excitonic mass generation in honeycomb lattice -...

25
Excitonic mass generation in Honeycomb lattice G. Matsuno, A. Kobayashi and H. Kohno Nagoya University, Japan

Upload: phungdieu

Post on 09-Feb-2019

221 views

Category:

Documents


0 download

TRANSCRIPT

Excitonic mass generationin Honeycomb lattice

G. Matsuno, A. Kobayashi and H. Kohno

Nagoya University, Japan

Outline1. Introduction

2. Honeycomb lattice model

3. Summary

Dirac electronsCoulomb interactionExcitonic order parameters(Previous works)

FormulationSelf-consistent equationResults

A. Geim, K. Novoselov Nature 438 (2005) 197.

P. Wallace, Physical Review 71: 622-634. (1947)

(Graphite)

Graphene

S. Katayama, A. Kobayashi, Y. Suzumura, JPSJ. 75 (2006) 054705

α-(BEDT-TTF)2I3

K. Kajita, et al., J. Phys. Soc. Jpn. 61, 23 (1992).

N. Tajima, et al., J. Phys.Soc. Jpn. 75, 051010 (2006).

Massless Dirac electron system in solid

3

0

~

kveffH

Effective Weyl

Hamiltonian

Weyl Hamiltonian

rrrrrr nnVH 0dd

q

eqV

0

2

0

2

sublattice-representation )( ,,,,

LkLkRkRkk BABA

k

ks

yxF

yxF

yxF

yxF

k

ikkv

ikkv

ikkv

ikkv

H

0)(00

)(000

000)(

00)(0

0

R

R

L

L

'0 HHH

L R

kKk R kKk L

yyxxk kkH LR ˆˆ,

,0

Normal metal

2D Dirac electron

22

2)(

TF

RPA

qq

eqV

still diverse at q=0.

.)1(

2)(

constq

eqV RPA

Polarization function

2222

2

16,

qv

Nqq

q

e

qqV

qVqV

2

0

0screened 2

,1,

q

eqV

0

2

0

2

Coulomb interaction(2dimensional)

Electron correlation

DOS

Long-range Coulomb interactionis important in Dirac electron system.

ω

q B. Wunsch et al. New J. Phys. 8 318.

screening effects

Excitonic mass generation

Gorbar et.al. PRB 66, 045108 (2002)

D. V. Khveshchenko, et al., (2004) Nucl. Phys. B 687, 323

F

e

v

k

)(

)/(ln k

2.2

2

v

e

p

p

p

p

kTk

E

EpkV

B2tanh

2

22

kFk kvE

)41(2

N

approximate solution by Gorbar

numerical calculation

Mean field order parameters sublattice:̂

valley:̂

spins :ˆ

D.V.Khveshchenko, J. Phys.: Condens. Matter 21 (2009) 075303

42=16 degrees of freedomwhich contribute to mass generation

S. Raghu et al., Phys. Rev. Lett. 100 (2008) 156401

LR

kkkkkk BBAA,

03ˆˆ

LR

kkkkkk BBAAsign,

33 )(ˆˆ

..ˆˆ11 chABBA L

k

R

k

L

k

R

kkk

..ˆˆ21 chAiBBiA L

k

R

k

L

k

R

kkk

singlettriplet

Real Space Momentum Space

3,12

3,12

2

1

ae

ae

3

ac

5486.2a Å

21 eeR mnnm

ABt

Honeycomb lattice

0,0),( 21 kk

0,2 2,0

2,2

1st BZ

RKLK M

Q

3

2

3

4,

3

4

3

2 Q

sk sk

sk

k

k

skskB

A

z

zBAH

, ,

,*

,,00

)23exp()2cos(1 yxk kikz 1atAB )~~

(2

3yx kiks

Formulation

i

i

ji

jiij

ji

ijji nU

nnVcccctH 22

1

,,

iiiii ccccn

U

RR

e

V jiij

2ji

ji

Mean field theory

'0 HHH

k

kk

k

kkkk

k

kkMF BBBBAAAAUH'

''

'

''

'

qkk

kkqkqkkkqkqk BBBBAAAAqV,',

'')(

qkk

kkqkqkkkqkqk BAABABBAqV,',

'')(~

)0,0(),(22

)(2

',',

21

)(mn

mqnqi

ssss

mnmn

eeUqV

),(22

)(2

3/1~)(

~ 21

mn

mqnqi

nmmnmn

eeqV

)(', qVU lss

singlet・triplet

linearized self-consistent field equation

excitonic order parameters

q

qk

qk

qk

kT

qW2

tanh2

Self-consistent equation

qkvFqk

2..32

',,

41

',,',, ccsskssk

Qq

ssk

a

sqk

b

sqk

q

ab

ssk qWN

,',',, )(1

',',,

singlet

sssskk

',

',,',

triplet

ss

sskssiki s

22

',,

11

',,

0

',, sskssk

q

ssk

0

)(~

)()()(

qll qVqVUqVqW

UqVqW l )()(

2

)(~

)(~

)(qVqV

qW

q=0,singlet case

q=0,triplet case

q=Q case

Comes from neutrality condition.

Order parameters in momentum space

even odd

0q

Qq

Summary

We study about excitonic mass generation in Honeycomb lattice model.In continuum model, several excitonic orders are degenerated.We find that in lattice model, the degeneracy of excitonic orders is broken.For realistic parameter U=1.2t(graphene), BOW state is stable for α>0.8.

sublattice -representation band-representation

2]..)(~

)(~1

[,

~',

~,

~',

~',,

~

q

L

sqk

R

sqk

L

sqk

R

sqk

Qq

sskccABqVBAqV

N

q

L

sqk

R

sqk

L

sqk

R

sqkccabba

qVqV

N..

2

)(~

)(~

1,

~',

~,

~',

~

',',,,',',,,ˆˆˆˆˆˆ

sk

band

ssksksk

MF

ssksk HUUHUU L

sk

L

sk

R

sk

R

sksk abba,

~,

~,

~,

~,

conductionak

:,

~

22

22

2

1

ii

ii

R

ee

eeU

22

22

2

1

ii

ii

L

ee

eeU

k

k

k

k

H band

k

~000

0~

00

00~

0

000~

2

3)0(

band-representation

valencebk

:,

~

BOW(Honeycomb)

BOW in Honeycomb lattice correspond to the Kekulé distortion.

C. Y. Hou et al., Phys. Rev. Lett. 98 186809(2007)

Topological aspect of the quantum mechanics

nnn iA

nn AB

c. c.i2

nm mn

kkz

nEE

nHmmHnB

yx

,2,1,0d2

1

BZ

2 z

nn kB

Berry接続

XASASB dddCSS

Berry曲率

Chern number (2D)

n: band index

S

C

A1

Berry phase

)(kB

L R

0,0 RL

0,0 RL

1

0

1

0,0 RL

D. J. Thouless et al. PRL 49 (1982) 405

ホール伝導率

h

ekAkf

kdezkxy

2

2

2

)](ˆ[)()2(

TKNN公式

LR

02

h

exy 量子異常ホール状態(QAH)

S. Raghu, X. L. Qi, C. Honerkamp, and S. C. Zhang, PRL 100, 156401 (2008).

F. D. M. Haldane, PRL 61, 2015 (1988).

02

h

es

xy

)(kB

量子スピンホール状態(QSH)

zzyyyxxx kkH

,, yx kkXParameter space

The simplest Hamiltonian with non-zero Chern number

1,, zyx

Eigen energy XE

Eigen function

X

kk

XX z

yyxx

z

i

2

1

X

kk

XX z

yyxx

z

i

2

1

xxk Hx

yyk Hy

32

2c. c.i

XEE

HHB zyx

kk yx

ψψψψ

using

2

zyxCh

“Magnetic monopole”Lower (filled) band

A2

xk

yk

2

10 Ch

2

10 Ch

00

32X

XB ,, yx kkX

“magnetic monopole” and discontinuity of Chern number

12

4

2

1d

2

12

2

S

00 X

XChCh

SB

xk

yk

S

BZ

2d2

1nn BkCh

A3

Topological insulator with TRS (time-reversal symmetry)

= a combined system of two subsystems with opposite sign Chern numbers

KB

KA

KB

KA

KB

KA

KB

KA

vk

vk

vk

vk

vk

vk

vk

vk

H

000000

000000

000000

000000

000000

000000

000000

000000

Kane-Mele model (graphene + spin-orbit interaction) PRL 95, 226801 (2005)

zzzyyzxx skkvH

yx kkk i

,,,, zyx

Ch= 1/2

Ch= 1/2

Ch= -1/2

Ch= -1/2

14

i 2

kkkkkkk uuuukdSpCh

Topological insulator with TRS = Quantum spin Hall system

A4

Spin Chern number:

,,,, zyx

c. c.i2

nm mn

kk

nEE

nHmmHnB

yx

Direct calculation of Berry’s phase gauge field

using the Hamiltonian for alpha-(BEDT-TTF)2I3

c. c.i41 ~,

2

44332211

nm mn

kk

EE

nHmmHnyx

c. c.i41

44332211

~,2

**

nm mn

nkmmkn

EE

dHddHdyx

kkkkkk

1m,2n

4,3,2,1,,, 4321

k : in BZ

11

Fictitious “magnetic field” given by Berry’s phase gauge field

excitonic mass generation in graphene

Monte Carlo calculations:Hands, S., and C. Strouthos, 2008, PRB 78, 165423.Drut et al.,2009, PRB 79, 241405(R); RPL 102, 026802; PRB 79, 165425. 1.1c

Polarization function with Δ(k) and anomalous Green functionJ-R. Wang et al., J. Phys.: Condens. Matter 23 (2011) 155602

q

GG FF 01.0

0

vΔ増大 α=32では

Static RPA : Khveshchenko, D. V., and H. Leal, 2004, Nucl. Phys. B 687, 323

Dynamical RPA on-shell: Gamayun, O. V., E. V. Gorbar, and V. P. Gusynin, 2010, Phys. Rev. B 81, 075429.

vpp ,92.0c

13.1cStrong k-dependence of k

cccT

~1ln

41

~

Nmev4B cTk

001.0

0

v

1

kvkb Effect of renormalized velocity:Khveshchenko, D. V., 2009, J. Phys.: Condens. Matter 21, 075303.

面直磁場によりαc減少、Δ増大

F. Amet, J. R. Williams, K. Watanabe, T. Taniguchi, and D. Goldhaber-GordonPRL 110, 216601 (2013)

グラフェンにおける電気抵抗

シリコン基板上においたグラフェンの電気抵抗(右図インセット)

2次元ディラック電子系に普遍的な振る舞い?