Shiner Fishes Noturus trautmani Scioto Madtom Fishes Pantanodon madagascariensis

    Fishes Platytropius siamensis Siamese flat-barbelled catfish Fishes Pogonichthys ciscoides Clear Lake Splittail Fishes Priapella bonita Graceful Priapella Fishes Prototroctes oxyrhynchus New Zealand Grayling Fishes Pseudophoxinus handlirschi Eirdir Minnow Fishes Ptychochromis onilahy

    Fishes Ptychochromoides itasy Fishes Rhinichthys deaconi Las Vegas Dace

    Fishes Rhizosomichthys totae pez graso Fishes Romanogobio antipai

    Fishes Salmo pallaryi Fishes Salvelinus agassizii Silver Trout

    Fishes Salvelinus neocomensis Fishes Salvelinus profundus Fishes Stypodon signifer Stumptooth Minnow

  • Fishes Telestes ukliva Fishes Tristramella intermedia Fishes Tristramella magdelainae Fishes Tristramella sacra Long Jaw Tristramella

    Fishes Xystichromis bayoni

  • V. EXTINCT IN THE WILD AND POSSIBLY EXTINCT VERTEBRATES SINCE 1500 ACCORDING TO IUCN (2014).

    Group Species Common name Category Mammals Bos sauveli Kouprey CR(PE) Mammals Crateromys australis Dinagat Crateromys CR(PE) Mammals Crocidura trichura Christmas Island Shrew CR(PE) Mammals Crocidura wimmeri Wimmer's Shrew CR(PE) Mammals Cryptochloris wintoni De Winton's Golden Mole CR(PE) Mammals Dendrolagus mayri Wondiwoi Tree-kangaroo CR(PE) Mammals Dipodomys gravipes San Quintin Kangaroo Rat CR(PE) Mammals Leporillus apicalis Lesser Stick-nest Rat CR(PE) Mammals Lipotes vexillifer Baiji CR(PE) Mammals Melanomys zunigae Zuniga's Dark Rice Rat CR(PE) Mammals Mesocapromys nanus Dwarf Hutia CR(PE) Mammals Mesocapromys sanfelipensis Little Earth Hutia CR(PE) Mammals Monodelphis unistriatus Single-striped Opossum CR(PE) Mammals Murina tenebrosa Gloomy Tube-nosed Bat CR(PE) Mammals Mysateles garridoi Garrido's Hutia CR(PE)

    Mammals Mystacina robusta New Zealand Greater Short-tailed Bat CR(PE)

    Mammals Nilopegamys plumbeus Ethiopian Amphibious Rat CR(PE) Mammals Nyctophilus howensis Lord Howe Long-eared Bat CR(PE) Mammals Peromyscus guardia Angel Island Mouse CR(PE) Mammals Peromyscus mekisturus Puebla Deer Mouse CR(PE) Mammals Phalanger matanim Telefomin Cuscus CR(PE) Mammals Pharotis imogene Thomas's Big-eared Bat CR(PE) Mammals Pipistrellus murrayi Christmas Island Pipistrelle CR(PE) Mammals Pteralopex pulchra Montane Monkey-faced Bat CR(PE) Mammals Pteropus aruensis Aru Flying Fox CR(PE) Mammals Pteropus tuberculatus Vanikoro Flying Fox CR(PE) Mammals Uromys emmae Emma's Giant Rat CR(PE) Mammals Uromys imperator Emperor Rat CR(PE) Mammals Uromys porculus Guadalcanal Rat CR(PE) Mammals Zyzomys pedunculatus Central Rock Rat CR(PE) Birds Campephilus imperialis Imperial Woodpecker CR(PE) Birds Cyanopsitta spixii Spix's Macaw CR(PEW) Birds Eriocnemis godini Turquoise-throated Puffleg CR(PE) Birds Eurostopodus exul New Caledonian Nightjar CR(PE) Birds Hemignathus lucidus Nukupuu CR(PE) Birds Melamprosops phaeosoma Poo-uli CR(PE) Birds Myadestes lanaiensis Olomao CR(PE) Birds Numenius borealis Eskimo Curlew CR(PE) Birds Hydrobates macrodactylus Guadalupe Storm-petrel CR(PE) Birds Paroreomyza maculata Oahu Alauahio CR(PE) Birds Pomarea mira Ua Pou Monarch CR(PE) Birds Psittirostra psittacea Ou CR(PE) Birds Pterodroma caribbaea Jamaica Petrel CR(PE)

  • Birds Pyrrhura subandina Sinu Parakeet CR(PE) Birds Siphonorhis americana Jamaican Pauraque CR(PE) Birds Sporophila melanops Hooded Seedeater CR(PE) Birds Turnix novaecaledoniae New Caledonian Buttonquail CR(PE) Birds Vermivora bachmanii Bachman's Warbler CR(PE) Reptiles Anolis roosevelti Culebra Giant Anole CR(PE) Reptiles Calamaria prakkei Prakke's Reed Snake CR(PE) Reptiles Capitellum parvicruzae Lesser Saint Croix Skink CR(PE) Reptiles Celestus anelpistus Giant Hispaniolan Galliwasp CR(PE) Reptiles Contomastix vittata

    CR(PE)

    Reptiles Cynisca gansi

    CR(PE) Reptiles Gallotia auaritae La Palma Giant Lizard CR(PE) Reptiles Omoadiphas cannula

    CR(PE)

    Reptiles Pseudoxyrhopus ankafinaensis

    CR(PE) Reptiles Rhampholeon chapmanorum Chapman's Pygmy Chameleon CR(PE) Reptiles Spondylurus magnacruzae Greater Saint Croix Skink CR(PE) Reptiles Spondylurus monitae Monito Skink CR(PE) Reptiles Spondylurus spilonotus Greater Virgin Islands Skink CR(PE) Reptiles Stenocercus haenschi Haensch's Whorltail Iguana CR(PE) Reptiles Trimetopon viquezi Viquez's Tropical Ground Snake CR(PE) Amphibians Altiphrynoides osgoodi Osgood's Ethiopian Toad CR(PE) Amphibians Andinobates abditus Collins' Poison Frog CR(PE) Amphibians Andinophryne colomai Carchi Andes Toad CR(PE) Amphibians Aromobates nocturnus Skunk Frog CR(PE) Amphibians Arthroleptides dutoiti Du Toit's Torrent Frog CR(PE) Amphibians Arthroleptis kutogundua Overlooked Squeaker Frog CR(PE) Amphibians Arthroleptis troglodytes Cave Squeaker CR(PE) Amphibians Atelopus ardila

    CR(PE)

    Amphibians Atelopus balios Rio Pescado Stubfoot Toad CR(PE) Amphibians Atelopus carbonerensis La Carbonera Stubfoot Toad CR(PE) Amphibians Atelopus chiriquiensis Lewis' Stubfoot Toad CR(PE) Amphibians Atelopus chirripoensis

    CR(PE)

    Amphibians Atelopus chrysocorallus

    CR(PE) Amphibians Atelopus eusebiodiazi

    CR(PE)

    Amphibians Atelopus famelicus

    CR(PE) Amphibians Atelopus guanujo

    CR(PE)

    Amphibians Atelopus halihelos Morona-Santiago Stubfoot Toad CR(PE) Amphibians Atelopus lynchi

    CR(PE)

    Amphibians Atelopus mindoensis Mindo Stubfoot Toad CR(PE) Amphibians Atelopus muisca La Arboleda Stubfoot Toad CR(PE) Amphibians Atelopus nanay

    CR(PE)

    Amphibians Atelopus onorei

    CR(PE) Amphibians Atelopus oxyrhynchus Rednose Stubfoot Toad CR(PE) Amphibians Atelopus pachydermus Schmidt's Stubfoot Toad CR(PE) Amphibians Atelopus pastuso

    CR(PE)

    Amphibians Atelopus peruensis Peru Stubfoot Toad CR(PE) Amphibians Atelopus petersi

    CR(PE)

    Amphibians Atelopus pinangoi Pinango Stubfoot Toad CR(PE) Amphibians Atelopus planispina Flat-spined Atelopus CR(PE)

  • Amphibians Atelopus podocarpus

    CR(PE) Amphibians Atelopus sernai

    CR(PE)

    Amphibians Atelopus sorianoi Cloud Forest Stubfoot Toad CR(PE) Amphibians Bokermannohyla izecksohni

    CR(PE)

    Amphibians Bradytriton silus Finca Chiblac Salamander CR(PE) Amphibians Bromeliohyla dendroscarta Greater Bromeliad Treefrog CR(PE) Amphibians Centrolene heloderma Pichincha Giant Glass Frog CR(PE) Amphibians Charadrahyla altipotens Yellow-bellied Voiceless Treefrog CR(PE) Amphibians Charadrahyla trux Spine-fingered Treefrog CR(PE) Amphibians Chiropterotriton magnipes Big-footed Salamander CR(PE) Amphibians Colostethus jacobuspetersi

    CR(PE)

    Amphibians Conraua derooi Togo Slippery Frog CR(PE) Amphibians Craugastor anciano Corquin Robber Frog CR(PE) Amphibians Craugastor angelicus Angel Robber Frog CR(PE) Amphibians Craugastor coffeus

    CR(PE)

    Amphibians Craugastor cruzi Cruz Robber Frog CR(PE) Amphibians Craugastor emleni

    CR(PE)

    Amphibians Craugastor fecundus

    CR(PE) Amphibians Craugastor gulosus

    CR(PE)

    Amphibians Craugastor obesus

    CR(PE) Amphibians Craugastor olanchano

    CR(PE)

    Amphibians Craugastor omoaensis

    CR(PE) Amphibians Craugastor polymniae Sierra Juarez Robber Frog CR(PE) Amphibians Craugastor stadelmani

    CR(PE)

    Amphibians Craugastor trachydermus

    CR(PE) Amphibians Cryptobatrachus nicefori

    CR(PE)

    Amphibians Ecnomiohyla echinata Oaxacan Fringe-limbed Treefrog CR(PE) Amphibians Eleutherodactylus eneidae Villalba Robber Frog CR(PE) Amphibians Eleutherodactylus glanduliferoides La Visite Robber Frog CR(PE) Amphibians Eleutherodactylus karlschmidti Karl's Robber Frog CR(PE) Amphibians Eleutherodactylus orcutti Arntully Robber Frog CR(PE) Amphibians Eleutherodactylus schmidti Schmidt's Robber Frog CR(PE) Amphibians Eleutherodactylus semipalmatus Foothill Robber Frog CR(PE) Amphibians Gastrotheca lauzuricae La Siberia Marsupial Frog CR(PE) Amphibians Holoaden bradei Itatiaia Highland Frog CR(PE) Amphibians Hyla heinzsteinitzi

    CR(PE)

    Amphibians Hyloscirtus chlorosteus Parjacti Treefrog CR(PE) Amphibians Hyloxalus edwardsi Edwards' Rocket Frog CR(PE) Amphibians Hyloxalus ruizi Ruiz's Rocket Frog CR(PE) Amphibians Hypsiboas cymbalum

    CR(PE)

    Amphibians Incilius fastidiosus Pico Blanco Toad CR(PE) Amphibians Isthmohyla debilis Isla Bonita Treefrog CR(PE) Amphibians Lithobates omiltemanus Guerreran Leopard Frog CR(PE) Amphibians Lithobates pueblae

    CR(PE)

    Amphibians Lithobates tlaloci Tlaloc's Leopard Frog CR(PE) Amphibians Litoria castanea Yellow-spotted Tree Frog CR(PE) Amphibians Litoria piperata Peppered Tree Frog CR(PE) Amphibians Mannophryne neblina

    CR(PE)

  • Amphibians Melanophryniscus peritus

    CR(PE) Amphibians Oedipina paucidentata El Empalme Worm Salamander CR(PE) Amphibians Oreobates zongoensis

    CR(PE)

    Amphibians Parhoplophryne usambarica Amani Forest Frog CR(PE) Amphibians Peltophryne fluviatica Hispaniolan Crestless Toad CR(PE) Amphibians Philautus jacobsoni

    CR(PE)

    Amphibians Plectrohyla calvicollina Cerro Peln Treefrog CR(PE) Amphibians Plectrohyla celata Oaxaca Treefrog CR(PE) Amphibians Plectrohyla cembra

    CR(PE)

    Amphibians Plectrohyla cyanomma Blue-eyed Aquatic Treefrog CR(PE) Amphibians Plectrohyla ephemera

    CR(PE)

    Amphibians Plectrohyla hazelae Hazel's Treefrog CR(PE) Amphibians Plectrohyla siopela Voiceless Treefrog CR(PE) Amphibians Plectrohyla thorectes Adler's Mottled Treefrog CR(PE) Amphibians Pristimantis bernali Argelia Robber Frog CR(PE) Amphibians Proceratophrys moratoi Botucatu Escuerzo CR(PE) Amphibians Prostherapis dunni

    CR(PE)

    Amphibians Pseudoeurycea ahuitzotl

    CR(PE) Amphibians Pseudoeurycea anitae

    CR(PE)

    Amphibians Pseudoeurycea aquatica Aquatic Salamander CR(PE) Amphibians Pseudoeurycea naucampatepetl Cofre de Perote Salamander CR(PE) Amphibians Pseudoeurycea praecellens

    CR(PE)

    Amphibians Pseudoeurycea tlahcuiloh

    CR(PE) Amphibians Pseudoeurycea unguidentis

    CR(PE)

    Amphibians Rhinella rostrata

    CR(PE) Amphibians Rhinoderma rufum

    CR(PE)

    Amphibians Scutiger maculatus Piebald Alpine Toad CR(PE) Amphibians Telmatobius cirrhacelis Loja Water Frog CR(PE) Amphibians Telmatobius niger Black Water Frog CR(PE) Amphibians Telmatobius vellardi Vellard's Water Frog CR(PE) Amphibians Thorius infernalis Atoyac Minute Salamander CR(PE) Amphibians Thorius minydemus

    CR(PE)

    Amphibians Thorius munificus

    CR(PE) Amphibians Thorius narismagnus San Martin Pigmy Salamander CR(PE) Amphibians Vandijkophrynus amatolicus Amatola Toad CR(PE) Fishes Acanthobrama centisquama Long-spine Bream CR(PE) Fishes Acanthobrama tricolor Damascus Bream CR(PE) Fishes Acipenser dabryanus Yangtze Sturgeon CR(PE) Fishes Acipenser naccarii Adriatic Sturgeon CR(PE) Fishes Alosa vistonica

    CR(PE)

    Fishes Anabarilius qiluensis

    CR(PE) Fishes Anabarilius yangzonensis

    CR(PE)

    Fishes Azurina eupalama Galpagos Damsel CR(PE) Fishes Balantiocheilos ambusticauda Siamese Bala-shak CR(PE) Fishes Barbodes bovanicus Bovany Barb CR(PE) Fishes Caecocypris basimi Haditha Cavefish CR(PE) Fishes Carcharhinus hemiodon Pondicherry Shark CR(PE) Fishes Cobitis kellei Diyarbakir Spined Loach CR(PE) Fishes Coregonus hoferi

    CR(PE)

  • Fishes Coregonus reighardi Shortnose Cisco CR(PE) Fishes Cyprinus barbatus

    CR(PE)

    Fishes Cyprinus ilishaestomus

    CR(PE) Fishes Cyprinus micristius Dianchi Carp CR(PE) Fishes Cyprinus qionghaiensis

    CR(PE)

    Fishes Cyprinus yunnanensis

    CR(PE) Fishes Fundulopanchax powelli

    CR(PE)

    Fishes Haplochromis aelocephalus

    CR(PE) Fishes Haplochromis antleter

    CR(PE)

    Fishes Haplochromis apogonoides

    CR(PE) Fishes Haplochromis argenteus

    CR(PE)

    Fishes Haplochromis barbarae

    CR(PE) Fishes Haplochromis bareli

    CR(PE)

    Fishes Haplochromis brownae

    CR(PE) Fishes Haplochromis cassius

    CR(PE)

    Fishes Haplochromis cinctus

    CR(PE) Fishes Haplochromis cnester

    CR(PE)

    Fishes Haplochromis coprologus

    CR(PE) Fishes Haplochromis crassilabris

    CR(PE)

    Fishes Haplochromis crocopeplus

    CR(PE) Fishes Haplochromis dentex

    CR(PE)

    Fishes Haplochromis dichrourus

    CR(PE) Fishes Haplochromis flavipinnis

    CR(PE)

    Fishes Haplochromis granti

    CR(PE) Fishes Haplochromis guiarti

    CR(PE)

    Fishes Haplochromis heusinkveldi

    CR(PE) Fishes Haplochromis hiatus

    CR(PE)

    Fishes Haplochromis iris

    CR(PE) Fishes Haplochromis ishmaeli

    CR(PE)

    Fishes Haplochromis katunzii

    CR(PE) Fishes Haplochromis longirostris

    CR(PE)

    Fishes Haplochromis macrognathus

    CR(PE) Fishes Haplochromis martini

    CR(PE)

    Fishes Haplochromis michaeli

    CR(PE) Fishes Haplochromis microdon

    CR(PE)

    Fishes Haplochromis mylergates

    CR(PE) Fishes Haplochromis nanoserranus

    CR(PE)

    Fishes Haplochromis pancitrinus

    CR(PE) Fishes Haplochromis parvidens

    CR(PE)

    Fishes Haplochromis percoides

    CR(PE) Fishes Haplochromis perrieri

    CR(PE)

    Fishes Haplochromis plutonius

    CR(PE) Fishes Haplochromis ptistes

    CR(PE)

    Fishes Haplochromis pyrrhopteryx

    CR(PE) Fishes Haplochromis sp. nov. 'micro-obesus'

    CR(PE)

    Fishes Haplochromis sphex

    CR(PE) Fishes Haplochromis sulphureus

    CR(PE)

    Fishes Haplochromis teegelaari

    CR(PE)

  • Fishes Haplochromis theliodon

    CR(PE) Fishes Haplochromis ushindi

    CR(PE)

    Fishes Haplochromis victorianus

    CR(PE) Fishes Haplochromis vonlinnei

    CR(PE)

    Fishes Haplochromis xenostoma

    CR(PE) Fishes Hemibagrus punctatus Nilgiri Mystus CR(PE) Fishes Hypselobarbus pulchellus

    CR(PE)

    Fishes Knipowitschia cameliae Danube Delta Dwarf Goby CR(PE) Fishes Pantanodon sp. nov. 'Manombo'

    CR(PE)

    Fishes Paraschistura chrysicristinae Diyarbakr Loach CR(PE) Fishes Parapsilorhynchus prateri Deolali Minnow CR(PE) Fishes Poropuntius chonglingchungi

    CR(PE)

    Fishes Psephurus gladius Chinese Paddlefish CR(PE) Fishes Pseudophoxinus sojuchbulagi Akstafa Spring Roach CR(PE) Fishes Pseudophoxinus syriacus Barada Spring Minnow CR(PE) Fishes Pseudoscaphirhynchus fedtschenkoi Syr-darya Shovelnose Sturgeon CR(PE) Fishes Puntius compressiformis

    CR(PE)

    Fishes Puntius deccanensis Deccan Barb CR(PE) Fishes Schistura nasifilis

    CR(PE)

    Fishes Schistura tenura

    CR(PE) Fishes Sciaena callaensis

    CR(PE)

    Fishes Stiphodon discotorquatus

    CR(PE) Fishes Urolophus javanicus Java Stingaree CR(PE) Fishes Xenoclarias eupogon Lake Victoria Deepwater Catfish CR(PE)