アインシュタインの光電効果と...

38
アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか 量子論の世界 多元研量子プロセス解析分野 上田

Upload: others

Post on 07-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

アインシュタインの光電効果と ド・ブロイの物質波

人間はどのように物質を理解したか

量子論の世界

多元研量子プロセス解析分野

上田

Page 2: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

目次

プランク・アインシュタインによる「量子仮説」

1.古典論と量子論以前の世界観

ボーア模型・パウリの排他律・ド・ブロイの物質波

ハイゼンベルグ・シュレディンガー・ディラックの量子力学

確率解釈・重ね合わせの原理

4.量子コンピューティング

3.量子力学の完成・量子論的世界観

2.古典論の破綻・量子論の誕生・前期量子論

現代科学・現代のマテリアルサイエンスは量子論に立脚して成り立っている!

Page 3: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

量子論以前

古典論

古典力学

ニュートン古典電磁気学

マックスウェル

古典統計力学

ボルツマン

Page 4: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

古典力学

ニュートン

F=mα運動方程式:

F:力、

m:質量、α :加速度

α = dv/dt=d2x/dt2 v:速度、x:位置(距離)

すべての運動には原因がある。物体が運動するならば、 その運動を生み出したもの(力)を特定することができる。

運動の状態(速度と場所)が任意の時点で定まるなら、 過去・未来のいかなる時点の運動をも決定できる。

因果律

決定論、確定性

Page 5: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

古典電磁気学

マックスウェル

光の性質はマックスウェルの電磁波理論によって完全に 記述できる。

ヤングの干渉実験

Page 6: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

古典統計力学

ボルツマン

エネルギー等分配則

ボルツマン分布

互いに独立に運動し、ランダムに作用しあう粒子の運動量または座標位置がとる分布は正規分布となる。

物理系が熱平衡に達したとき、エネルギーはすべての系に等しく分配される。

Page 7: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

黒体放射のパラドックス

黒体放射のスペクトル

放射=電磁波(マックスウェル)電磁場=振動数νを持った無限個の振動子すべての振動子にエネルギー kT が等しく分配される=

エネルギー等分配則(ボルツマン)

ここで

k はボルツマン定数、T は黒体の絶対温度

黒体放射=無限個の振動子=エネルギーが無限大?古典論の破綻・・・

黒体放射

Page 8: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

プランクの量子仮説

振動子がνの振動数のもつエネルギーの値は振動数νに比例する量hνの整数倍に限られる

振動数の高い振動子(hν >> kT ) にはエネルギーが分配されない。

実測と完全に一致する黒体放射の分布則

h=6.6256x10-34

Js

= プランク定数古典論:h→0

1900年クリスマス講演会

1918年:ノーベル物理学賞

Page 9: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

光電効果とは

光電効果:物質に光を当てるとその 表面から電子が飛び出す現象

(i)

電子が飛び出すためには、あてる光の振動数νがある限界 の値ν 0

よりも大きくなければならない。

(ii)

飛び出す電子の運動エネルギーの最大値は光の強さには 無関係で光の振動数だけで決まる。

(iii)

単位時間に飛び出す電子の数は光の強度に比例する。

Page 10: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

アインシュタインによる光電効果の説明

振動数νの光はエネルギーがhνの粒子(光子)の集まりと考え、 電子は光子1個を吸収するときにエネルギーhνを得ると考える。

物質内の電子は束縛されている。この束縛力をふり切って飛び 出るためには、一定量(W)以上のエネルギーをもらうことが必要。

飛び出した電子の運動エネルギー:KE

=

hν-WW :仕事関数、束縛エネルギー

1905年:奇跡の年特殊相対性理論光電効果ブラウン運動

1921年、光電子効果の理 論的研究でノーベル物理 学賞

Page 11: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

ここまでのまとめ

光は波として振る舞う(Youngの干渉実験)とともに粒子との性質

(プランク・アインシュタインの光量子)をもつ。

Page 12: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

光電効果で放出される電子の運動エネルギーの精密測定

光電子分光

Page 13: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

ラザフォードのアルファー線散乱実験

原子が重くて小さい一個の核とその周りを回るいくつかの電子から できていることを確認

核の周りを運動する電子を古典論で扱うと、電子は電磁波を放出 しながらエネルギーを失い、次第に核に近づき、ついには核と合体 するはず!

古典論の破綻・・・

アルファー線

原子核

ラザフォードの原子模型

Page 14: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

バルマーとリュードベリ公式

バルマー:

水素原子のスペクトル線の中に美しい規則性を発見

⎟⎠⎞

⎜⎝⎛ −== 22 '

11 1nn

Rc λν

リュードベリの公式:

c :

光速、lは波長、R : リュードベリ定数

(R=109737.309 cm-1)、nとn’は自然数

(n < n’)

Page 15: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

ボーアの原子模型

電子の軌道は古典的に求められるものの中で量子条件を満足 するものだけが安定な定常状態の軌道として存在すると仮定。

ボーアの量子条件: nhp =∫ ϕπ

ϕ

2

0d

ϕは回転角、pϕ= me

r2dϕ/dtは角運動量、rは軌道半径、me

は電子質量

電子のエネルギー

En = -hcR/n2

とびとびの値をとる。

Page 16: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

ボーア原子の光学遷移

光子を吸ったり吐いたりして、突然、別の状態に移り変わる。このときの光の振動数はリュードベリの公式

⎟⎠⎞

⎜⎝⎛ −== 22 '

11 1nn

Rc λν

を満たす。1922年にノーベル物理学賞

1913年に提案(28歳)

Page 17: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

ゾンマーフェルトによるボーアの原子模型の拡張

原子中の電子の軌道は、一般的に、軌道の大きさn、軌道の形l、 軌道の向きmの3つの量子数(n > l ≥ |m|)を用いて記述できる。

Page 18: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

電子のスピンパウリは第4の量子数を導入し、その量子数を電子の自転による

スピン角運動量 s に帰属した。スピンは上向き(σ = 1/2)または 下向き( σ =-1/2)のいずれかの値しかとらない。

このようにして拡張された4個の量子数を用いると、磁場中で分裂 する原子のスペクトル線を説明することができる。

Page 19: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

パウリの排他律

すべての原子について、3個の量子数(n, l, m)で記述されるすべての 軌道には、上向きスピンの電子と下向きスピンの電子が対になって

入ることができるが、それ以上は入ることができない。複数の電子が同じ量子状態をとることはできない。

量子状態 : (n, l, m, σ) (n > l ≥ |m|, σ = -1/2, 1/2)l, =0 :

s軌道

(m =0),

l, =1 :p軌道

(m =-1,0,1)

1s軌道

(1,0,0,-1/2) (1,0,0,1/2) 計2個2s軌道

(2,0,0,-1/2) (2,0,0,1/2)計2個

2p軌道

(2,1,0 ,±1/2) (2,1, ±1, ±1/2)計6個

Page 20: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

元素の周期律表

H: (1s)1

He: (1s)2

Li: (1s)2 (2s)1

Be: (1s)2 (2s)2

B: (1s)2 (2s)2(2p)1

C: (1s)2 (2s)2(2p)2

N: (1s)2 (2s)2(2p)3

O: (1s)2 (2s)2(2p)4

F: (1s)2 (2s)2(2p)5

Ne: (1s)2 (2s)2(2p)6

Na: (1s)2 (2s)2(2p)6 (3s)1

Page 21: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

ド・ブロイの物質波

p=E/λν:アインシュタインの特殊相対性理論

から

p=mc=E/c c=λν

h/p=λ : ド・ブロイ波長

∴ E = pλν

この関係は光子だけでなく電子等のすべての粒子について 成り立つと考える。

E=hν:フランク・アインシュタインの光量子(光子)

光子について

1929年にノーベル物理学賞1923年

に提唱(31歳)

E=mc2

Page 22: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

ド・ブロイ定在波とボーアの量子条件

nhp =∫ ϕπ

ϕ

2

0d 量子条件:

λ =h/p 2πrn = nλ = nh/p = nh/mv

Page 24: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

トンネル効果

トンネル効果を用いたトランジスタ

1973年ノーベル

物理学賞

Page 25: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

量子力学の完成

ハイゼンベルク

行列力学(1925年、24歳、1932年ノーベル物理学賞)

シュレディンガー

波動力学(1926年、38歳、1933年ノーベル物理学賞)

ディラック

相対論的量子力学(1928年、26歳、1933年ノーベル物理学賞)

ファインマン・シュヴィンガー・朝永量子電磁力学(1965年ノーベル物理学賞)

Page 26: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

シュレディンガー方程式

Page 27: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

波動関数

波動関数の二乗は電子の観測 される確率分布を与える。

Page 28: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

量子化学

ProteinDFで計算した d6-low-spin

ferrocytochrome c の HOMOの三次元グラ

フィックス。等値面の 値は±0.05 (左上A),

±0.005 (右上), ±0.0005 (左下), ±0.00005 (右下)。(A)

はスケールを倍にし て描いている。

Page 29: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

シュレディンガー方程式と波動関数

シュレディンガー方程式で計算できる波動関数には観測できる すべての物理量の情報が含まれる。

シュレディンガー方程式は時間によって変化して行くので、状態 も時間変化をしていく。

Page 30: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

重ね合わせの原理

波動関数ψであらわされる系に対して、ある物理量 f の測定を すると、その固有値fn のうちの一つが得られる。観測される値 fn

に対応する固有関数をψn と表すと、波動関数ψはその適当な 線形結合で表されなければならない。したがって、関数ψは次 の形に表すことができる。

ψ=Σan ψn

ただし、an はある定係数である。

Page 31: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

観測・波の収縮・確率解釈

観測ある系を観測すると、重ね合わせの状態ではなく、その固有値の

一つだけが観測される。

どの固有値が観測されるかという確率は、それに対応する固有 関数ψn の定係数an の絶対値の二乗に比例する。

波の収縮

観測することで、重ね合わせの状態はある状態へと収縮してしま う。

ボルンの確率解釈

Page 32: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

重ね合わせ状態と確率解釈

量子力学:重ね合わせ状態を観測 すると“|0>”が観測されることもある し、“|1>”が観測されることもある。

観測する前にあらかじめ粒子がどち らの方向に進んでいるか予測するこ とはできない。

|0>と|1>が観測される確率はα、β それぞれの絶対値の二乗。

量子力学から確実に分かる唯一の 情報は、確率だけ!

Page 33: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

量子コンピューターとは

実現すると、インターネットなどで利用されている重要な暗号 システムはすべて崩壊してしまう...

従来のものが宇宙誕生からの歴史ほどかかっても解けない ような問題を数分か数秒足らずで解いてしまう...

「量子力学的な振る舞い」を計算に利用する

1959年 ファインマン

1980年 ベニオフ

量子コンピュータの概念の誕生

Page 34: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

量子ビット=キュービット

3ビットの場合:

古典ビット000, 001, 010, 011, 100, 101, 110, 111 : 8通り

量子ビット(|0>+|1>)(|0>+|1>)(|0>+|1>) : 3ビットの8通りの情報を一度に示すことが可能

古典ビット:

0か1

電荷の有無で表される

量子ビット:

0と1の重ね合わせ

スピン等の量子的な振る舞い

Page 35: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

量子コンピューティング

量子的な重ね合わせの状態を保ったまま演算処理を行う。

3ビットの場合、8通りの計算を1度の処理で行える。(8:3)

20古典ビットの場合、220=100万通りの計算

量子コンピューターなら重ね合わせを利用して1回で処理。100万:20!

Page 36: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

量子コンピューターの例:イオントラップ

振動モードを量子ビットの|0>,|1>に対応させている。これらのイオ ン一つ一つに狙いを定めて光子をぶつけることで、振動モードを

重ね合わせの状態にしている。

Page 37: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか

量子コンピューターの例:NMR反平行の状態は平行の

状態よりもエネルギー が高い。このエネル

ギー差を考慮して、最適 の周波数の電磁場を、

強さを周期的に変えな がらかけることで、核ス ピンの重ね合わせの状 態を実現する 。

Page 38: アインシュタインの光電効果と ド・ブロイの物質波アインシュタインの光電効果と ド・ブロイの物質波 人間はどのように物質を理解したか