flexible and stretchable organic artificial nerves...bio-inspired electronics and robotics...

37
Flexible and Stretchable Organic Artificial Nerves Tae-Woo Lee (李泰雨) Dept. of Materials Science and Engineering Seoul National University (e-mail: [email protected]) The 16th U.S. - Korea Forum on Nanotechnology 2019.09.24

Upload: others

Post on 04-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Flexible and Stretchable

    Organic Artificial Nerves

    Tae-Woo Lee (李泰雨)

    Dept. of Materials Science and Engineering

    Seoul National University

    (e-mail: [email protected])

    The 16th U.S.-Korea Forum on Nanotechnology

    2019.09.24

  • 2

    Contents

    Y. Kim+, A. Chortos+, W. Xu+*, Z. Bao*, T.-W. Lee* et al, Science, 360, 998 (2018)

    Y. Lee+, J.Y. Oh+, Z. Bao*, T.-W. Lee* et al, Science Advances, 4, eaat7387 (2018)

    W. Xu, T.-W. Lee* et al, Science Advances, 2, e1501326 (2016)

  • 3

    Bio-inspired systems for engineering devices

    Biological systems can inspire new generations of engineering devices.

    In our body, sensory, neural, and motor processing tasks are done

    extremely efficiently and robustly with extremely low energy consumption,

    in very little volumes

    The entire brain and body are put together with energy-efficient neurons

    and cells to robustly perform complex information-processing tasks.

    One can learn a lot of things from biology to develop efficient

    technologies, to learn to architect systems that can perform efficiently

    and reliably with unreliable devices, to build systems that automatically

    learn and adapt to a changing environment.

    Biological

    mechanoreceptor

    (i) Pressure

    Nerve fiber

    (iv) Postsynapticpotential

    (ii) Receptor potential change

    Biological synapse

    (iii) Action potentials

  • 4

    Humanoid robots

    - Shape like human

    - Move like human

    - Sense like human

    - Think like human

    Bio-inspired electronics & soft robotics

  • 5

    Bio-inspired soft electronics and robots

    Artificial Muscle

    Motor system

    Electronic Skin & Sensors Neuromorphic

    Artificial NervesCommunications of the ACM, 2012, 55, 76-87

    Bio-inspired electronics and robotics moves/senses/thinks like a human

  • 6

    Our Research Direction in Flexible Electronics (Tae-Woo Lee’s Group)

    Neuro-inspired Organic Artificial Sensory Nerves

  • 7

    Organic Nanowire Synapses

    ONW synaptic transistor that emulates a biological synapse not only in morphology, but also in important working principles.

    biological spikes artificial spikes

    A A’

    BB’

    biological EPSC artificial EPSC

    conducting line

    ion gel

    core-sheath ONW

    Axon

    Dedron

    • The conductive lines and probe (A’) mimic an axon (A) that deliver presynaptic spikes from a preneuron to the presynaptic membrane.

    • An ONW (B’) mimics a biological dendron (B) in which an EPSC is generated in response to presynaptic spikes and is delivered to a postneuron.

    Synaptic cleft

    ProbePresynapticMembrane

    Large-scale alignment and integration of 1D materials is

    still a difficult challenge for large-scale circuit applications

  • 8

    ONW Synaptic transistors (Short term potentiation)

    60 70 80 900.0

    2.0n

    4.0n

    6.0n

    8.0n

    Post-

    synaptic c

    urr

    ent (A

    )

    Time (s)

    EPSC

    W. Xu, T.-W. Lee* et al, SCIENCE Adv. 2, e1501326 (2016)

    Random Accumulation Return to random

    Accumulated Anions

    attracts a similar

    number of holes in the

    P3HT channel

    STP

  • 9

    Schematic of the working mechanism of ONW ST for long-term plasticity

    The spontaneous release of the trapped anions in the ONW is slow, inducing long-term memory.

    LTP

  • 10

    ONW Synaptic transistors

    Long-term plasticity

    - Long-term potentiation (LTP) that usually occurs at excitatory synapses, which is a persistent increase in synaptic strength following a number of consecutive stimulations of a synapse.

    - Consecutive 30 negative pulses accumulates and increased EPSC- Long-term retention obtained W. Xu, T.-W. Lee* et al, SCIENCE Advances, 2, e1501326 (2016)

  • 11

    Energy consumption per synaptic event of current available synaptic devices

    2008 2010 2012 2014 20161a

    1f

    1p

    1n

    ONW ST

    NG ONW ST

    PCM

    RRAM

    Conductive bridge

    Ferroelectric

    Thin film ST

    E

    ne

    rgy c

    on

    su

    mp

    tio

    n (

    J)

    Year

    BIOLOGICAL REGION

    ~1.23 fJ per synaptic event for individual ONWwas successfully attained, which can even rival that of the biological synapses.

    W. Xu, T.-W. Lee* et al, SCIENCE Advances, 2, e1501326 (2016)

  • 12

    Contents

    Y. Kim+, A. Chortos+, W. Xu+*, Z. Bao*, T.-W. Lee* et al, Science, 360, 998 (2018)

    Y. Lee+, J.Y. Oh+, Z. Bao*, T.-W. Lee* et al, Science Advances, 4, eaat7387 (2018)

    W. Xu, T.-W. Lee* et al, Science Advances, 2, e1501326 (2016)

  • 13

    Artificial Central Nervous System – Brain-inspired Computing

    Brain-inspired Organic Artificial Synapse

    T.-W. Lee et al., Sci. Adv., 2016 Nat. Mater., 2017

    Materials for CNS

    - Long-term potentiation

    - Non-volatile memory property

    Redox active polymer

    Electrochemical ion doping

    mechanism

    PEDOT:PSS + PEIP3HT + [EMIM][TFSI]

    T.-W. Lee et al., Sci. Adv., 2016 Nat. Mater., 2017

  • 14

    ONW Synaptic Transistor to mimic Peripheral nervous System

    Lee et al, Sci. Adv. 2016, 2, e1501326 Salleo et al, Nat. Mater. 2017, 16, 414

    Neuromorphic

    computing & memory

    1. Autonomic nerve system

    2. Somatic nerve system:- Sensory neuron- Motor neuron

    Peripheral nervous system:

  • 15

    Artificial afferent and efferent nerves

    Artificial nerves

    Afferent nerve : axons

    of sensory neurons

    carrying sensory

    information from body

    Efferent nerve : axons

    of motor neuron

    Applications of

    artificial nerves:

    robotics and

    prosthetics with the

    combination of

    sensors and motors

  • 16

    Artificial Mechano-Sensory Nerves

    Y. Kim, A. Chortos, W. Xu*, Z. Bao*, T.-W. Lee*, et al, Science, 360, 998 (2018)

    https://www.youtube.com/watch?v=IrYTD1xZVSs

  • 17

    Biological mechanosensory nerve

    Receptor

    potential

    Pressure

    Frequency of

    action potential

    Pressure

    Pressure

    Receptor

    potential

    Frequency of

    action potential

    • Network of neurons and synapses in brain

    processes information

    → Biological mechanosensory system processes pressure information

    • Their frequencies deliver information.

  • 18

    Biological sensory nerves

    Artificial sensory nerves

    Y. Kim, A. Chortos, W. Xu*, Z. Bao*, T.-W. Lee*, et al, Science, 360, 998 (2018)

    Artificial mechanosensory nerve

  • 19

    Resistive pressure sensor mimicking mechanoreceptor

    0.0 30.0k 60.0k 90.0k10k

    1M

    100M

    10G

    1T

    100T Bias=-1V

    Bias=-3V

    Bias=-5V

    Re

    sis

    tan

    ce

    (

    )

    Pressure (Pa)

    Applied pressure

    decreases the resistance of

    pressure → sensors mainly by reducing contact

    resistances.

    Biological SA-I mechanoreceptor:pressure input intensity = 1-100 kPa

    Y. Kim, A. Chortos, W. Xu*, Z. Bao*, T.-W. Lee*, et al, Science, 360, 998 (2018)

  • 20

    Biological sensory nerves

    Artificial sensory nerves

    Y. Kim, A. Chortos, W. Xu*, Z. Bao*, T.-W. Lee*, et al, Science, 360, 998 (2018)

    Artificial mechanosensory nerves

  • 21

    Ring Oscillator Output

    0

    -1

    -2

    4020

    Vo

    ltag

    e (

    V)

    Time (ms)0

    Voltageoutput

    VDD = -2.3 V, VLL = -4.6 V, VHH = 1 V Oscillating frequency = 20-89 Hz

    Biological mechanosensorynerves:Action potential frequency range= 0.4-100 Hz

    3-stage ring oscillator

    Y. Kim, A. Chortos, W. Xu*, Z. Bao*, T.-W. Lee*, et al, Science, 360, 998 (2018)

  • 22

    Pressure sensor + ring oscillator

    Re

    cep

    tor

    po

    ten

    tial

    Pressure

    Biological mechano-receptor

    (i) → (ii) (i) → (ii) → (iii)

    Fre

    qu

    en

    cy o

    fac

    tio

    n p

    ote

    nti

    alPressure

    0 30 60 90

    0

    -1

    -2

    -3

    -4

    -5

    Su

    pp

    ly v

    olt

    ag

    e t

    o

    rin

    g o

    scil

    lato

    r (V

    )

    Pressure (kPa)

    0 30 60 90

    0

    20

    40

    60

    80

    100

    Fre

    qu

    en

    cy (

    Hz)

    Pressure (Pa)

    Pressure sensitivity=

    2-10 Hz kPa-1

    Pressure sensitivity=

    0.4-13 Hz kPa-1

    Supply voltage

    Organic ring oscillator #1(i) Pressures (ii) Supply voltagesto ring

    oscillator

    (iii) Oscillating voltages

    Resistive pressureSensor #1

    frequency changeSupply voltage

    change

  • 23

    Biological sensory nerves

    Artificial sensory nerves

    Y. Kim, A. Chortos, W. Xu*, Z. Bao*, T.-W. Lee*, et al, Science, 360, 998 (2018)

    Mechanosensory nerves

    ∙ Vout of ring oscillators connected to the gate of

    synaptic transistors

  • 24

    Emulation of Signal Transmission in Biology

    Naturalistic Sensory and Motor Response

    Artificial Peripheral Nervous System

    Materials design for PNS

    Short-term potentiation

    Volatile & Fast decay

    Low ion doping efficiency

    Electric double layer

    DonorAccep

    tor

    n

    • Fast decay – Electrical double layer

    • Low ion doping efficiency

    Donor-Acceptor polymer

    Short Decay time

    Peak

    Peak×1/e

    • Stretchable – Nanowire Transistors

    My Approaches

    Neuromorphic Bioelectronics

  • 25

    Ion-gel transistors (synaptic transistors)

    Biological Synapses in the somatosensory system:Decay time of postsynaptic currents= 1.5-5 ms

    Decay time

    =2.4 ms

    Peak

    Peak×1/e

    Time (ms)

    Dra

    in c

    urr

    en

    t (

    A)

    010 200

    -1

    -2

    -3

    -4 0

    1

    2

    Gate

    vo

    ltag

    e (V

    )

    Polymer

    semiconductorsPolymer 1 P3HT

    Decay time

    (ms)2.35 ± 1.02 299 ± 201 s

    Polymer 1

    Y. Kim, A. Chortos, W. Xu*, Z. Bao*, T.-W. Lee*, et al, Science, 360, 998 (2018)

    Decay times for postsynaptic currents (typically 2 to 3 ms)

    Decay time of postsynaptic outputs reasonably short enough to receive pressure inputs at the desired frequency

  • 26

    ∙ Increase of magnitude (A, B) & duration (C, D) of pressure

    → increase of peak postsynaptic currents

    ∙ Frequency of postsynaptic currents independent of

    duration of pressure stimulus

    ∙ SA-I receptors (pressure input frequencies are ~200 ms)

    Pressure sensor + ring oscillator + synaptic transistors

    A B C

    D

    Y. Kim, A. Chortos, W. Xu*, Z. Bao*, T.-W. Lee*, et al, Science, 360, 998 (2018)

  • 27

    Integration of pressure inputs

    30 45 60 75 90 105

    |Fo

    uri

    er

    tran

    sfo

    rm|

    Frequency (Hz)

    Pressure

    sensor#1

    Pressure

    sensor#2

    Ring

    oscillator#1

    Ring

    oscillator#2

    Synaptic

    transistor

    69 Hz 91 Hz

    20 kPa

    80 kPa

    20kPa and 80kPa

    Sum of (B) and (C)

    Gate

    1

    Gate

    2

    Gate

    N

    So

    urc

    e

    Dra

    in

    I

    Y. Kim, A. Chortos, W. Xu*, Z. Bao*, T.-W. Lee*, et al, Science, 360, 998 (2018)

    Synaptic transistor: an adder

    ∙ Pressure signals from multiple pressure sensors are combined.∙ Amplitude & frequency was maintained after signal integration in synaptic transistor

    20kPa

    80kPa80kPa

    0

    -1

    -2

    -3

    -4

    -5

    Po

    sts

    yn

    ap

    tic c

    urr

    en

    t (

    A)

    Time (s)

    0 0.05 0.1 0.15 0.2

    0

    -1

    -2

    -3

    -4

    -5

    Po

    sts

    yn

    ap

    tic c

    urr

    en

    t (

    A)

    Time (s)0 0.05 0.1 0.15 0.2

    Sum of (A) and (B)

    20 kPa 80 kPa

    20 kPa and 80 kPa

    0

    -1

    -2

    -3

    -4

    -5

    Po

    sts

    yn

    ap

    tic c

    urr

    en

    t (

    A)

    Time (s)0 0.05 0.1 0.15 0.2

    0

    -1

    -2

    -3

    -4

    -5

    Po

    sts

    yn

    ap

    tic c

    urr

    en

    t (

    A)

    Time (s)0.20.150.10.050

    (A) (B)

    =

    (C)

    Synapses

    Presynaptic

    neuron #1

    Presynaptic

    neuron #2

    Postsynaptic

    neuron

    Biological nervous system

  • 28

    Movement recognition and braille reading

    Pressure

    sensor#1

    Ring

    oscillator

    Synaptic

    transistor

    Pressure

    sensor#2

    -4

    -3

    -2

    -1

    0

    321

    Po

    sts

    yn

    ap

    tic c

    urr

    en

    t (

    A)

    Time (s)0 0 1 2 3 4 5

    -4

    -3

    -2

    -1

    0

    Po

    sts

    yn

    ap

    tic

    cu

    rre

    nt

    (A

    )

    Time (s)

    0

    100

    200

    300

    Sm

    all

    est

    Vic

    tor-

    Pu

    rpu

    ra d

    ista

    nc

    e

    (DV

    P)

    betw

    ee

    n a

    lph

    ab

    ets

    Pressure sensor

    +ring oscillator

    Pressure sensor

    +ring oscillator

    +synaptic transistor

    100

    75

    50

    25

    0

    (Hz)

    Braille

    “E”

    80

    40

    0

    (kPa)

    Pressure

    sensors

    Ring

    oscillators

    Synaptic

    transistors

    Movement recognition

    Braille reading

    Biological mechanosensorynerves: Branched mechano-

    receptor structure

    Y. Kim, A. Chortos, W. Xu*, Z. Bao*, T.-W. Lee*, et al, Science, 360, 998 (2018)

    A larger DVP means more dissimilarity between two spike trains.

    Braille letters became more distinguishable

  • 29

    Hybrid reflex arc (artificial afferent nerve)

    4 mm

    Force

    gauge

    Reference

    electrode

    Stimulating

    electrode Direction

    of force2 mm

    Force

    Pressure

    Postsynapticcurrent

    Hybrid monosynaptic reflex arc

    Amplifiedvoltage

    Connection to efferent nerve

    0 20 40 60 80

    0

    10

    20

    30

    40

    50

    60

    Fo

    rce o

    f le

    g e

    xte

    nsio

    n (

    mN

    )

    Pressure (kPa)

    1.00.80.60.40 0.2

    50

    40

    30

    20

    10

    Time (s)Fo

    rce

    of

    leg

    ex

    ten

    sio

    n (

    mN

    )

    0

    0

    20

    40

    Pre

    ss

    ure

    (kP

    a)

    leading to the actuation of the tibial extensor muscle in the leg

  • 30Y. Kim, A. Chortos, W. Xu*, Z. Bao*, T.-W. Lee*, et al, Science, 360, 998 (2018)

    Hybrid reflex arc (artificial afferent nerve)

  • 31

    Contents

    Y. Kim+, A. Chortos+, W. Xu+*, Z. Bao*, T.-W. Lee* et al, Science, 360, 998 (2018)

    Y. Lee+, J.Y. Oh+, Z. Bao*, T.-W. Lee* et al, Science Advances, 4, eaat7387 (2018)

    W. Xu, T.-W. Lee* et al, Science Advances, 2, e1501326 (2016)

  • 32

    Optical stimulation

    Presynaptic impulses

    Postsynaptic response

    Neuromuscular junction

    Muscle contraction

    Presynaptic impulses

    Optical stimulation

    Postsynaptic response

    Artificial synapse

    Muscle contraction

    • Stretchable artificial synapse is

    necessary for artificial motor system

    of neuro-inspired soft robots with

    various motions.

    • Motor Neuron

    Presynaptic membrane = Gate

    electrode

    Presynaptic potential = Gate

    voltage

    • OptogeneticsPhotosensitive protein =

    Photodetector

    • Neuromuscular junction

    Synaptic cleft = Ion-gel electrolyte

    Neurotransmitter = Anion

    • Skeletal muscle

    Postsynaptic membrane = OSC NW

    Postsynaptic potential = Drain

    current

    Muscle fiber = Polymer actuator

    Artificial Optoelectronic Neuromuscular System

    Human optogenetic sensorimotor nervous system

    genetically-

    modified motor

    neurons

    This approach is promising to restore the motor

    function of defective neuromuscular systems

    Y. Lee+, J. Y. Oh+, Z. Bao*, T.-W.Lee* et al, SCIENCE Adv., 4, eaat7387 (2018)

  • 33

    + + ++

    ++

    +

    +

    ‒ ‒ ‒‒

    + +

    +

    +

    +

    +

    Transimpedance circuit

    Polymer actuator

    Photodetector

    Synaptic transistor

    0 10 20 30 40 50 600

    1

    2

    3

    100% strain

    Number of spikes

    (

    mm

    )

    0

    1

    2

    3

    4

    Outp

    ut voltage (

    V)

    0% strain 100% strain

    100 spikes 100 spikesinitial

    Optical Neuromuscular Electronic Synapse

    artificial muscle fiber

    Y. Lee+, J. Y. Oh+, Z. Bao*, T.-W.Lee* et al, SCIENCE Adv., 4, eaat7387 (2018)

  • 34

    Without artificial synapse (Constant displacement with constant voltage)

    Our synapse (Contraction of artificial muscle gradually increases as the fixed

    light pulses (action potentials) are applied repeatedly)

    Optical Neuromuscular Electronic Synapse

    • More similar to biological muscle contraction

    0 10 20 30 40 50 600

    1

    2

    3

    100% strain

    Number of spikes

    (

    mm

    )

    0

    1

    2

    3

    4

    Outp

    ut voltage (

    V)

    Nat., Commun., 2013,

    Nat., Commun., 2016

  • 35

    Contents

    Y. Kim+, A. Chortos+, W. Xu+*, Z. Bao*, T.-W. Lee* et al, Science, 360, 998 (2018)

    Y. Lee+, J.Y. Oh+, Z. Bao*, T.-W. Lee* et al, Science Advances, 4, eaat7387 (2018)

    W. Xu, T.-W. Lee* et al, Science Advances, 2, e1501326 (2016)

  • 36

    Presynaptic impulses

    Optical stimulation

    Postsynaptic response

    Artificial synapse

    Muscle contraction

    • Development of a stretchable artificial synapse and a novel bio-inspired sensorimotor system.

    • Suggesting a communication method of human/machine interface.

    • Promising strategy to advance soft robotics, neuro-inspired robotics and neuroprothetics.

    Summary

    Soft exosuit prosthetics

    Soft robotics

    NeuroroboticsForce

    Pressure

    Postsynapticcurrent

    Hybrid reflex arc

    Amplifiedvoltage

    Connection to efferent nerve

    Wearable Neuroprosthetics

  • 37

    Thanks for your attentionPrinted, Flexible Nano-Electronics & Energy

    Laboratory (PNEL) at SNU

    Acknowledgements

    Stanford University

    • Prof. Zhenan Bao

    • Dr. Yeongin Kim

    • Dr. Alex Chortos

    • Dr. Jin Young Oh

    • Mr. Yuxin Liu

    POSTECH

    • Prof. Hyunsang Hwang

    • Prof. Moon Jeong Park

    Wentao Xu

    Yeongjun Lee