heat and mass transferocw.snu.ac.kr/sites/default/files/note/548.pdf · engineers prefer to work...

87
이윤우 서울대학교 화학생물공학부 Heat and Mass Transfer

Upload: others

Post on 05-Nov-2019

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

이 윤 우

서울대학교 화학생물공학부

Heat and Mass Transfer

Page 2: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

22 HEAT TRANSFER

WITH LAMINAR FLOW

Page 3: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Some problems of heat transfer in a fluid in laminar flow

Governing Equations

Supercritical Fluid Process Lab

Differential energy balance

Solution of velocity profile and temperature profile

for problems of laminar flow

Equation of continuityNavier-Stokes equations

Solution of velocity profile for problems

of isothermal laminar flow

Page 4: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Developing vs. Developed

Developing flowThe flow pattern varies with the distance from the leading edge of the system. This occurs with all external flow systems and also near the inlet of all internal flow system

Developed flow (Idealized system)The flow pattern is the same at all cross sections normal to flow. This is called “developed” flow and occurs only in internal flow systems far from the entrance.

Supercritical Fluid Process Lab

Page 5: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Idealization

Supercritical Fluid Process Lab

- All flow systems must have some entrance effect.

- The physical properties of all fluids are dependent on temperature and differ at all points in a non-isothermal system.

- In a system transferring heat, a uniform flow pattern is never developed even at great distances from the entrance.

- The solution of the differential balances when the physical properties vary throughout the system is quite difficult.

For idealized systems developed flow is an attainable condition.

assume that these physical properties are

constant.Idealization

Page 6: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Engineers prefer to work with hx

Supercritical Fluid Process Lab

Equation expressing temperatureas a function of position and velocity

Equation for heat transfer coefficient

대부분 열전달 문제에서는 온도분포가 위치와 유속의 함수로 표현되면 충분한 정보를 얻을 수 있다.

엔지니어들은 열전달능력을 열전달계수로 표현하여 왔기 때문에 적절한 절차를 통하여 위의 방정식을 열전달계수로 표현하는 식으로 바꾸는 것이 필요하다.

Page 7: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Two simple Systems

1. Heat transfer between a fluid and a flat platedifferential energy balance

temperature as a function of position, free stream velocity.

2. A fluid being heated in a pipedifferential energy balance

temperature as a function of position, velocity.

Heat transfer coefficient for laminar flow have a strong dependence on position. This is not usually the case for heat transfer with turbulent flow.

Supercritical Fluid Process Lab

Page 8: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Heat transfer with laminar flow parallel to a flat plate

Heat Transfer with a Developing Velocity Distribution

E. Pohlhausen, Z. angew. Math.u.Mach., 1:15 (1921)

U0

U0

U0

Supercritical Fluid Process Lab

50 105Re ×<=ν

xu

Page 9: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Momentum & Energy Balances

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

=∂∂

+∂∂

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

=∂∂

+∂∂

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+∂∂

+∂∂

=∂∂

+∂∂

+∂∂

+∂∂

2

2

2

2

2

2

2

2

2

2

yu

yuu

xuu

yt

Ck

ytu

xtu

zt

yt

xt

Ckt

ztu

ytu

xtu

xxy

xx

pyx

pzyx

ρμ

ρ

ρθ

Energy balance for incompressible flow without heat generation

If the flow is two-dimensional, Uz=0.

steady state0

(8-11)

(22-1)

(22-2)

Conduction only y-direction

Momentum equation

E. Pohlhausen

Supercritical Fluid Process Lab

Page 10: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Velocity distribution in the laminar boundary layer

11886542

0

3

3

2

2

0

0

3

3

2

22

2

2

104277.1104972.2105943.416603.0

1,,

0,00,0

0)(2)()(

)(

η×−η×+η×−η=

=′∞=η⇒=∞=

=′==η⇒===

=ηη

+ηη

η

ν

ψ=η

ν=η

∂ψ∂

ν=∂ψ∂

∂ψ∂

−∂∂ψ∂

∂ψ∂

∂ψ∂

−=∂ψ∂

=

⎟⎟⎠

⎞⎜⎜⎝

∂ρμ

=∂∂

+∂∂

−−−f

fatuuyat

ffatuuyat

dfd

dfdf

uxfand

xu

y

yyxyxy

xuand

yu

yu

yu

ux

uu

x

yx

yx

xxy

xx

E. Pohlhausen

Supercritical Fluid Process Lab

(22-1)

(11-17)

(11-15) (11-16)

(11-22)solution

Page 11: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Velocity distribution in the laminar boundary layerE. Pohlhausen

Supercritical Fluid Process Lab

xu

=η 0

0)(

uu

f x=η′

1.0

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6

Fig. 11-8 (page 145)

Page 12: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Boundary Layer Thickness in the laminar boundary layerE. Pohlhausen

Supercritical Fluid Process Lab

00.5

uxν

Hydrodynamic Boundary Layer Thickness (HBLT)

(11-22)

Page 13: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

The Prandtl Number

kCpμ

αν

=≡Pr

Thermal diffusivity

Kinematic viscosity

E. Pohlhausen

Supercritical Fluid Process Lab

Page 14: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

If Pr=1, Momentum balance = Energy Balances

⎟⎟⎠

⎞⎜⎜⎝

∂ρμ

=∂∂

+∂∂

⎟⎟⎠

⎞⎜⎜⎝

∂∂

ρ=

∂∂

+∂∂

2

2

2

2

yu

yu

ux

uu

yt

Ck

ytu

xtu

xxy

xx

pyx

E. Pohlhausen

Supercritical Fluid Process Lab

kCpμ

αν

=≡Pr Prantle 수가 1인 경우에는 thermal

diffusivity와 kinematic viscosity가 같아

진다. 더욱이 온도 t를 다음과 같은 무차

원 온도

로 바꾸면 오른쪽의 두식은 같은 경계조

건을 같게 된다.

0tttt

s

s

−−

평판의 온도가 ts로서 유체의 온도 t0 보다 높은 경우를 생각하자.

(22-1)

(22-2)

Page 15: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Boundary conditions

1,1 ,0at x

1,1 ,yat

0,0 0,yat

00

00

00

==−−

=

==−−

∞=

==−−

=

uu

tttt

uu

tttt

uu

tttt

x

s

s

x

s

s

x

s

s

E. Pohlhausen

Supercritical Fluid Process Lab

Page 16: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

SolutionE. Pohlhausen

Supercritical Fluid Process Lab

Pr=1일 경우에는 (22-1)과 (22-2)는 동일한 해를 같게 된다. 따라서 주어진 위치 (x,y)에서 무차원 온도 (ts-t)/(ts-t0)와 무차원 속도 ux/u0는 서로 같다. 이런 경우 열전달과 운동량전달은 서로 직접적으로 상사성을 지니며 thermal boundary layer와 hydrodynamic boundary layer는 서로 같게된다.

xu

=η 0

0)(

tttt

fs

s

−−

=η′

1.0

0.8

0.6

0.4

0.2

00 1 2 3 4 5 6

Page 17: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Boundary Layer Thickness in the laminar boundary layerE. Pohlhausen

Supercritical Fluid Process Lab

0

0.5u

xαδ =

Thermal Boundary Layer Thickness (TBLT)

(11-22)

Page 18: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Pr = 1

Equation (22-1) and (22-2) are identical when applied to fluids with a Pr=1.

Therefore they have identical solutions; i.e., for any point (x,y) in the flow system, the dimensionless temperature (ts-t)/(ts-t0) and velocity variables (ux/u0) are equal.

The thermal and hydrodynamic boundary layers are of equal thickness.

Valid for many gases and liquid whose Pr~1.

E. Pohlhausen

Supercritical Fluid Process Lab

Page 19: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

The Prandtl NumberE. Pohlhausen

Supercritical Fluid Process Lab

Vapor Temp(K) PrAir 300 0.707

600 0.685900 0.720

1200 0.728NH3 300 0.887CO2 300 0.766CO 300 0.730He 300 0.680H2 300 0.701N2 300 0.716O2 300 0.711H2O(v) 700 1.00

@ 1atm

Liquid Temp(K) PrEngine Oil 273 47,000

300 6,400400 152

EG 273 617300 151370 23.7

Freon-12 230 5.9300 3.5

Mercury 273 0.0290500 0.0103

Bismuth 589 0.0142Lead 755 0.0170

Pr ~1 Pr ≠1

Page 20: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Pohlhausen’s solution; Pr≠1

xuyν

η 0=0

)(ux

ψfν

=ηLet

)(ψ0 ηfu

yux ′=

∂∂

=

])()('[21 0 η−ηη

ν=

∂∂

−= ffxu

xψuy

then

[ ] 02

)(Pr 02

0

2

=⎟⎟⎠

⎞⎜⎜⎝

⎛−−

+⎟⎟⎠

⎞⎜⎜⎝

⎛−−

ηη

η dttttd

fd

ttttd

s

s

s

sEq (22-1)Become ODE (22-3)

E. Pohlhausen

Supercritical Fluid Process Lab

⎟⎟⎠

⎞⎜⎜⎝

∂∂

ρ=

∂∂

+∂∂

2

2

yt

Ck

ytu

xtu

pyx (22-1)

Page 21: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

s

s

tttty−−

=∞

Heat transfer with laminar flow parallel to a flat plate

[ ] 02

)(Pr2

2

=+η

ηη d

dYfd

Yd

Let

1Y ,η ,y0Y 0,η 0,y

=∞=∞====

E. Pohlhausen

Supercritical Fluid Process Lab

(22-4)

then, Equation (22-3) yields

Page 22: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

pddY =η/

Heat transfer with laminar flow parallel to a flat plate

[ ]

[ ] ηη

ηη

dfp

dp

pfddp

2)(Pr

02

)(Pr

−=

=+

Let

E. Pohlhausen

Supercritical Fluid Process Lab

(22-5)

then, Equation (22-4) yields

(22-6)

η=⎟

⎠⎞

⎜⎝⎛ ηη−= ∫

η

ddYdfCp

01 )(

2exp Pr (22-7)

Integrating yields

Page 23: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Heat transfer with laminar flow parallel to a flat plate

20 0

1 )(2

exp CddfCY +η⎟⎟

⎜⎜

⎛ηη−= ∫ ∫

η ηPr

η⎟⎟

⎜⎜

⎛ηη−

=

=

∫ ∫∞ η

ddf

C

C

0 0

1

2

)(2

exp

1

0

Pr

ηηη

ηηη

η

η η

ddf

ddf

ttttY

s

s

∫ ∫

∫ ∫∞

⎟⎟⎠

⎞⎜⎜⎝

⎛−

⎟⎟⎠

⎞⎜⎜⎝

⎛−

=−−

=

0 0

0 0

0 )(2Prexp

)(2PrexpComplete

SolutionFor temp.ProfileFig. 22-1

(22-10)

E. Pohlhausen

Supercritical Fluid Process Lab

(22-8)

(22-9)

Integrating second time gives

0,0 == Yη

1, =∞= Yη

Page 24: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Heat transfer with laminar flow parallel to a flat plate

η⎟⎟

⎜⎜

⎛ηη−

η⎟⎟

⎜⎜

⎛ηη−

=

∫ ∫

∫ ∫∞ η

η η

ddf

ddf

Y

0 0

0 0

)(2

exp

)(2

exp

Pr

Pr

E. Pohlhausen

Supercritical Fluid Process Lab

The value of f(n) which were determined for the isothermal-flow problem are represented by a series given below.

11886542 104277.1104972.2105943.416603.0)( η×−η×+η×−η=η −−−f

They were used Pohlhausen to obtain the temperature profiles for fluids with a wide range of Prandtl numbers.

(11-22)

Page 25: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Temperature for laminar flow past a flat plate at uniform temperature

Supercritical Fluid Process Lab

Fig. 22-1

Page 26: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Heat transfer with laminar flow parallel to a flat plateE. Pohlhausen

Supercritical Fluid Process Lab

A local Reynolds number and is usually written Rex indicating that it applies at a distance x from the leading edge of the plate.

2/100 Re xxyxu

xy

xu

y =ν

νxu0Re =

Page 27: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Heat Transfer Coefficient

AdtthydtdAdkqd s

y

)( 0

0

−=⎟⎟⎠

⎞⎜⎜⎝

⎛=

=

( )0

0

000

0 )]/([

===⎥⎦

⎤⎢⎣

⎡=

−=

−−=

ηην dYd

xuk

ydtd

ttk

ydttttdkh

ysy

ss

xuyν

η 0=

1

001

0

)(2

exp CdfCd

Yd

yy

=⎟⎟

⎜⎜

⎛ηη−=

η=

η

=∫

Pr(22-7)

E. Pohlhausen

Supercritical Fluid Process Lab

(22-12)(22-11)

Page 28: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

10 Cx

ukhx ν=

Local Heat Transfer Coefficient

Local heat transfer coefficient(function of x)

(22-13)

xx

x Ck

xhNu Re1=≡ (22-14)Nusselt number

Characteristic length

E. Pohlhausen

Supercritical Fluid Process Lab

Page 29: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Local Heat Transfer Coefficient

( )1

0 0

2/1 )(2PrexpRe

−∞

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−= ∫ ∫ ηηη

η

ddfNu xx (22-15)

- valid for all Prandtl number- valid for Re < 5X105 (Laminar flow)

E. Pohlhausen

Supercritical Fluid Process Lab

Page 30: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Temperature for laminar flow past plate at uniform temperature

0tttt

s

s

−−

Supercritical Fluid Process Lab

0

1.00 2.0 3.0 4.0

1.0

0.5

( ) ( ) 3/12/1 PrRexxy⎟⎠⎞

⎜⎝⎛

Pr>0.6, the curves on Fig. 22-1 can be represented empirically by a single line relating the temperature variable (ts-t)/(ts-t0) to the quantity . ( ) ( ) 3/12/1 PrRexx

y⎟⎠⎞

⎜⎝⎛

Slope=0.332 This procedure is based on the equation found by Pohlhausen for the ratio of the thickness of the hydrodynamic boundary layer δ to the thickness of the thermal boundary layer δth.

Page 31: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

For Pr > 0.6

3/1Pr=thδδ

( ) 3/12/1

0

0 Pr)(Re332.0)]/([x

y

ss

xydttttd

=−−

=

From Fig. 22-2

(22-17)

(22-16)

3/12/1 Pr)(Re332.0xx x

kh =

3/12/1 Pr)(Re332.0 xxNu =

(22-18)

(22-19)

E. Pohlhausen

Supercritical Fluid Process Lab

(21-6)[ ]

Pohlhausen found this equation

0

0 )/()(

=⎭⎬⎫

⎩⎨⎧ −−

=y

ss

dyttttdkh

Nux = Nusselt number @ point x

Page 32: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

The effective mean coefficient: hm

∫ −=−=L

sxsm dxbtthttAhq0

00 )()(

∫=L

xm dxhL

h0

1

∫⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛=

Lp

xxd

kCu

Lk

02/1

3/12/10332.0 μν

3/12/10664.0

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛=

kCLu

Lk pμ

ν

∫≡x

xm dxhx

h0

1

Supercritical Fluid Process Lab

kLh

Nu mm =

Width of the plate in the z-direction

0tts − is constant

( )2/13/12/1

0 2332.0 Lk

CuL

k p⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛=

μν

Page 33: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

The mean effective heat-transfer coefficient: hm

3/12/1 Pr)(Re664.0 LmNu =

Lm hh 2=

- valid for all Prandtl number- valid for Re < 5 x 105

Supercritical Fluid Process Lab

kLh

Nu mm =

Num = average Nusselt number over a surface of length L

Page 34: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

3/1Pr=thδδ

valid for Pr > 0.6 E. Pohlhausen

Supercritical Fluid Process Lab

Page 35: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Example 22-1

U0 U0

U0

Supercritical Fluid Process Lab

ftu

x 1.2Re0

==ν

72.0Pr))()(/(0164.0

/1021.0 23

==

×= −

FfthBtuksft

o

ν

ftux 0148.00.50

==νδ

sftu /500 =

ftth 0165.0Pr 3/1 ==δδ

))()(/(65.1Pr)(Re332.0 23/12/1 FfthBtux

kh oxx ==

))()(/(3.32 2 FfthBtuhh oxm ==

Page 36: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Heat transfer to a fluid entering a pipe

Le

u0t0

D

Le/D ~ 0.05 Re·Pr for laminar flowLe/D ~ 40-100 for turbulent flow

)20(66.3

)20(/PrRe62.13/1

3/13/1

<∞→=

≥⎟⎠⎞

⎜⎝⎛⋅=

∞ GzxforNu

GzLLforLDNu e

Gz이 작아지면 fully developed

Supercritical Fluid Process Lab

Page 37: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Heat transfer to a fluid entering a pipe

Le

u0t0

D

Le/D ~ 0.05 Re·Pr for laminar flowLe/D ~ 40-100 for turbulent flow

3/204.01065.066.3

GzGzNu

++=

Supercritical Fluid Process Lab

Page 38: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Graetz Problem

Graetz number:

DL

LDPe

LDGz

kxwC

Gz px

⋅=⋅⋅=

==

PrRe

convectionby fer heat transconductionby fer heat trans

Pe: Peclet numberconduction과 convection의 비교

Pe>100Convection >> Conduction

0),0(

),0(),(

=∂∂

==

xrtsymmetric

finitextxrtt

Supercritical Fluid Process Lab

Page 39: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Natural convectionNatural convection

Driving forces:

(1) Buoyancy Thermal convection

(2) Surface tension Marangoni convection

Supercritical Fluid Process Lab

Page 40: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Natural convection from a vertical plateNatural convection from a vertical plate

y, uy

x, ux

t∞, ρ∞

g

ux(y)

ts > t∞

Quiescentfluid

Pr < 1Pr < 1

thδδ

hot cold

x, ux

t∞, ρ∞

g

Quiescentfluid

cold hot

Supercritical Fluid Process Lab

Page 41: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Natural convection from a vertical plateNatural convection from a vertical plate

y, uy

x, ux

t∞, ρ∞

g

ux(y)ts > t∞

Quiescentfluid

2

2

2

2

)(

0

yt

ytu

xtu

yuttg

yuu

xuu

yu

xu

yx

xxy

xx

yx

∂∂

=∂∂

+∂∂

∂∂

+−=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+∂∂

=∂

∂+

∂∂

α

μρβρ

Laminar flow

Continuity:

Momentum:

Energy:

Buoyancy forceBuoyancy force)](1[ 00 tt −−= βρρ

yexpansivitthermal:βSupercritical Fluid Process Lab

Page 42: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Natural convection heating of ideal diatomic adjacent to a vertical plate at constant temperature

number)(Reynoldsforceviscousforcebuoyant~

dragviscousforceinertial

forceviscousforcebuoyant~

uLu

LutgtLgGr

GrNum

⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ Δ

=

=

ννβ

νβ 2

22

3

4/1

/

)(478.0

CharacteristicVelocity, u

Supercritical Fluid Process Lab

∞−=Δ ttt s

gas idealfor 1~1TT

VV p

⎟⎠⎞

⎜⎝⎛∂∂

TLttgGr s

2

3)(ν

∞−=(2-25)

Page 43: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

convectionnaturalconvectionmixed

convectionforcedGrFF

LuforceinertiaF

LgforcebuoyancyF

i

b

i

b

1

32

22

3

10~

10Re

~)(

~)(

>

<=

Δ

ρ

ρ

Natural convection from a vertical plateNatural convection from a vertical plate

Re

2/1Gr

Forced convection

Naturalconvection

OMC(Opposing Mixed Convection)AMC(Assisting Mixed Convection)

Supercritical Fluid Process Lab

Page 44: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Rayleigh NumberRa <109 ; laminar flowRa >109 ; turbulent flow

( )[ ]

convectionforcedNu

GrxtgRa

convectionnaturalRaNu

xx

L

3/12/1

3

9/416/9

4/1

PrRe664.0

Pr

Pr/492.01

67.068.0

=

⋅=Δ

=

++=

ανβ

Natural convection from a vertical plateNatural convection from a vertical plate

Supercritical Fluid Process Lab

Page 45: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

All Rayleigh Number

( )[ ] 27/816/9

6/1

Pr/492.01

387.0825.0+

+= LL

RaNu

Natural convection from a vertical plateNatural convection from a vertical plate

Supercritical Fluid Process Lab

Page 46: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Application: Benard Cell

Top view

Side view

Single cell

hot

cold

Bird view

Ra>1708; oneset of natural convection

-Surface tension-No slip condition

Supercritical Fluid Process Lab

Page 47: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Application: Natural convection from a vertical plateApplication: Natural convection from a vertical plate

-연기: 밀도차에 의한 퍼짐공기유입밀도차가 적어짐

Nu = a Grm Prn

Laminar flow

-TV set : 생성된 열이 자연대류에 의해dispersion

-열섬현상-아지랑이-열대야

-pipe 내의 온도차-자연대류 생성-Gr/Re2 <<1이면자연대류 무시가능

ColdCold

Hot

Supercritical Fluid Process Lab

Page 48: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Heat Transfer with a Developed Velocity Distribution in a Pipe

Local coefficient hx

Supercritical Fluid Process Lab

bpbsx dtwCttDdxh =−π ))((

dx

bt

st

What is the tb?

Page 49: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Graetz SolutionParabolic velocity profile

⎥⎥

⎢⎢

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−=

2

12i

bx rruu

Supercritical Fluid Process Lab

(22-26)

If the fluid is heated or cooled, the velocity profile can be greatly altered because of the effect of temperature on viscosity. The complications resulting in the heat transfer problems are so great that only approximate solutions have been obtained.

Graetz has provided solutions for two cases.

(1) No distortion assumption (parabolic velocity profile is maintained)(2) Great distortion assumption (plug flow, rodlike flow)

Page 50: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Influence of heating on velocity profile in laminar tube flow

Parabolic velocity profile

Supercritical Fluid Process Lab

If the fluid is heated or cooled, the velocity profile can be greatly altered because of the effect of temperature on viscosity.

heating

cooling

Liquid heatingGas cooling

Gas heatingLiquid cooling

μ↓

μ↑

Page 51: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Average velocity

Supercritical Fluid Process Lab

2

2111

1

max

020

2

02

uu

rdruR

rdrduR

dAuA

u

dAuA

u

b

R

x

R

xA

xb

Axb

=

===

=

∫∫∫∫∫

∫∫

ππ

θπ

π

Parabolic velocity profileParabolic velocity profile

The average velocity of the fluid at any axial position is found by summing up all the velocities over the cross section and dividing by the cross-sectional area

Page 52: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Graetz Solution

⎟⎟⎠

⎞⎜⎜⎝

∂∂

+∂∂

+∂∂

α=∂∂

2

2

2

2 1x

trt

rrt

xtux

Supercritical Fluid Process Lab

(22-27)⎥⎥

⎢⎢

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−=

2

12i

bx rruu

xt

rru

rt

rrt

i

b

∂∂

⎥⎥

⎢⎢

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−

α=

∂∂

+∂∂

2

2

21

21(22-28)

Axial fluid velocityat all points

0 Axial conduction negligible

PDE can be solved by separation variable

t=f(r)•g(x) PrRe/)/(2

00

in rxn

n

nn

s

s eBtttt β

∞=

=

φ=−− ∑ (22-29)

Parabolic velocity profileParabolic velocity profile

Details of Graetz solution are given by Drew.T.B. Drew, Trans. Am. Inst. Chem. Eng., 26, 26 (1931)

Page 53: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Graetz Solution

Supercritical Fluid Process Lab

⎥⎥

⎢⎢

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛−=

2

12i

bx rruuPrRe/)/(2

00

in rxn

n

nn

s

s eBtttt β

∞=

=

φ=−− ∑

(22-30)

( )( )drrtuCCur

tirr

rxp

pbib πρ

ρπ= ∫

=

=21

02

rdrtuur

t irr

r xbi

b ∫=

==

02

2

Parabolic velocity profileParabolic velocity profile

The bulktemperatureof the fluidat any axialposition

Simplified form

Page 54: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Heat Transfer with a Developed Velocity Distribution in a PipeParabolic velocity profileParabolic velocity profile

xD

xD

kCDu

kxDCu

kxwC

Gz

ttdxdt

kwC

kDhNu

ttdxdt

DwC

h

pbpbp

bs

bpxx

bs

bpx

PrRe44

)4/(

11

2

⋅⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛⎟⎠⎞

⎜⎝⎛===

−==

−=

ππμμ

ρπρ

ππ

Local coefficient hx

rdrtuur

t irr

r xbi

b ∫=

==

02

2

Supercritical Fluid Process Lab

dx

(22-31)

bpbsx dtwCttDdxh =−π ))((bt

st

Page 55: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Graetz SolutionFlat velocity profileFlat velocity profile

bx uu =

Supercritical Fluid Process Lab

an: the nth root of the expression J0(an)=0.J0: the zero order Bessel functionJ1: the first order Bessel function

xtu

rt

rrt b

∂∂

α=

∂∂

+∂∂ 1

2

2

(22-32)t=f(r)•g(x)

PDE can be solved By Separation variable

PrRe/)/(2

00

10

2

)(2

in rxan

n i

n

nns

s er

raJ

aJatttt −

∞=

=∑ ⎟⎟

⎞⎜⎜⎝

⎛=

−− (22-33)

Page 56: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Graetz Solution

Supercritical Fluid Process Lab

bx uu =

(22-34)

( )( )drrtuCCur

tirr

rxp

pbib πρ

ρπ= ∫

=

=21

02

drtrr

tirr

rib ∫

=

==

022

Flat velocity profileFlat velocity profile

PrRe/)/(2

00

10

2

)(2

in rxan

n i

n

nns

s er

raJ

aJatttt −

∞=

=∑ ⎟⎟

⎞⎜⎜⎝

⎛=

−−

Page 57: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Graetz SolutionFlat velocity profileFlat velocity profile

Supercritical Fluid Process Lab

∑∞=

=

−−

∞=

=

= n

n

rxan

n

n

rxa

x

in

in

ea

e

kDh

1

PrRe/)/(22

1

PrRe/)/(2

2

2

(22-35)

bs

bpxx

bs

bpx

ttdxdt

kwC

kDh

Nu

ttdxdt

DwC

h

−π==

−π=

1

1(22-31)

drtrr

tirr

rib ∫

=

==

022

This analytical solution is shown graphically in Figure 22-3

Page 58: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Local Nusselt number for developed laminar flow in a pipe

PrRe4

⋅⎟⎠⎞

⎜⎝⎛⎟⎠⎞

⎜⎝⎛=

xDGz π

kDhNu x

x =

100

100101 10001

10

A: Rodlike flow, uniform heat fluxB: Rodlike flow, uniform wall temperatureC: Parabolic flow, uniform heat fluxD: Parabolic flow, uniform wall temperature

A: Rodlike flow, uniform heat fluxB: Rodlike flow, uniform wall temperatureC: Parabolic flow, uniform heat fluxD: Parabolic flow, uniform wall temperature

AABBCCDD

Supercritical Fluid Process Lab

Figure 22-3

Approachasymptoticvalues for long tube

Page 59: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Example 22-2: uniform heat flux in rod-like flowxxbxb tt

Δ+

⎜⎜⎜⎜⎜⎜⎜⎜⎜

−=−π

α==

∂∂

==∂∂

α=

∂∂

+∂∂

Δ+)())((

)(12

2

xbxxbpbsx

b

b

b

ttCwttdxDh

ua

xdtd

xt

constaaxtu

rt

rrt

Flow is rodlike

Nux=8 ?

bsb

p

bs

bpx ttu

aDCw

ttdxdt

DCw

h−

=−

=11 α

ππ

Supercritical Fluid Process Lab

If heat is added at a constant rate per unit

length of pipe, the temperature profile will

approach some constant shape at great distances from the pipe inlet. In this region, is constant.

xt

∂∂

x

(3)

(2)

(1)

kDhNu x

x =

bs

bpx ttdx

dtDCw

h−

=1

π

><><

≡x

xb u

tut

Page 60: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

4

2Duw bπρ=since

( )bsbsbp

pbx tt

Dkattuc

aD

cDuh−

=−⎟⎟

⎞⎜⎜⎝

⎛=

41

4

2

ρα

ππρ

( )bs

xx tt

DakDhNu

−==

4

2

art

rrt

=∂∂

+∂∂ 1

2

2

21

2

ln4

crcart ++=

Example 22-2: uniform heat flux in rod-like flow

⎜⎜⎜

===

=∂∂

=

))((,2/

0,0

xttttDrrtr

sss

B.C.s

Supercritical Fluid Process Lab

(4)tb를 구하자!

Page 61: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Example 22-2: uniform heat flux in rod-like flow

stDrat +⎟⎟

⎞⎜⎜⎝

⎛−=

164

22

><><

≡x

xb u

tut ( )∫ +−==ri

stDadrrt

r 0

2

2 3221 π

π

( ) 8

324

4 2

22

=

⎟⎟⎠

⎞⎜⎜⎝

⎛=

−=

DaDa

ttDaNu

bsx

since

( ) ( )

irirrir

bsx

bsbs

ix

rart

rtktth

ttDa

tt

Dra

kDh

2)(

442 2

2

=∂∂

∂∂

−=−

−=

⎟⎠⎞

⎜⎝⎛

=

==

Supercritical Fluid Process Lab

f(x)이므로 t=f(r,x)

Page 62: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Average coefficients

It is convenient for design purposes to know the average heat-transfer coefficient for an entire length of pipe.

t0 tb2 :bulk temp at “2”

“2”

ts

absabss

a ttAhtttt

Ahq )(2

)()( 20 −=−+−

=

ha= arithmetic average coeff

∫ −=−=L

bsxabsa xdtthttLhbq

0

)()(

Supercritical Fluid Process Lab

(22-36)

(22-38)

Page 63: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

LDAttCwq bp π=−= &)( 02

Average coefficients

( ) ( )20

022

bss

bpa

tttttt

Lkcw

kDh

−+−−

sb tt

(22-37)

≅2for long cylinder and low flow rate,

GzLkcw

kDh pa

ππ22

== for rod-like/ parabolic

Supercritical Fluid Process Lab

rdrtuur

t irr

r xbi

b ∫=

==

02

2

GraphicalSolution

in Fig. 22-4

(22-39)Curve b and c

GraphicalSolution

in Fig. 22-4

Page 64: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Average Nusselt numberfor developed laminar flow in a pipe with uniform wall temperature

kDh

kDh

lm

o

100

10

1

0.11 10 100 1000 10000

PrRe4

⎟⎠⎞

⎜⎝⎛⎟⎠⎞

⎜⎝⎛==

LD

kLwC

Gz p π

Parabolic flowhlmD/k

Parabolic flowhaD/k

Rodlike flowhaD/k

Supercritical Fluid Process LabFigure 22-4

c

ba

Slope=1

Slope=1/3

Page 65: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

lmbslm ttAhq )( −=

3/13/13/1

3/1

PrRe62.14

62.1 ⎟⎠⎞

⎜⎝⎛=⎟⎟

⎞⎜⎜⎝

⎛==

LD

Lkcw

kDhNu plm

π

14.03/13/13/1 PrRe86.1 ⎟⎟

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛==

s

lmlm L

DkDhNu

μμ

for Gz > 20 , parabolic

for Gz > 20, parabolic Sieder and Tate equation

Average coefficients

4

2Duw bπρ=

Supercritical Fluid Process Lab

Wall temp

Page 66: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Homework

22-122-222-422-6

Supercritical Fluid Process Lab

Page 67: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

내부 자연대류가 일어날 수 있는 구조

Supercritical Fluid Process Lab

Page 68: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

이런 내부 구조에서의 자연 대류는 아래 그림과 같이 가열면 온도, TH와 상대적으로 온도가 낮은 면의 온도, TC의 차이 TH-TC를 기준 온도차이로 삼는다. 이를 사용해 평균열전달계수를 정의하거나, 유동 특성을구분하는 레일레이수에 적용시킨다. 즉, 평균열전달계수는

레일레이수는 특성길이를 가열면과 맞은편 면의 간격, L로 삼으면,

아래 그림과 같이 TH-TC의 크기가 어떤 기준을 넘지 못하면 유체는 정체되고 오직 전도에 의해서만 상, 하면사이의 열전달이 일어난다. 이 때 위의 열전달계수 정의식을 이용하게 되면, 전도열전달이q=k/L(TH-TC)임을 이용하면 이 된다.

Application: Benard Cell

Supercritical Fluid Process Lab

Page 69: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

RaL>1708일 때 비로소 유동이 발생하게 되고, 아래 그림과 같이 셀모양의

유동이 생긴다. 점선과 실선은 회전방향이 반대인 셀로 시계방향과 반시계

방향 셀이 교대로 나타난다. 이렇게 되면 벽으로 향하는 유동이 있는 곳은

등온선이 조밀하게 되고, 벽에서 멀어지는 유동이 있는 곳은 등온선이 성

기게 나타나게 된다.

Application: Benard Cell

Supercritical Fluid Process Lab

Page 70: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

좀 더 온도차이 TH-TC가 커지게 되면, 유동의 난동성분이 증가하여 아래 그

림과 같이 난류유동이 발생하게 된다. 이 경우 벽 근처에는 점성영향으로

등온선이 조밀하게 성층화되어 나타나지만 중심부는 활발한 유동의 혼합으

로 거의 비슷한 온도를 넓은 영역에서 가지게 된다.

Application: Benard Cell

Supercritical Fluid Process Lab

Page 71: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

Natural convection in double pipe

Velocity field Temperature field

Supercritical Fluid Process Lab

Page 72: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

수직 벽에서의 자연 대류

위의 그림은 가열된 수직 평판에서의 자연 대류에 의한 열경계층을 보여준다. 이러한 층류

형태의 열경계층은 오른쪽 그림에서와 같이 어느 이상의 거리를 진행하면 난류로 천이

(transition)하게 된다. 이러한 유동의 성질은 경계층 시작점으로부터 유동진행 거리를 특성

길이로 하는 레일레이수, Rax를 기준으로 나룰 수 있으며, 천이는 Rax~109에서 일어난다.

열전달계수, hc는 층류에서 급속히 감소하다가 천이점에서 다소 증가하게 되고, 이는 평판에

서의 강제 대류의 경우와 유사하다. 그러나 난류에 접어들면서 열전달계수는 거의 일정하게

유지되는 특징을 보인다. Supercritical Fluid Process Lab

Page 73: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

수평 실린더 주변에서의 자연 대류

위 가열 실린더 주변에서의 열경계층 그림에서와 같이 데워진 유체는 실린더 표

면을 따라 상승하게 되고, 최상부에서 만나 대칭을 이루며 발달하게 된다. 강제

대류의 경우보다 열경계층은 다소 두껍게 형성된다. 특성길이를 실린더 직경, D

로 삼는 레일레이수, RaD가 RaD≤109인 경우에 층류 유동이 형성되며, 열전달계

수는 RaD에 비례하여 커진다. 난류로의 천이가 일어나는 RaD≥109에서는 RaD의

증가에 따른 열전달계수의 증가가 더 커지게 된다.

Re=0

Supercritical Fluid Process Lab

Page 74: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

강제 대류를 말할 때 보통 밀도차에 의한 부력의 영향은 무시하는 경우가 많다. 그러나 대류

열전달은 표면 주의 유체의 가열 혹은 냉각을 수반하게 되고 이것은 때에 따라 중요하게 고려

되어야 하는 부력을 발생시키게 된다. 강제 대류를 일으키는 유동이 충분히 강하지 못해 위와

같은 자연 대류를 함께 고려해야 하는 경우를 혼합 대류라 한다.

부력의 방향은 강제 대류 성분을 때에 따라 강화 혹은 약화시키게 되는데, 예를 들어 위의

그림의 왼쪽과 같이 부력의 방향이 위를 향할 때 바람이 아래에서 위로 분다면 대류열전달은

더욱 활발해 질 것이다. 반면 아래 오른쪽 그림과 같이 부력의 방향이 바람의 방향과

반대여서 강제 대류를 방해하게 되면 대류열전달이 감소할 것이다.

혼합 대류 (mixed convection)

Supercritical Fluid Process Lab

Page 75: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

구나 실린더의 경우에도 아래 그림과 같이 조용한 공기 안에서의 자연 대류와 바람

에 의한 강제 대류가 첨가되는 경우는 그 열경계층 및 국소/평균 열전달계수의 분포

가 변화하게 된다.

혼합 대류 (mixed convection)

Supercritical Fluid Process Lab

Page 76: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

레이놀즈수가 매우 작아 Re=23인 경우 등온선은 부력의 지배적인 영향으

로 오른쪽 상단으로 치솟아 올라가고 있지만, Re=120으로 속도가 증가한

경우 다소 상하 비대칭적인 등온선 분포를 나타내긴 하지만 대체로 강제

대류의 영향권 안에 있음을 볼 수 있다

혼합 대류 (mixed convection)레이놀즈수에 따른 가열실린더의 대류 특성

Supercritical Fluid Process Lab

Page 77: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

실린더 주변의 유동은 점성유체역학에 나타나 있듯이 레이놀즈

수에 따라 그 유동양상이 달라지게 되고, 이는 열전달에도 같은

영향을 미친다. 위 그림은 가열된 실린더 주변의 등온선을 보여

주고 있는데, 가열된 유체의 밀도차이로 인해 상하 대칭이 약간

일그러짐을 알 수 있다.

가열된 실린더 주위에서의 등온선

Supercritical Fluid Process Lab

Page 78: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

혼합 대류와 강제 대류/자연 대류의 구분은 유동장의 분류하는 강제

대류의 레이놀즈수와 자연 대류의 그라숍수의 조합으로부터 얻어진다.

혼합 대류 (mixed convection)

Supercritical Fluid Process Lab

Page 79: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

생활생활 속의속의 대류열전달대류열전달

1. 강제 대류 - 선풍기와 에어컨

유동에 의한 대류 효과는 그것이 없을 때에 비해, 열전달에 있어 너무도

뚜렷한 차이를 보이기 때문에 생활 속에서도 자주 접할 수 있다. 가장

대표적인 예가 선풍기이다. 여름에 더운 날 선풍기를 튼다고 해서 방안의

공기 온도가 낮아지는 것은 전혀 아닌데도 시원한 것은 강제 대류에 의해

사람의 피부와 공기와의 열전달계수가 높아졌기 때문이다. 그러나 이러한

선풍기도 주변 공기 온도가 피부의 표면온도보다 낮은 경우에만 효과가 있다.

즉, 사막과 같이 40도를 웃도는 공기온도에서 선풍기를 튼다면, 혹은 한증막

안에서 선풍기를 튼다면, 열전달계수만을 높이는 선풍기는 주변의 뜨거운

열기를 피부로 빠르게 침투시켜, 그 안의 사람을 고문할 뿐이다.

Supercritical Fluid Process Lab

Page 80: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

생활생활 속의속의 대류열전달대류열전달

에어컨과 선풍기를 동시에 사용하면 에너지 절약효과가 있다는 것을 대류열전

달의 기본 관계식인 뉴톤의 냉각법칙(Newton's cooling law)을 이용해서 고찰

해보자.

qs = hc△T (열전달율 = 대류열전달계수×온도차)

냉방효과를 높이는 것은 피부에서 공기로의 qs를 높이는 것을 의미한다. 위

식에서 볼 수 있듯이 이것은 피부와 공기의 온도차를 크게 하고,

대류열전달계수를 높이는 것으로 달성할 수 있다. 에어컨을 조금 약하게

사용하여 온도차의 벌어짐이 조금 적어지더라도, 선풍기의 도움으로

열전달계수가 좀 더 높아진다면, 에어컨만으로 온도차를 크게 벌려 얻어지는

qs를 충분히 얻을 수 있을 것이다.

Supercritical Fluid Process Lab

Page 81: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

이런 간단하고 근본적인 열전달 관계식을 좀더 에어컨에 이용하는 방법은 없을까? 에어컨

은 기계적 일을 가함으로써 자연스러운 열전달을 거슬러 찬 곳에서 더운 곳으로 열전달을

시키는 시스템이다. 방안에 냉기를 불어넣어 주듯이 에어컨은 실외기를 통해 열을 방출해

야 한다. 실외기의 표면온도는 외부의 공기 온도보다 높게 조절된다. 그래야만 열을 방출

할 수 있기 때문이다. 이를 돕기 위해 실외기에는 보통 팬이 설치되어 있어 인위적으로 바

람을 불어 넣어 준다. 즉, 강제 대류를 일으켜 열전달계수를 높이려는 조작이다. 이 팬의

속도나 효율은 이미 정해져 있는 것이므로 위 뉴톤의 냉각법칙에서 우리는 대류열전달계

수를 변화시킬 수 없다. 그렇다면 온도차, 즉 실외기 표면과 외부 공기와의 온도차는 어떠

한가? 장소를 선택할 수 있다면 그늘진 곳을, 방향은 북향을 찾아 실외기를 설치한다면 어

느 정도는 온도차를 크게 할 수 있다. 여름철의 그늘과 양지의 온도차이는 누구나 알 정도

로 확연하다.

생활생활 속의속의 대류열전달대류열전달

Supercritical Fluid Process Lab

Page 82: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

생활생활 속의속의 대류열전달대류열전달

대류열전달을 이용한 실제 시스템에서는 대부분 위에서 설명한 관내유동이나 평

판이나 실린더 주변에서의 유동의 복합적인 형태의 적용이 요구된다. 아래 쉘-튜

브형 열교환기의 예에 있어서, 많은 파이프를 지나는 내부 유동 대류열전달과 실

린더 다발을 지나는 외부 유동 대류열전달이 적용된다. 이와 같이 기본적인 형상

에서의 대류열전달 및 마찰손실에 대한 지식은 실제 열전달 시스템 해석과 새로운

시스템의 개발에 유용하게 사용된다.

Shell and Tube Heat ExchangerSupercritical Fluid Process Lab

Page 83: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

생활생활 속의속의 대류열전달대류열전달

2. 그 외의 강제 대류 - 겨울 바람과 목욕탕 등

자연풍이든 선풍기 바람이든 여름철엔 고마운 강제 대류 현상이 겨울에는

반대가 되는 것도 같은 이유임을 이 쯤에서 누구나 알 수 있을 것이다.

겨울에 살을 에이는 듯한 바람도 역시 열전달계수를 높이기 때문이다.

여기서 한 걸음 더 나아가 본다면, 겨울 바람 속의 몸을 움추린 사람은 강제

대류의 외부 유동에 설명되어 있는 실린더 주변에서의 유동과 다름이 아니다.

실린더 주변에서의 열전달계수는 바람이 처음으로 부딪히는 실린더의 맨

앞쪽, 즉 정체점(stagnation point)에서 가장 크다. 그러므로 우리는 바람을

정면으로 맞는 것보다는 조금이라도 빗겨서 맞아야 추위를 덜 느낄 수 있다.

Supercritical Fluid Process Lab

Page 84: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

생활생활 속의속의 대류열전달대류열전달

공중 목욕탕에 가본 사람이라면 뜨거움을 참으며 겨울 온탕에 몸을 담갔다

가, 다른 사람이 들어오는 바람에 물이 출렁여 물이 더욱 뜨겁게 느껴졌던

경험이 있을 것이다. 이제 우리는 이에 대한 이유를 알뿐만 아니라, 한증탕

에 들어가 체조까지 하는 사람들을 좀 더 경이롭게 쳐다보게 될 것이다. 유

체 자체의 움직임뿐만 아니라 우리 몸의 움직임에 의한 유체의 상대적 운

동도 역시 강제 대류를 일으키기 때문이다. 이런 것을 겨울철 캔 커피 난로

(?)에 이용해 보면 어떨까. 추운 날 따뜻한 캔 커피는 마시기 전 충분히 주

머니 난로만큼의 역할을 하곤 한다. 그런데 강풍으로 이내 미지근해져 버

린 캔 커피는 흔들어 주면 그럭저럭 두세 번 손을 따뜻하게 해주는데 사용

할 수 있게 된다.

Supercritical Fluid Process Lab

Page 85: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

3. 자연 대류 - 냉난방 방향

뜨거운 공기는 가벼워 위로 올라가고 차가운 공기는 무거워 아래로

내려온다는 것으로 많은 판단을 할 수가 있다. 에어컨은 사람들이

더워 찬바람을 쏘이기 위해 바람의 방향을 아래로 해 놓는 경우가

많은데, 이것은 밖에서 땀 흘리고 들어온 사람에게 도움이 될

뿐이다. 평상시의 냉방은 바람을 위로 향하게 하는 것이 좋다.

그러면 방 위쪽의 더운 공기를 식히고 자연스럽게 무거운 찬 공기는

아래로 내려오게 된다. 그러나 만약 아래로 냉방 바람을 계속

내보내면 방 위쪽의 더운 공기는 그대로 남아 방안의 공기는 아래는

차고 위는 덥게 성층화(成層化)될 것이다. (계속)

생활생활 속의속의 대류열전달대류열전달

Supercritical Fluid Process Lab

Page 86: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

그렇다면 난방 바람은 당연히 아래를 향해야 할 것이다. 그럼 아래

로 내보내진 더운 바람은 자연 대류로 방 위쪽으로 올라가 순환하

게 될 것이다. 이런 것을 생각하면 자동차 안의 에어컨이나 히터의

배출 조정은 항상 현명하게 할 수 있을 것이다. 전술한 이유로 중

앙 냉난방 식의 경우 보통 에어컨은 천장에서 분출되고 라지에타

는 아래에 설치되는 것이다. 종종 식당이나 카페는 1, 2층이 트여

있는 곳이 있는데, 꽤 넓어 층별 냉난방을 하는 곳이 아니라면 보

통 한 개의 냉난방기를 사용하게 된다. 이렇게 되면 층간의 온도차

이는 반드시 나기 마련이다. 이런 곳에서는 당연히 겨울에는 2층에,

여름에는 1층에 자리를 잡는 것이 현명한 선택이다.

생활생활 속의속의 대류열전달대류열전달

Supercritical Fluid Process Lab

Page 87: Heat and Mass Transferocw.snu.ac.kr/sites/default/files/NOTE/548.pdf · Engineers prefer to work with h x Supercritical Fluid Process Lab Equation expressing temperature as a function

실린더 주위에서의 열전달계수 분포

왼편 그림은 실린더 표면에서의 열전달계수

를 원주방향에 따라 나타낸 것으로 θ=0°가

실린더의 맨 왼쪽을, θ=180°가 실린더의 맨

오 른 쪽 을 나 타 낸 다 . 경 계 층 의 박 리

(separation)가 θ∼80°에서 일어나는 층류

경계층의 경우 박리 전에 열전달계수가 지속

적으로 감소하다가 박리 이후 난동성분의 증

가로 다소 증가하게 된다. 그러나 난류로의

천이가 일어나는 오른쪽 그림의 경우 천이로

인한 급속한 열전달계수 증가가 나타난다. 이

는 평판 위를 지나는 유동의 경우에서도 나타

났던 것이다. 그 이후 경계층의 박리에 의해

열전달계수는 다시 급속히 감소하게 된다.

Supercritical Fluid Process Lab