メタン転化用 メカノケミカル法と 水熱合成を組み …...fumed silica is hard to...

46
メタン転化用 メカノケミカル法と 水熱合成を組み合わせた Al置換ゼオライト触媒合成 東北大学 村松淳司 1

Upload: others

Post on 23-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

メタン転化用メカノケミカル法と

水熱合成を組み合わせたAl置換ゼオライト触媒合成

東北大学 村松淳司

1

Page 2: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

メカノケミカル効果

2

Page 3: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

3

Page 4: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

天然ガス生産量

4

Page 5: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

天然ガス消費量

5

Page 6: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

6

Page 7: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

南海トラフの資源量

7

Page 8: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

メタン転化反応

8

Page 9: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

式 (2)(4)

メタンの酸化カップリング

9

メタンの酸化カップリング反応(Oxidative Coupling of Methane, OCM)

ΔH298 ΔG298 (kJ/mol)(1) 2 CH4 + ½ O2 → C2H6 + H2O -177 -160(2) 2 CH4 + O2 → C2H4 + H2O - 40 - 60脱水素カップリング(3) 2 CH4 → C2H6 + H2 65 69(4) 2 CH4 → C2H4 + 2 H2 177 170

副反応 (燃焼)(5) CH4 + 3/2 O2 → CO + 2 H2O(6) CH4 + 2 O2 → CO2 + 2 H2O

Page 10: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

10

Our studies on Zeolite synthesisMetallosilicates Formation via Mechanochemial Route

メカノケミカル法+水熱合成法

Page 11: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

11

We have developed the NewSynthesis Method of Metallosilicates:Combination of MechanochemicalReaction and Hydrothermal Synthesis.

Katsutoshi Yamamoto, Salomon E. Borjas Garcia, Fumio Saito, Atsushi Muramatsu, “Synthesis of titanosilicate zeolite from bulk titania via mechanochemical route”, Chemistry Letters, 35 (6),570-571 (2006).

メカノケミカル法+水熱合成法

Page 12: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

12

Outline of New method A new synthesis route to metallosilicate materials has

been developed by utilizing mechanochemical reaction.

This new method can synthesize titanosilicates such as TS-1 from inexpensive bulk titania and silica as source

materials.

without skilled manipulation.

highly reproducibly.

Thus synthesized TS-1 shows physical and catalytic properties comparable to those of conventionally synthesized TS-1.

メカノケミカル法+水熱合成法

12

Page 13: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

13

Titanosilicate Materials

Isomorphous substitution of Ti for Si

Tetrahedral Ti speciesIn the framework

TitanosilicateSilica framework

(zeolites)(mesoporous materials)

Ti

Ti

O

Titanosilicate materials are zeolites or mesoporous materialswhere titanium atoms are incorporated into silica framework.

Page 14: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

14

TitanosilicatesOxidation Reactions

Hydroxilation of Linear Alkanes:

Hydroxilation of Aromatic Compounds:

Ammoximation of Ketones:

Epoxidation of Alkenes:

Titanosilicates

OH

OH

OH

OHHO+ + Tars + H2O+ H2O2

Titanosilicates+ H2O2 + NH3

O NOH

+ 2H2O Industrially applied

+ H2O2 + H2OTitanosilicates

OH

O+ H2O2 + H2O

Titanosilicates

Page 15: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

15

TS-1Taramasso et al. (1983)

Ti-Beta (F)Blasco et al. (1996)

Ti-MWWWu and Tatsumi (2000)

[Ti,Al]-BetaCamblor et al. (1992)

Ti-Beta (DGC)Tatsumi and Nisamidin (1998)

Ti-HMSTanev (1994)

Ti-MCM-48Koyano and Tatsumi (1996)

Ti-MCM-41Corma et al (1994)

Ti-SBA-15Morey (2000)

Mesoporous materials

{[100] 10 ↔ [010] 10}*** (3-dimensional) <100> 12** ↔ [001] 12*

(3-dimensional)

[001] 10** | [001] 10**(2-dimensional)

Ti-ZSM-48Reddy et al. (1994)

Ti-ZSM-12Tuel (1995)

Examples of Titanosilicate Materials

Year

Microporous materials

Page 16: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

16

Si(OEt)4 SiO2

TiO2 (catalytically inactive)Ti(OEt)4

H2O EtOH H2O

H2O EtOH H2O

Ti(OMe)4 > Ti(OEt)4 > Ti(OPr)4 > Ti(OBu)4

Control of Hydrolysis Rate

Hydrolysis of Alkoxides

Hydrolysis Rate

During the preparation of the hydrogel:Easy formation of anatase because of the higher hydrolysis rate of Ti(OEt)4 than Si(OEt)4.Necessity to use a titanium alkoxide with closer hydrolysis rate to Si(OEt)4 to avoid theformation of octahedrally-coordinated Ti species such as anatase.

Control of Hydrolysis Rate

For Hydrogel Preparation

Page 17: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

17

Control of Hydrolysis RateThe Most Important Key

Advantages

• Easy preparation procedure• Inexpensive process.

Fumed silica

Titania powder

Grinding

Si

Ti

O

ORupture of bonds

Further grinding

Formation of bonds

Si

Si

Ti

Si

Si

O O

O

O

O

Milling balls

powder

Page 18: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

18

5 µm

After mechanochemical reaction

After hydrothermal synthesis

5 µm

Planetary ball mill

rotation

revolution

collision and friction

Si3N4 pot and balls

SiO2

TiO2

TiO2

SiO2

Conventional route

Mechanochemical route

mechanochemical reaction

hydrogel alkoxide monomers

hydrothermal synthesis

hydrolysis, copolymerization hydrothermal synthesis titanosilicate zeolite

メカノケミカル法+水熱合成法

18

Page 19: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

19

0 5 10 15 20 25 30 35 40 45 502Theta (degree)

Inte

nsity

(a.u

.)

TiO2 (anatase)

after grinding for 36 h

after hydrothermal synthesisat 443 K for 3 days

after calcination at 813 K for 6 h

7.8 7.85 7.9 7.95 8 8.05 8.12Theta (degree)

Inte

nsity

(a.u

.)

TS-1 (conventional)

TS-1 (mechanochemical)

silicalite-1 (JRC-Z5-1000H)

XRD

22 23 24 25 26 27 28 29 302Theta (degree)

Inte

nsity

(a.u

.)

TS-1 (conventional)

TS-1 (mechacnochemical)

silicalite-1 (JRC-Z5-1000H)

メカノケミカル法+水熱合成法

19

Page 20: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

20

200 250 300 350 400Wavelength (nm)

Abse

rban

ce (K

ubelk

a-Mun

k)

TiO2 (anatase)

after calcination

aftermechanochemicalreaction

after hydrothermalsynthesis

OTiO O

O

O

OTiO

O OO

StartingMaterial

UV-vis メカノケミカル法+水熱合成法

20

Page 21: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

21

This method is easily applicable to the synthesis of other metallosilicate zeolites such as ferrisilicates and vanadosilicates.

Katsutoshi Yamamoto, Salomon E. Garcia Borjas, Atsushi Muramatsu, “Zeolite synthesis using mechanochemical reaction”, Microporous and Mesoporous Materials, 101, 90-96 (2007).

Salomon E. Garcia Borjas, Katsutoshi Yamamoto, Fumio Saito, Atsushi Muramatsu, “Titanosilicate zeolite synthesized via mechanochemical route”, J. Japan Petroleum Institute, 50(1), 53-60 (2007).

Salomon E. Garcia Borjas, Katsutoshi Yamamoto, Atsushi Muramatsu, “Synthesis of Ti-Beta via mechanochemical route”, Journal of Materials Science, 43 (7), 2367-2371 (2008).

メカノケミカル法+水熱合成法

Page 22: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

22

5 10 15 20 25 30 35 40 45 502Theta (degree)

Inte

nsity

(a.u

.)

(c) after hydrothermal synthesis

(b) after mechanochemical reaction

(a) Fe2O3

200 300 400 500 600Wavelength (nm)

Abse

rban

ce (K

ubel

ka-M

unk)

(a) Fe2O3

(b) aftermechanochemicalreaction

(c) after hydrothermalsynthesis

ferrisilicates

XRD UV-vis

メカノケミカル法+水熱合成法

22

Page 23: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

23

5 10 15 20 25 30 35 40 45 502Theta (degree)

Inte

nsity

(a.u

.)

(c) after hydrothermal synthesis

(b) after mechanochemical reaction

(a) V2O5

200 300 400 500 600Wavelength (nm)

Abse

rban

ce (K

ubel

ka-M

unk)

(a) V2O5

(b) aftermechanochemicalreaction

(c) after hydrothermalsynthesis

vanadosilicatesXRD UV-vis

メカノケミカル法+水熱合成法

23

Page 24: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

24

MFI-type zeoliteFormation via Mechanochemial Route ?

メカノケミカル法+水熱合成法

Page 25: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

25

Fe-MFI zeolite synthesis

α-Fe2O3

SiO2-Fe2O3composite

fumed silicaPlanetary Ball Mill

Amorphous bymixing

MechanochemicalEffect

Fe-ZSM-5FeSilicalite-1

Fe3+

・SiO2・H2O・(C3H7)4NOH・Additives

AutoclaveHydrothermal

treatmentTo Crystal

(1)(2)

Fumed silica is hard to be broken into amorphous phase so that apart of silica is added just before hydrothermal treatment.Mixing of hematite and silica is effective to the conversion intoamorphous.

メカノケミカル法+水熱合成法

25

Page 26: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

26

SiO2-Fe2O3 composite (Si/Fe=20)

Si3N4 vessel (45 ml)

Fumed silica (Aerosil® 200) 60.0 mmol (3.61 g)α-Fe2O3 1.50 mmol (0.240 g)

Si3N4 balls(15 mm, 7 balls)

Grinding and mixing(600 rpm, (Stirring 15min+inteval 15min) × 48 ~ 192times (total 24 ~ 96 h) )

1. SiO2-Fe2O3 composite by mechanochemical reaction

メカノケミカル法+水熱合成法

26

Page 27: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

27

With increase in grinding time (24 – 96 h)α-Fe2O3 crystal was converted into amorphous phase.Isolated Fe3+ species (λ=200~300 nm) was increase.

⇒ Fe atoms were incorporated into SiO2 network.

XRD UV-vis

メカノケミカル法+水熱合成法

27

Page 28: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

2828

Teflon vessel (22 ml)

・2.0 M TPAOH aq. 9.10 ml

・SiO2 powder (Carplex®) 1.29 g ・H2O 1.69 ml・2.0 M NaCl aq. 1.79 ml

・SiO2-Fe2O3 composite (Si/Fe=20, 24~96 h) 0.918 g

・6.0 M HCl aq. 1.19 ml

2. Transformation into Zeolite phase

Stirring (r.t., 0 ~ 48 h)

Hydrothermal reaction(160 ºC, 120 h)Washing, Drying

Pre-heating(r.t. ~ 110 ºC, 0 or 24 h)

TPA-Mechanochemical FeSilicalite-1

Molar ratio:1 Si : 0.02 Fe : 0.2 HCl : 0 ~ 0.5 NaCl : 0.5 TPAOH : 15 ~ 45 H2O

Mechanochemical FeSilicalite-1Calcination (540 oC, 12 h in air)

メカノケミカル法+水熱合成法

Page 29: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

2929

Effect of Grinding Time (24 – 96 h) on as-prepared Fe-MFI

24 h

500 nm

48 h

500 nm

72 h

500 nm

96 h

500 nm

XRD UV-vis

TEM

Std.

96 h was the best.

メカノケミカル法+水熱合成法

Page 30: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

30

Sn-MFI-type zeoliteFormation via Mechanochemial Route

メカノケミカル法+水熱合成法

Page 31: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

実験

遊星ボールミルによるメカノケミカル反応(600 rpm, 15 min-粉砕/15 min-静止, 合計粉砕時間 0-24 h )

メカノケミカル反応

Si3N4 ボール (d = 15 mm ×7 つ)

SiO2 (Aerosil 200) 2.4 g

非晶質 SnO2 0.12 g

SiO2-SnO2 前駆体

Si3N4 容器 (45 ml)2.5 M NH3 aq. をpH=2 になるまで滴下

1.0 M SnCl4 aq.

非晶質 SnO2

乾燥 (120 ºC, 3 h)

31

Page 32: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

実験

テフロン容器 (全溶液量 = 15 ml)水熱処理

SiO2-SnO2 前駆体 (Si/Sn = 20)

2.0 M TPAOH aq. (Tetrapropylammonium Hydroxide)

SiO2 (Carplex)H2O

モル組成

洗浄, 乾燥 (60 ºC)

Sn-MFI

水熱処理 (160 ºC, 120 h)

焼成 (540 ºC, 12 h)

オートクレーブ

6.0 M HCl aq.

1SiO2 : 0.02 or 0.04SnO2 : 15H2O: 0.5TPAOH : xHCl

エージング (70 ºC, 24 h)

水熱合成法での合成【比較試料】

0.5 M SnCl4 aq.

2.0 M TPAOH aq.

TEOS (Tetraethyl orthosilicate)

H2O

6.0 M HCl aq.

モル組成

テフロン容器 (全溶液量 = 15 ml)

撹拌 (室温, 5 min)

撹拌 (室温, 10 min)

撹拌 (室温, 10 min)

撹拌 (0 oC, 6 h → 室温, 42 h)

1SiO2 : 0.02SnO2 : 30H2O: 0.5TPAOH : xHCl

32

Page 33: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

実験結果 前駆体のキャラクタリゼーション

Sn4+ 配位状態の変化 (UV_vis スペクトル)SnO2 結晶性の変化 (XRDパターン)

結晶性 SnO2→ メカノケミカル反応により減少

6配位Sn4+ (260-300 nm 付近の吸収)

4配位Sn4+ (200 nm付近の吸収) へ変化

33

Page 34: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

実験結果 Sn-MFI のキャラクタリゼーション

HCl添加により粒径が増大, 粒子形態が球状に変化

HCl/SI = 0.20-0.36 の試料はMFI型構造を有している

※ x = HCl/Si

SEM 像

XRD パターン

34

Page 35: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

実験結果 Sn-MFI のキャラクタリゼーション

結晶化した試料 (HCl/Si = 0.20-0.36) では主に 4 配位 Sn4+ の吸収が現れた

Sn 含有率 (ICP-AES により測定)

HCl 添加に伴い Sn 含有率が増大した

全ての試料で Si-O-Sn 結合を示す970 cm-1 の吸収が現れた

UV-vis spectra (規格化)

35

Page 36: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

実験結果 Sn-MFI のキャラクタリゼーション

HCl/Si = 0.35, 0.36 でヒステリシスループ (IV型) が現れた

ミクロ孔容積は殆ど変化なし HCl 添加により外表面積が増大した

HCl/Si比表面積

(m2/g)外表面積

(m2/g)全細孔容積

(ml/g)ミクロ孔容積

(ml/g)

0.20 462 26 0.33 0.18

0.25 454 4 0.24 0.19

0.30 459 11 0.23 0.18

0.35 495 79 0.28 0.17

0.36 527 86 0.31 0.18

窒素吸着測定

HCl 添加によりメソ孔が形成 36

Page 37: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

37

Methane ConversionCeO2 Ce-MFI zeolite

メカノケミカル法+水熱合成法

Page 38: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

38

C2 選択率

流通式合成装置を用いて380℃, 30 MPaの条件で水酸化セリウムより合成したデカン酸修飾酸化セリウムナノ粒子

Catalyst weight : 70 mg, Reaction gas flow (SCCM): CH4/O2/Ar = 13.3/6.7/5CeO2ナノ粒子

(超臨界法合成)

市販品

CH4 転化率

Page 39: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

従来型触媒(高温)における酸化カップリングの反応機構

Page 40: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

本研究における触媒開発の設計指針

1. CH3・中間体の気相脱離、深度酸化の抑制(方策) 超微粒子触媒によるCH4のC-H結合解離の低温化

2. 表面深度酸化の抑制(方策1) ハロゲン、硫黄や他の酸化物の添加(方策2) ゼオライト系触媒とのハイブリッドによる

酸素付加中間体(CHmOn)のカルベン、エチレンへの転化

Page 41: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

41

Ce-MFI zeolite synthesisHydrothermal Mechanochemical procedure

メカノケミカル法+水熱合成法

Page 42: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

2Ce(NO3)3-100TEOS–3000H2O – 40TPAOH – 0-10NaCl

Washed with deionized water

Calcination at 540 oC for 12hCeMFI

Hydrothermal synthesis at 160 oC for 5 days

40% TPAOH aq.

0.5 M Ce(NO3)3 aq. H2O

Stirred at r.t. for 42 h

TEOS

Teflon vessel 22ml

Stirred at r.t. for 5 min

Stirred at r.t. for 10 min

Stirred at 0 ºC for 6 h

2.0 M NaCl aq.

Drying at 60 oC

Ce-MFIの合成方法

42

Page 43: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

Na/Si=0 は 6 配位の吸収が現れたが、NaCl を添加することで、この吸収は減少した。

Na/Si=0.1 では 棒状の生成物が観察された。

ICP測定より, Na/SI=0.04 の試料のCe含有率は 3.97 wt% (Ce/Si=55.6) だった。 6

Ce-MFIの合成結果

43

Page 44: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

固定床触媒反応装置によるメタン選択酸化反応

Catalyst bed

Line temperature 120℃ Reaction

temperature 500-700℃

H2 O2 CO CO2

O2 CH4

Ar

GC-FID(HP-Q-PLOT)

CH4 CH3OH, C2H4, C2H6, etc

GC-TCD(SHINCARBON

ST)

触媒重量 : 100 mg反応ガス流量(SCCM):

CH4/O2/Ar=13.3/6.7/5

44

Page 45: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

多孔質酸化物担体:ゼオライト系の今後

< < <

8-membered ring 10-membered ring 12-membered ring 14-membered ring

CHA MFI FAU CFI

0.3 ~ 0.5 nm 0.5~0.6 nm ~ 0.74 nm > 0.75 nm

これまではMFI型を用いた研究がほとんど。。。

ヘテロ原子の位置を制御した新しMFI型ゼオライト

層状前駆体経由で合成されるゼオライト: MWW型、FER型層間、層の表面に活性種を固定

小細孔ゼオライト(CHA型、AEI型、etc.)45

Page 46: メタン転化用 メカノケミカル法と 水熱合成を組み …...Fumed silica is hard to be brokeninto amorphous phase so that a part of silica is added just beforehydrothermal

謝辞:CREST メタン 村松G

朝見 賢二 (北九州市立大学) 阿尻 雅文 (東北大学) 蟹江 澄志 (東北大学) 久保 百司 (東北大学) 高見 誠一 (東北大学) 堤 敦司 (東京大学) 横井 俊之 (東京工業大学)

46