fundamental study of static and dynamic compaction...

25
FUNDAMENTAL STUDY OF STATIC AND DYNAMIC COMPACTION GROUTING IN COMPLETELY DECOMPOSED GRANITE SOIL IN HONG KONG WANG SHANYONG DOCTOR OF PHILOSOPHY CITY UNIVERSITY OF HONG KONG DECEMBER 2006

Upload: vuphuc

Post on 20-Mar-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

  • FUNDAMENTAL STUDY OF STATIC AND DYNAMIC COMPACTION GROUTING IN COMPLETELY

    DECOMPOSED GRANITE SOIL IN HONG KONG

    WANG SHANYONG

    DOCTOR OF PHILOSOPHY

    CITY UNIVERSITY OF HONG KONG

    DECEMBER 2006

  • CITY UNIVERSITY OF HONG KONG

    Fundamental Study of Static and Dynamic

    Compaction Grouting in Completely Decomposed Granite Soil in Hong Kong

    Submitted to

    Department of Building and Construction

    in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

    By

    Wang Shanyong

    December 2006

  • Abstract The research described in this thesis focuses on the fundamental behavior of static and

    dynamic compact grouting in the soil of completely decomposed granite (CDG). Using

    the modified triaxial apparatus and newly-invented pulse wave creator, laboratory tests

    were performed to identify the critical controllable factors of static and dynamic compact

    grouting for optimizing the compaction effectiveness. Numerical study was carried out to

    improve the understanding of the static and dynamic compact grouting on the soil

    densified and the associated consolidation process of soil.

    Firstly, In order to study the behavior of soil when grouting is carried out in experimental

    tests, various types of standard tests, which include moisture content test, bulk density

    test, Protor tests, soil classification test, permeability test, and oedometer test are carried

    out to obtain the basic soil properties of the soil specimens. Moreover, the triaxial tests on

    the fundamental behaviour of the soil with different fine content in the saturated state

    under drained shearing are carried out, which particular attention is paid to the influence

    of different initial dry density with different effective confining pressure changing from

    50 to 250kPa.

    Secondly, a set apparatus of triaxial tests was modified to study the static and dynamic

    compact grouting in soil. The most distinguished character of this laboratory apparatus is

    that it can simulate the triaxial condition of static and dynamic compact grouting in the

    field. In the tests, the effective confining pressure, the lateral pressure coefficiency (K),

    excess pore water pressure, back pressure, void ratio change, vertical and lateral

    deformation of specimen can be measured. In addition, the dynamic compact grouting

    pressure, dynamic compact grouting frequency, and dynamic compact grouting period

    can also be controlled.

    Thirdly, the compact grouting efficiency ( )/( minmax eee ) due to compact grouting

    was defined. The effect of injection rate, confining pressure and on the grouting

    iii

  • efficiency in static compact grouting tests was studied. Meanwhile, the ground surface

    response due to static compact grouting was also investigated. Moreover, the study which

    focused on the effect of dynamic compact frequency, dynamic compact duration,

    effective confining pressure, K, initial dry density on the grout efficiency and mean shear

    strength enhancement of Hong Kong CDG was carried out. Moreover, the effect of fine

    content for eleven kinds of soils on the dynamic compact results was studied.

    Finally, finite element analysis was adopted for the simulation of the static and dynamic

    grouting in Hong Kong CDG. Specially, a Cam-Clay-Model-for-Cyclic-Loading was

    introduced in ABAQUS through its user subroutine UMAT to study the soil response due

    to vibro-compaction. The numerical results demonstrated the experimental results that the

    grouting efficiency of dynamic compact grouting method is typically 3-5 times higher

    than that using static compaction grouting.

    iv

  • CONTENTS

    Declaration

    Abstract

    Acknowledgements

    Table of contents

    List of tables

    List of figures

    CHAPTER 1 ...................................................................................................................... 1 INTRODUCTION............................................................................................................. 1

    1.1 Background .............................................................................................................. 1

    1.2 Objective and Scope of the Study ............................................................................ 3

    1.3 Outline of the Dissertation ....................................................................................... 4

    1.4 Methodology ............................................................................................................ 5

    CHAPTER 2 ...................................................................................................................... 9 LITERATURE REVIEW ................................................................................................ 9

    2.1 Overview.................................................................................................................. 9

    2.2 Soil Improvement by Vibration ............................................................................. 10

    2.2.1 Vibro-compaction........................................................................................... 10

    2.2.2.1 Definition .................................................................................................... 10

    2.2.1.2 Principle.................................................................................................. 10

    2.2.1.3 Applications............................................................................................ 11

    vii

  • 2.2.1.4 Limitations.............................................................................................. 12

    2.2.2 Vibro-replacement.......................................................................................... 12

    2.2.2.1 Definition................................................................................................ 12

    2.2.2.2 Principle.................................................................................................. 12

    2.2.2.3 Applications............................................................................................ 13

    2.2.2.4 Limitations.............................................................................................. 13

    2.2.3 Dynamic compaction...................................................................................... 13

    2.2.3.1Definition................................................................................................. 13

    2.2.3.2 Principle.................................................................................................. 13

    2.2.3.3 Applications............................................................................................ 14

    2.2.3.4 Limitations.............................................................................................. 14

    2.2.4 Rapid Impact Compaction.............................................................................. 15

    2.2.4.1 Definition .................................................................................................... 15

    2.2.4.2 Principle.................................................................................................. 15

    2.2.4.3 Applications and limitations................................................................... 15

    2.3 Compaction Grouting............................................................................................. 15

    2.3.1 Definition ....................................................................................................... 15

    2.3.2 Principle ......................................................................................................... 16

    2.3.3 Descriptions and applications......................................................................... 17

    2.3.4 Limitations ..................................................................................................... 18

    2.3.5. Comparison between compaction grouting method and conventional grouting methods ......................................................................................... 19

    2.3.6 New Developments in Compact Grouting ..................................................... 19

    2.4 Summary ................................................................................................................ 19

    CHAPTER 3 .................................................................................................................... 29 MATERIAL BEHAVIORS............................................................................................ 29

    viii

  • 3.1 Overview................................................................................................................ 29

    3.2 Physical Properties of the CDG in Hong Kong ..................................................... 29

    3.3 Triaxial Tests of the CDG in Hong Kong .............................................................. 30

    3.3.1 Test Program .................................................................................................. 30

    3.3.2 Experimental Results and Analysis................................................................ 32

    3.4 Effect of Fine Content on Drained Behavior of Soil.............................................. 33

    3.4.1 Experimental Study ........................................................................................ 34

    3.4.2 Results and Discussion................................................................................... 34

    CHAPTER 4 .................................................................................................................... 51 EXPERIMENTAL SYSTEM AND PROCEDURES FOR COMPACT GROUT INJECTION TESTS ....................................................................................................... 51

    4.1 Overview................................................................................................................ 51

    4.2 Testing Programme ................................................................................................ 52

    4.3 Testing Apparatus .................................................................................................. 53

    4.3.1 Modified Triaxial Injection System ............................................................... 53

    4.3.1.1 Modified Triaxial Cell ............................................................................ 53

    4.3.1.2 Instruments of the modified triaxial cell ................................................ 54

    4.3.1.3 Data logging and control system ............................................................ 54

    4.3.2 Pressure Pulse Device .................................................................................... 55

    4. 3.3 Grouting Equipment ...................................................................................... 56

    4.3.3.1 Pressure/Volume Controller and the Operations.................................... 56

    4. 3.3.2 Injection Needle and Preparation .......................................................... 57

    4.4 Soil Being Tested ................................................................................................... 57

    4.4.1 Constant Loads for K Conditions-Anisotropic Consolidation Tests.............. 58

    4.4.1.1 Description of the Test ........................................................................... 58

    4.4.1.2 Dead weight loading............................................................................... 58

    ix

  • 4.5 Experimental Procedure ......................................................................................... 60

    4.5.1 De-airing Porous Stones, Filter Papers and Injection Needle ........................ 60

    4. 5.2 Sample Preparation ....................................................................................... 60

    4.5.3 Saturation ....................................................................................................... 62

    4.5.4 Consolidation of Soil Specimen..................................................................... 62

    4.5.5 Injection Stage................................................................................................ 63

    4.5.5.1 Static Compaction Grouting ................................................................... 63

    4.5.5.2 Dynamic Compact Grouting................................................................... 64

    4.6 Post Testing............................................................................................................ 64

    CHAPTER 5 .................................................................................................................... 77 STATIC COMPACTION GROUTING RESULTS AND DISCUSSION................. 77

    5.1 Overview................................................................................................................ 77

    5.2 A Definition for Assessing Sandy Soil Compaction Efficiency ............................ 77

    5.3 Test Programme ..................................................................................................... 80

    5.4 Experimental Results and Analysis........................................................................ 81

    5.4.1 Effect of K on the Static Compaction grouting Efficiency ............................ 81

    5.4.2 Vertical and Horizontal Deformation............................................................. 83

    5.4.3 The Effect of Effective Confining Pressure and Initial Void Ratio on the Static Compaction Grouting Efficiency.......................................................... 84

    5.4.4 The Influence of Injection Rate on Compaction Grouting............................. 85

    CHAPTER 6 .................................................................................................................... 96 DYNAMIC COMPACTION GROUTING RESULTS AND DISCUSSION ............ 96

    6.1 Overview................................................................................................................ 96

    6.2 General Comparison for Static and Dynamic Compaction Grouting Results........ 96

    6.3 Effect of Dynamic Compact Frequency on the Compaction Efficiency................ 98

    6.4 Effect of Dynamic Compaction Grouting Period on the Compaction Efficiency 100

    x

  • 6.5 Effect of Effective Confining Pressure on the Grouting Efficiency .................... 101

    6.6 Effect of Lateral Pressure Coefficient K on the Compaction Efficiency............. 101

    6.7 Effect of Initial Dry Density on the Compaction Efficiency ............................... 102

    6.8 Radial Boundary Effect of Dynamic Compact Grouting Frequency on the Compaction Efficiency ....................................................................................... 103

    6.9 Effect of Fine Content of Soil on the Compaction Efficiency ............................. 104

    CHAPTER 7 .................................................................................................................. 132 NUMERICAL SIMULATION OF LABORATORY TESTS .................................. 132

    7.1 Overview.............................................................................................................. 132

    7.2 Finite Element Simulations .................................................................................. 132

    7.2.1 Introduction .................................................................................................. 132

    7.2.2 Finite Element Meshes ................................................................................. 133

    7.2.3 Boundary Conditions.................................................................................... 133

    7.2.4 Loading Conditions ...................................................................................... 134

    7.2.5 Soil Model for Static Compaction Grouting Tests....................................... 134

    7.2.5.1 Description of Modified cam-clay model............................................. 134

    7.2.5.2 Numerical Simulation Using Modified Cam-Clay Model ................... 136

    7.2.6 Step of Analysis ........................................................................................... 137

    7.3 Interpretation of the FEA Results for Static Compaction Injection Tests ........... 138

    7.3.1 Densification of Hong Kong CDG Due to Static Compaction Grouting..... 138

    7.3.2 Increase of Soil Strength and Compaction Efficiency with Time................ 139

    7.3.3 Pore Pressure Distribution............................................................................ 139

    7.3.4 Permeability Distribution ............................................................................. 140

    7.3.5 Displacement around the Grouting Hole...................................................... 140

    7.3.6 Stress Paths................................................................................................... 140

    7.3.7 Effect of K on the Compaction Efficiency................................................... 142

    xi

  • 7.3.8 Effect of Effective Confining Pressure on the Compaction Efficiency ....... 143

    7.3.9 Effect of Initial Void Ratio on the Compaction Efficiency.......................... 144

    7.3.10 Effect of Grouting Times on the Compaction Efficiency .......................... 145

    7.4 Numerical Simulation of Dynamic Compaction Grouting Tests......................... 146

    7.4.1 A Modified Cam-Clay model for Cyclic Loading ....................................... 146

    7.4.2 Numerical Results of Dynamic Compaction Grouting ................................ 147

    7.4.3 Densification of Hong Kong CDG Due to Dynamic Compaction Grouting 147

    7.4.4 Increase Grouting Efficiency Due to Dynamic Compaction Grouting ........ 148

    7.4.5 Pore Pressure Distribution Due to Dynamic Compaction Grouting ........... 149

    7.4.6 Displacement around the Grouting Hole Due to Compaction Grouting...... 149

    7.4.7 Stress Paths and Liquefaction of Sandy Soil Due to Compaction Grouting 150

    7.4.8 Effect of Dynamic Amplitude on the Compaction Efficiency ..................... 151

    CHAPTER 8 .................................................................................................................. 196 DISCUSSION AND CONCLUSIONS ........................................................................ 196

    8.1 Conclusions .......................................................................................................... 196

    8.2 Suggestions for Further Work.............................................................................. 198

    8.2.1 Physical Modelling....................................................................................... 198

    8.2.2 Numerical Modelling and Field Data........................................................... 198

    REFERENCES.............................................................................................................. 200

    xii

  • LIST OF TABLES Table 2.1 Grouting theory literature review (Rawlings et al. 2000)................................. 21

    Table 3.1 Physical properties of Hong Kong CDG .......................................................... 36

    Table 3.2 Strength of Hong Kong CDG ........................................................................... 36

    Table 3.3 Critical parameter of Hong Kong CDG............................................................ 37

    Table 3.4 Soil properties for experimental test ................................................................. 37

    Table 5.1 Effect of K on static compaction efficiency ..................................................... 87

    Table 5.2 Effect of confining pressure on static compaction efficiency........................... 87

    Table 5.3 Effect of injection rate on static compact efficiency ........................................ 87

    Table 6.1 Effect of dynamic frequency on the Compaction Efficiency for the samples

    with diameter of100mm.......................................................................................... 107

    Table 6.2 Effect of dynamic compact period on the Compaction Efficiency................. 107

    Table 6.3 Effect of effective confining pressure on the Compaction Efficiency............ 108

    Table 6.4 Effect of K on the Compaction Efficiency ..................................................... 108

    Table 6.5 Effect of Initial Dry Density on the Compaction Efficiency .......................... 108

    Table 6.6 Effect of dynamic frequency on the Compaction Efficiency for the samples

    with diameter of 75mm........................................................................................... 109

    Table 6.7 Effect of fine content of soil on the Compaction Efficiency .......................... 109

    Table 7.1 Soil properties and initial conditions for static compaction grouting............. 153

    Table 7.2 Soil properties and initial conditions for different K...................................... 153

    Table 7.3 Soil Properties and initial conditions for different effective confining pressure

    ................................................................................................................................. 153

    Table 7.4 Soil properties and initial conditions for dynamic compaction grouting........ 154

    xiii

  • LIST OF FIGURES

    Fig. 1.1 Schematic static compact grouting and dynamic pulse grouting .......................... 7

    Fig. 1.2 Flow chart of research plan and methodology....................................................... 8

    Fig. 2.1 Effect of vibro compaction on soil density

    (http://www.haywardbaker.com/services/vibro_compaction.htm)........................... 24

    Fig. 2.2 Vibro compaction process (http://www.keller-asia.com/vibro_compaction.htm)

    ................................................................................................................................... 24

    Fig. 2.3 Idealized responses to vibration (after Green wood and Kirsch, 1984) .............. 24

    Fig. 2.4 Effect of increasing fines content on effectiveness of vibratory compaction (after

    Saito, 1977) ............................................................................................................... 25

    Fig. 2.5 Principle of vibro-replacement (http://www.keller-

    asia.com/vibro_replacement.htm)............................................................................. 25

    Fig. 2.6 A schematic showing the vibro replacement process (http://www.keller-

    asia.com/vibro_replacement.htm)............................................................................. 26

    Fig. 2.7 Idealized stress and displacement at a point below dynamic compaction (after

    Greenwood and Kirsch, 1984) .................................................................................. 26

    Fig. 2.8 Rapid impact compactor of granular fill (after Charles and Watts 2002) ........... 27

    Fig. 2.9 Principle of compaction grouting (after Warner, 1982) ...................................... 27

    Fig. 2.10 Schematic illustrating compaction grouting process (http://www.keller-

    asia.com/compaction_grouting.htm)......................................................................... 28

    Fig. 2.11 Grouting principles and methods....................................................................... 28

    Fig. 3.1 Grain size distribution curves for Hong Kong CDG ........................................... 38

    Fig. 3.2 Standard Proctor test results ................................................................................ 38

    Fig. 3.3a Deviatoric stress versus axial strain for the sample (dry density 1.3Mg/cm ) .. 39 3

    Fig. 3.3b Volumetric strain versus axial strain for the sample (dry density 1.3Mg/cm ). 39 3

    Fig. 3.3c Deviatoric stress versus mean effective normal stress for the sample (dry

    density 1.3Mg/cm )................................................................................................... 40 3

    Fig. 3.3d Critical state ( plot) (initial dry density=1.3g/cm3; fine content=6%) .............. 40

    xiv

  • Fig. 3.4a Deviatoric stress versus axial strain for the sample (dry density 1.4Mg/cm ) .. 41 3

    Fig. 3.4b Volumetric strain versus axial strain for the sample (dry density 1.4Mg/cm ). 41 3

    Fig. 3.4c Deviatoric stress versus mean effective normal stress for the sample (dry

    density 1.4Mg/cm )................................................................................................... 42 3

    Fig. 3.4d Critical state ( plot) (initial dry density=1.4g/cm3; fine content=6%) .............. 42

    Fig. 3.5a Deviatoric stress versus axial strain for the sample (dry density 1.5Mg/cm ) .. 43 3

    Fig. 3.5b Volumetric strain versus axial strain for the sample (dry density 1.5Mg/cm ). 43 3

    Fig. 3.5c Deviatoric stress versus mean effective normal stress for the sample (dry

    density 1.5Mg/cm )................................................................................................... 44 3

    Fig. 3.5d Critical state ( plot) (initial dry density=1.5g/cm ; fine content=6%)............... 44 3

    Fig. 3.6a Deviatoric stress versus axial strain for the sample (dry density 1.6Mg/cm ) .. 45 3

    Fig. 3.6b volumetric strain versus axial strain for the sample (dry density 1.6Mg/cm ).. 45 3

    Fig. 3.6c Deviatoric stress versus mean effective normal stress for the sample (dry

    density 1.6Mg/cm3) .................................................................................................. 46

    Fig. 3.6d Critical state plot (initial dry density=1.6g/cm ; fine content=6%) .................. 46 3

    Fig. 3.7a Deviatoric stress versus axial strain for the sample (dry density 1.7Mg/cm ) .. 47 3

    Fig. 3.7b volumetric strain versus axial strain for the sample (dry density 1.7Mg/cm ).. 47 3

    Fig. 3.7c Deviatoric stress versus mean effective normal stress for the sample (dry

    density 1.7Mg/cm )................................................................................................... 48 3

    Fig. 3.7d Critical state ( plot) (initial dry density=1.7g/cm ; fine content=6%)............... 48 3

    Fig. 3.8 Grain size distribution curves for different fine content...................................... 49

    Fig. 3.9a Deviatoric stress versus axial strain for the sample (dry density 1.3Mg/cm ) .. 49 3

    Fig. 3.9b Volumetric strain versus axial strain for the sample (dry density 1.3Mg/cm ). 50 3

    Fig. 3.9c Effective principal stress versus axial strain for the sample (dry density

    1.3Mg/cm ) ............................................................................................................... 50 3

    Fig. 4.1 (a) Schematic layout of static and dynamic compaction grouting experimental. 65

    Fig. 4.1 (b) Part of the laboratory set up ........................................................................... 66

    Fig. 4.2 (a) The Schematic base of the modified tri-axial cell.......................................... 67

    Fig. 4.2 (b) The base of the modified tri-axial cell ........................................................... 67

    Fig. 4.3 The modified triaxial cell base and the expanded needle.................................... 68

    Fig. 4.4 The modified triaxial cell and the loading frame ................................................ 68

    xv

  • Fig. 4.5 The data acquisition system and the personal computer ..................................... 69

    Fig. 4.6 The transducer controller system......................................................................... 69

    Fig. 4.7 (a) The schematic diagram of the Pressure Pulse Device.................................... 70

    Fig. 4.7 (b) The schematic of the pressure pulse device (Richart, 1970) ......................... 70

    Fig. 4.8 The GDS controller and the dynamic compact device ........................................ 71

    Fig. 4.9 The working system of GDS standard controller ................................................ 71

    Fig. 4.10 The injection needle design ............................................................................... 72

    Fig. 4.11 Anisotropic consolidation tests in triaxial cell under dead weight loading,

    illustrating forces acting on the specimen (Head, K.H. 1998).................................. 72

    Fig. 4.12 The modified Porous stone for injection ........................................................... 73

    Fig. 4.13 The vacuum chamber for de-air the needles...................................................... 73

    Fig. 4.15 The O-rings and O-ring placing tool ................................................................. 74

    Fig. 4.16 The Carbon dioxide supplier and the air compressor ........................................ 75

    Fig. 4.17 Dynamic compact amplitude versus frequency for 100mm diameter specimen76

    Fig. 5.1 Normalized void ratio e/e versus time for different K (injection time is 0.3mins,

    injection volume for every time is 8 ml, the whole consolidation time is 30 minutes)

    (100mm).................................................................................................................... 88

    0

    Fig. 5.2 Compaction efficiency versus K (injection time is 0.3mins, injection volume for

    every time is 8 ml, the whole consolidation time is 30 minutes) (100mm).............. 88

    Fig. 5.3 Mean shear strength enhancement ratio versus K (injection time is 0.3mins,

    injection volume for every time is 8 ml, the whole consolidation time is 30 minutes)

    (100mm).................................................................................................................... 89

    Fig. 5.4 Normalized injection pressure versus time for different K (injection time is

    0.3mins, injection volume for every time is 8 ml, the whole consolidation time is 30

    minutes) (100mm)..................................................................................................... 89

    Fig. 5.5 Excess pore water pressure versus time for different K (injection time is 0.3mins,

    injection volume for every time is 8 ml, the whole consolidation time is 30 minutes)

    (100mm).................................................................................................................... 90

    Fig. 5.6 Sketch of soil sample showing vertical and horizontal deformation................... 90

    xvi

  • Fig. 5.7 Vertical displacement of sample versus time for different K values (injection

    time is 0.3mins, injection volume for every time is 8 ml, the whole consolidation

    time is 30 minutes) (100mm).................................................................................... 91

    Fig. 5.8 Lateral displacement of sample versus time for different K (injection time is

    0.3mins, injection volume for every time is 8 ml, the whole consolidation time is 30

    minutes) (100mm)..................................................................................................... 91

    Fig. 5.9 Normalized void ratio e/e versus time for different effective confining pressure

    (injection time is 0.3mins, injection volume for every time is 8 ml, the whole

    consolidation time is 30 minutes) (100mm) ............................................................. 92

    0

    Fig. 5.10 Compaction efficiency versus effective confining pressure (injection time is

    0.3mins, injection volume for every time is 8 ml, the whole consolidation time is 30

    minutes) (100mm)..................................................................................................... 92

    Fig. 5.11 Mean shear strength enhancement ratio versus effective confining pressure

    (injection time is 0.3mins, injection volume for every time is 8 ml, the whole

    consolidation time is 30 minutes) (100mm) ............................................................. 93

    Fig. 5.12 Injection pressure versus time for different K (injection time is 0.3mins,

    injection volume for every time is 8 ml, the whole consolidation time is 30 minutes)

    (100mm).................................................................................................................... 93

    Fig. 5.13 Excess pore water pressure versus time for different K (injection time is

    0.3mins, injection volume for every time is 8 ml, the whole consolidation time is 30

    minutes) (100mm)..................................................................................................... 94

    Fig. 5.14 Injection pressure versus time for different injection rate (injection time is

    0.3mins, injection volume for every time is 8 ml, the whole consolidation time is 30

    minutes) (100mm)..................................................................................................... 94

    Fig. 5.15 Pore water pressure versus time for different injection rates (injection time is

    0.3mins, injection volume for every time is 8 ml, the whole consolidation time is 30

    minutes) (100mm)..................................................................................................... 95

    Fig. 5.16 Normalized void ratio e/e versus time for different injection rates (injection

    time is 0.3mins, injection volume for every time is 8 ml, the whole consolidation

    time is 30 minutes) (100mm).................................................................................... 95

    0

    xvii

  • Fig. 6.1 Normalized void ratio e/e versus time for compact grouting and dynamic

    compaction grouting (injection time is 0.3mins, injection volume for every time is 8

    ml, dynamic time is 1 minutes, the whole consolidation time is 30 minutes)(100mm)

    ................................................................................................................................. 111

    0

    Fig. 6.2 Injection pressure versus time for compact grouting and dynamic compaction

    grouting (injection time is 0.3mins, injection volume for every time is 8 ml, dynamic

    time is 1 minutes, the whole consolidation time is 30 minutes)(100mm) .............. 111

    Fig. 6.3 Pore water pressure versus time for compact grouting and dynamic compact grouting.(injection time is 0.3mins, injection volume for every time is 8 ml, dynamic time is 1 minutes, the whole consolidation time is 30 minutes)(100mm) 112

    Fig. 6.4 Shear strength change during vibration and resulting static soil density (after

    Greenwood, D.A. 1991).......................................................................................... 112

    Fig. 6.5 Normalized void ratio e/e versus time (injection time is 0.3mins, injection

    volume for every time is 8 ml, dynamic time is 1 minutes, the whole consolidation

    time is 30 minutes)(100mm)................................................................................... 113

    0

    Fig. 6.6 Mean Compaction efficiency versus frequency (injection time is 0.3mins,

    injection volume for every time is 8 ml, dynamic time is 1 minutes, the whole

    consolidation time is 30 minutes)(100mm) ............................................................ 113

    Fig. 6.7 Mean shear strength enhancement ratio versus frequency (injection time is

    0.3mins, injection volume for every time is 8 ml, dynamic time is 1 minutes, the

    whole consolidation time is 30 minutes)(100mm).................................................. 114

    Fig. 6.8 The relative density versus frequency (injection time is 0.3mins, injection

    volume for every time is 8 ml, dynamic time is 1 minutes, the whole consolidation

    time is 30 minutes)(100mm)................................................................................... 114

    Fig. 6.9 Injection pressure versus time for different dynamic compaction frequency

    (injection time is 0.3mins, injection volume for every time is 8 ml, dynamic time is 1

    minutes, the whole consolidation time is 30 minutes)(100mm) ............................. 115

    Fig. 6.10 Pore water pressure versus time for different dynamic compaction frequency

    (injection time is 0.3mins, injection volume for every time is 8 ml, dynamic time is 1

    minute, the whole consolidation time is 30 minutes)(100mm)............................... 115

    xviii

  • Fig. 6.11 Peak pore water pressure and normalized versus frequency (injection time is

    0.3mins, injection volume for every time is 8 ml, dynamic time is 1 minute, the

    whole consolidation time is 30 minutes)(100mm).................................................. 116

    Fig. 6.12 Normalized void ratio e/e0 versus dynamic compaction period (injection time is

    0.3mins, injection volume for every time is 8 ml, the whole consolidation time is 30

    minutes)(100mm).................................................................................................... 116

    Fig. 6.13 Compaction efficiency versus dynamic compaction period (injection time is

    0.3mins, injection volume for every time is 8 ml, the whole consolidation time is 30

    minutes)(100mm).................................................................................................... 117

    Fig. 6.14 Mean shear strength enhancement ratio versus dynamic compaction period

    (injection time is 0.3mins, injection volume for every time is 8 ml, the whole

    consolidation time is 30 minutes)(100mm) ............................................................ 117

    Fig. 6.15 Injection pressure versus time for different dynamic compaction period

    (injection time is 0.3mins, injection volume for every time is 8 ml, the whole

    consolidation time is 30 minutes)(100mm) ............................................................ 118

    Fig. 6.16 Pore water pressure versus time for different dynamic compaction period

    (injection time is 0.3mins, injection volume for every time is 8 ml, the whole

    consolidation time is 30 minutes)(100mm) ............................................................ 118

    Fig. 6.17 Normalized void ratio e/e versus time for different confining pressure

    (injection time is 0.3mins, injection volume for every time is 8 ml, dynamic time is 1

    minutes, the whole consolidation time is 30 minutes)(100mm) ............................. 119

    0

    Fig. 6.18 Compaction efficiency versus confining pressure (injection time is 0.3mins,

    injection volume for every time is 8 ml, dynamic time is 1 minutes, the whole

    consolidation time is 30 minutes)(100mm) ............................................................ 119

    Fig. 6.19 Effective confining pressure versus confining pressure (injection time is

    0.3mins, injection volume for every time is 8 ml, dynamic time is 1 minutes, the

    whole consolidation time is 30 minutes)(100mm).................................................. 120

    Fig. 6.20 Injection pressure versus time for different effective confining pressure

    (injection time is 0.3mins, injection volume for every time is 8 ml, the whole

    consolidation time is 30 minutes)(100mm) ............................................................ 120

    xix

  • Fig. 6.21 Pore water pressure versus time for different effective confining pressure

    (injection time is 0.3mins, injection volume for every time is 8 ml, the whole

    consolidation time is 30 minutes)(100mm) ............................................................ 121

    Fig. 6.22 Normalized void ratio e/e versus time for different K (injection time is 0.3mins,

    injection volume for every time is 8 ml, dynamic time is 1 minutes, the whole

    consolidation time is 30 minutes) (100mm) ........................................................... 121

    0

    Fig. 6.23 Grouting efficiency versus K (injection time is 0.3mins, injection volume for

    every time is 8 ml, dynamic time is 1 minutes, the whole consolidation time is 30

    minutes) (100mm)................................................................................................... 122

    Fig. 6.24 Mean shear strength enhancement ratio versus K (injection time is 0.3mins,

    injection volume for every time is 8 ml, dynamic time is 1 minutes, the whole

    consolidation time is 30 minutes) (100mm) ........................................................... 122

    Fig. 6.25 Injection pressure versus time for different K (injection time is 0.3mins,

    injection volume for every time is 8 ml, dynamic time is 1 minutes, the whole

    consolidation time is 30 minutes) (100mm) ........................................................... 123

    Fig. 6.26 Pore water pressure versus time for different K (injection time is 0.3mins,

    injection volume for every time is 8 ml, dynamic time is 1 minutes, the whole

    consolidation time is 30 minutes) (100mm) ........................................................... 123

    Fig. 6.27 Normalized void ratio e/e versus time for different dry density (injection time

    is 0.3mins, injection volume for every time is 8 ml, dynamic time is 1 minutes, the

    whole consolidation time is 30 minutes)(100mm).................................................. 124

    0

    Fig. 6.28 Compaction efficiency versus time for different dry density (injection time is

    0.3mins, injection volume for every time is 8 ml, dynamic time is 1 minutes, the

    whole consolidation time is 30 minutes)(100mm).................................................. 124

    Fig. 6.29 Mean shear strength enhancement ratio versus time for different dry density

    (injection time is 0.3mins, injection volume for every time is 8 ml, dynamic time is 1

    minutes, the whole consolidation time is 30 minutes)(100mm). ............................ 125

    Fig. 6.30 Injection pressure versus time for different dry density (injection time is

    0.3mins, injection volume for every time is 8 ml, dynamic time is 1 minutes, the

    whole consolidation time is 30 minutes)(100mm).................................................. 125

    xx

  • Fig. 6.31 Pore water pressure versus time for different dry density (injection time is

    0.3mins, injection volume for every time is 8 ml, dynamic time is 1 minutes, the

    whole consolidation time is 30 minutes)(100mm).................................................. 126

    Fig. 6.32 Theoretical designs of multiple injection tests for compact grouting (after

    Au.2001) ................................................................................................................. 126

    Fig. 6.33 Normalized void ratio e/e versus time (injection time is 0.3mins, injection

    volume for every time is 8 ml, dynamic time is 1 minutes, the whole consolidation

    time is 30 minutes)(75mm)..................................................................................... 127

    0

    Fig. 6.34 Grouting efficiency versus dynamic frequency (injection time is 0.3mins,

    injection volume for every time is 8 ml, dynamic time is 1 minutes, the whole

    consolidation time is 30 minutes)(75mm) .............................................................. 127

    Fig. 6.35 Grouting efficiency versus dynamic frequency (injection time is 0.3mins,

    injection volume for every time is 8 ml, dynamic time is 1 minutes, the whole

    consolidation time is 30 minutes)(75mm) .............................................................. 128

    Fig. 6.36 Normalized void ratio/initial void ratio (e/e ) versus time for different fine

    content of soil (injection time is 0.3mins, injection volume for every time is 8 ml,

    dynamic time is 1 minutes, the whole consolidation time is 30 minutes) (75mm) 128

    0

    Fig. 6.37 Grouting efficiency versus fine content of soil (injection time is 0.3mins,

    injection volume for every time is 8 ml, dynamic time is 1 minutes, the whole

    consolidation time is 30 minutes) (75mm) ............................................................. 129

    Fig. 6.38 Mean shear strength enhancement ratio versus fine content of soil (injection

    time is 0.3mins, injection volume for every time is 8 ml, dynamic time is 1 minutes,

    the whole consolidation time is 30 minutes) (75mm)............................................. 129

    Fig. 6.39 Injection pressure versus time (injection time is 0.3mins, injection volume for

    every time is 8 ml, dynamic time is 1 minutes, the whole consolidation time is 30

    minutes) (75mm)..................................................................................................... 130

    Fig. 6.40 Pore water pressure versus time (injection time is 0.3mins, injection volume for

    every time is 8 ml, dynamic time is 1 minutes, the whole consolidation time is 30

    minutes) (75mm)..................................................................................................... 130

    Fig. 6.41 Ideal particle size distributions ........................................................................ 131

    xxi

  • Fig. 7.1 Finite element axial-symmetric mesh and boundary conditions for R50 compact

    injection tests using ABAQUS 6.3 ......................................................................... 155

    Fig. 7.2 Pressure-Volume response versus time during injection (Injection rate=30ml/min)

    ................................................................................................................................. 156

    Fig. 7.3 some aspects of the modified Cam-clay model for triaxial conditions (Roscoe,

    K.H. and Burland, J.B. 1968).................................................................................. 156

    Fig. 7.4 Numerical simulated void ratio distribution for R50 static compact injection tests

    using ABAQUS 6.3 ................................................................................................ 157

    Fig. 7.5 Numerical and experimental results of versus time for radial distance from grout

    hole (100mm diameter sample) (ABAQUS 6.3) .................................................... 157

    Fig. 7.6 Numerical results of Compaction Efficiency for radial distance from grout hole

    (100mm diameter sample) (ABAQUS 6.3) ............................................................ 158

    Fig. 7.7 Numerical results of mean shear strength enhancement ratio for radial distance

    from grout hole (100mm diameter sample) (ABAQUS 6.3) .................................. 158

    Fig. 7.8 Numerical simulated excess pore water pressure distribution for R50 single

    injection tests using ABAQUS 6.3 ......................................................................... 159

    Fig. 7.9 Numerical results of pore water pressure versus time for radial distance from

    grout hole (100mm diameter sample) (ABAQUS 6.3)........................................... 159

    Fig. 7.10 Numerical simulated permeability distribution for R50 static compact injection

    tests using ABAQUS 6.3 ........................................................................................ 160

    Fig. 7.11 Numerical results of permeability versus time along radial direction (ABAQUS

    6.3) .......................................................................................................................... 160

    Fig. 7.12 Numerical simulated displacement distribution for R50 static compact injection

    tests using ABAQUS 6.3 ........................................................................................ 161

    Fig. 7.13 Numerical results of the displacement for radial distance from grout hole

    (100mm diameter sample). (ABAQUS 6.3) ........................................................... 161

    Fig. 7.14 Numerical simulated maximum principal stress distribution for R50 static

    compaction grouting tests using ABAQUS 6.3 ...................................................... 162

    Fig. 7.15 Numerical results of maximum principal stress versus time for radial distance

    from grout hole (100mm diameter sample). (ABAQUS 6.3) ................................. 162

    xxii

  • Fig. 7.16 Numerical simulated minimum principal stress distribution for R50 compaction

    grouting tests using ABAQUS 6.3.......................................................................... 163

    Fig. 7.17 Numerical results of maximum principal stress versus time for radial distance

    from grout hole (100mm diameter sample). (ABAQUS 6.3) ................................. 163

    Fig. 7.18 Numerical results of stress path of point 1 for the static compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 164

    Fig. 7.19 Numerical results of stress path of point 2 for the static compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 164

    Fig. 7.20 Numerical results of stress path of point 3 for the static compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 165

    Fig. 7.21 Numerical results of stress path of point 4 for the static compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 165

    Fig. 7.22 Numerical results of stress path of point 5 for the static compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 166

    Fig. 7.23 Numerical results of stress path of point 6 for the static compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 166

    Fig. 7.24 Numerical results of e versus of point 4 for the static compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 167

    Fig. 7.25 Numerical results of e versus of point 5 for the static compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 167

    Fig. 7.26 Numerical results of versus time for different lateral pressure coefficient K

    (ABAQUS 6.3) ....................................................................................................... 168

    Fig. 7.27 Numerical results of grouting efficiency versus lateral pressure coefficient K

    (ABAQUS 6.3) ....................................................................................................... 168

    Fig. 7.28 Numerical results of mean shear strength enhancement ratio versus lateral

    pressure coefficient K (ABAQUS 6.3) ................................................................... 169

    Fig. 7.29 Numerical results of pore water pressure versus time for different lateral

    pressure coefficient K (ABAQUS 6.3) ................................................................... 169

    Fig. 7.30 Numerical results of lateral deformation versus time for lateral pressure

    coefficient K=1.4 (ABAQUS 6.3) .......................................................................... 170

    xxiii

  • Fig. 7.31 Numerical results of vertical deformation versus time for lateral pressure

    coefficient K=1.4 (ABAQUS 6.3) .......................................................................... 170

    Fig. 7.32 Numerical results of versus time for different effective confining pressure at

    Point-4 (ABAQUS 6.3)........................................................................................... 171

    Fig. 7.33 Numerical results of grouting efficiency versus effective confining pressure

    (ABAQUS 6.3) ....................................................................................................... 171

    Fig. 7.34 Numerical results of mean shear strength enhancement ratio versus effective

    confining pressure (ABAQUS 6.3)......................................................................... 172

    Fig. 7.35 Numerical results of pore water pressure versus time for different effective

    confining pressure (ABAQUS 6.3)......................................................................... 172

    Fig. 7.36Numerical results of the displacement of the point near the cavity versus time for

    different effective confining pressure (ABAQUS 6.3) ........................................... 173

    Fig. 7.37 Void ratio change versus time for the different initial void ratio for static

    compaction grouting (ABAQUS 6.3) ..................................................................... 173

    Fig. 7.38 Relative density versus initial void ratio for static compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 174

    Fig. 7.39 grouting efficiency versus initial void ratio for static compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 174

    Fig. 7.40 mean shear strength enhancement ratio versus initial void ratio for static

    compaction grouting (ABAQUS 6.3) ..................................................................... 175

    Fig. 7.41 Numerical results of normalized versus time for the points at the radial distance

    from the grouting hole for eight injections (ABAQUS 6.3) ................................... 175

    Fig. 7.42 Numerical results of excess pore water pressure versus time for the points at the

    radial distance from the grouting hole for eight injections (ABAQUS 6.3)........... 176

    Fig. 7.43 Numerical results of grouting efficiency versus injection times for the point-6

    for eight injections (ABAQUS 6.3) ........................................................................ 176

    Fig. 7.44 Numerical results of mean shear strength enhancement ratio versus injection

    times for the point-6 for eight injections (ABAQUS 6.3) ...................................... 177

    Fig. 7.45 the yield surface and the loading surface in space (Carter, J. P, Booker, J. R.,

    and C. P. Wroth, 1982) ........................................................................................... 177

    xxiv

  • Fig. 7.46 Repeated consolidation and swelling of modified Cam-clay at constant stress

    ratio(Carter, J. P, Booker, J. R., and C. P. Wroth, 1982)........................................ 178

    Fig. 7.47 Repeated consolidation and swelling of cyclic Cam-clay at constant stress ratio

    (Carter, J. P, Booker, J. R., and C. P. Wroth, 1982) ............................................... 179

    Fig. 7.48 Numerical simulated void ratio distribution for R50 dynamic compaction

    grouting tests using ABAQUS 6.3.......................................................................... 180

    Fig. 7.49 Numerical and experimental results of dynamic compact versus time for the

    different points from the grout hole (100mm diameter sample) (ABAQUS 6.3)... 180

    Fig. 7.50 Numerical results of dynamic Compaction Efficiency for radial distance from

    grout hole (100mm diameter sample) (ABAQUS 6.3)........................................... 181

    Fig. 7.51 Numerical results of dynamic mean shear strength enhancement ratio for radial

    distance from grout hole (100mm diameter sample) (ABAQUS 6.3) .................... 181

    Fig. 7.52 Numerical simulated excess pore water pressure distribution for R50 dynamic

    compaction grouting tests using ABAQUS 6.3 ...................................................... 182

    Fig. 7.53 Numerical results of the pore water pressure in dynamic compaction grouting

    tests versus time for the different points from the grout hole (100mm diameter

    sample). (ABAQUS 6.3)......................................................................................... 182

    Fig. 7.54 Numerical simulated displacement distribution for R50 dynamic compaction

    grouting tests using ABAQUS 6.3.......................................................................... 183

    Fig. 7.55 Numerical results of dynamic compaction displacement versus time for the

    different points along the grout hole (100mm diameter sample). (ABAQUS 6.3). 183

    Fig. 7.56 Numerical simulated maximum principal stress distribution for R50 dynamic

    compaction grouting tests using ABAQUS 6.3 ...................................................... 184

    Fig. 7.57 Numerical results of dynamic compaction maximum principal stress versus

    time for the different points from the grout hole (100mm diameter sample).

    (ABAQUS 6.3) ....................................................................................................... 184

    Fig. 7.58 Numerical simulated minimum principal stress distribution for R50 dynamic

    compaction grouting tests using ABAQUS 6.3 ...................................................... 185

    Fig. 7.59 Numerical results of dynamic compaction minimum principal stress versus time

    for the different points from the grout hole (100mm diameter sample). (ABAQUS

    6.3) .......................................................................................................................... 185

    xxv

  • Fig. 7.60 Numerical results of stress path of point-1 for the dynamic compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 186

    Fig. 7.61 Numerical results of stress path of point-2 for the dynamic compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 186

    Fig. 7.62 Numerical results of stress path of point-3 for the dynamic compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 187

    Fig. 7.63 Numerical results of stress path of point-4 for the dynamic compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 187

    Fig. 7.64 Numerical results of stress path of point-5 for the dynamic compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 188

    Fig. 7.65 Numerical results of stress path of point-6 for the dynamic compaction grouting

    (ABAQUS 6.3) ....................................................................................................... 188

    Fig. 7.66 Numerical results of dynamic compaction grouting for e versus of point-1

    (ABAQUS 6.3) ....................................................................................................... 189

    Fig. 7.67 Numerical results of dynamic compaction grouting for e versus of point-2

    (ABAQUS 6.3) ....................................................................................................... 189

    Fig. 7.68 Numerical results of dynamic compaction grouting for e versus of point-3

    (ABAQUS 6.3) ....................................................................................................... 190

    Fig. 7.69 Numerical results of dynamic compaction grouting for e versus of point-4

    (ABAQUS 6.3) ....................................................................................................... 190

    Fig. 7.70 Numerical results of dynamic compaction grouting for e versus of point-5

    (ABAQUS 6.3) ....................................................................................................... 191

    Fig. 7.71 Numerical results of dynamic compaction grouting for e versus of point-6

    (ABAQUS 6.3) ....................................................................................................... 191

    Fig. 7.72 Input injection pressure with the frequency 1 Hz, Amplitude 20kPa, and

    dynamic period 60 seconds..................................................................................... 192

    Fig. 7.73 Input injection pressure with the frequency 1 Hz, Amplitude 30kPa, and

    dynamic period 60 seconds..................................................................................... 192

    Fig. 7.74 Input injection pressure with the frequency 1 Hz, Amplitude 40kPa, and

    dynamic period 60 seconds..................................................................................... 193

    xxvi

  • Fig.7.75 Input injection pressure with the frequency 1 Hz, Amplitude 50kPa, and

    dynamic period 60 seconds..................................................................................... 193

    Fig. 7.76 Numerical results of versus time for dynamic compaction with different

    vibrating amplitude (ABAQUS 6.3) ....................................................................... 194

    Fig. 7.77 Numerical results of grouting efficiency versus dynamic amplitude (ABAQUS

    6.3) .......................................................................................................................... 194

    Fig. 7.78 Numerical results of mean shear strength enhancement ratio versus dynamic

    amplitude (ABAQUS 6.3) ...................................................................................... 195

    Fig. 7.79 Numerical results of pore water pressure versus time for different dynamic

    compact amplitude. ................................................................................................. 195

    xxvii

    cover-1.pdfFUNDAMENTAL STUDY OF STATIC AND DYNAMIC COMPACTION GROUTING IN COMPLETELY DECOMPOSED GRANITE SOIL IN HONG KONG

    cover-2.pdfCITY UNIVERSITY OF HONG KONG Fundamental Study of Static and Dynamic Compaction Grouting in Completely Decomposed Granite Soil in Hong Kong

    declatation.pdf DECLATARION

    Abstract.pdfAbstract

    Acceptance of Dissertation of WSY.pdfAcknowledgements.pdfACKNOWLEDGEMENTS

    Total Talble of content-submitted.pdfCONTENTS