holographic entropy production - mpp theory group · overview and repapration non-equilibrium and...

42

Upload: hoangtu

Post on 09-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holographic entropy production

Yu Tian (田雨)1

1School of Physics, University of Chinese Academy of Sciences(中国科学院大学物理学院)

(Based on the joint work [arXiv:1204.2029] with Xiaoning Wu and HongbaoZhang, which received an honorable mention in the 2012 Essay Competition of

the Gravity Research Foundation)

Gauge/Gravity Duality 2013Max Planck Institute for Physics, 30 July 2013

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

The problem

Perturb a thermodynamic system in equilibrium=⇒Various transport processes pull it back to equilibrium=⇒Production of entropy

Perturb a (static) black hole=⇒The black hole absorbs the energy of perturbations=⇒Increase of the black-hole entropy

Do the above two physical processes have direct relationship?

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

The problem

Perturb a thermodynamic system in equilibrium=⇒Various transport processes pull it back to equilibrium=⇒Production of entropy

Perturb a (static) black hole=⇒The black hole absorbs the energy of perturbations=⇒Increase of the black-hole entropy

Do the above two physical processes have direct relationship?

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

The problem

Perturb a thermodynamic system in equilibrium=⇒Various transport processes pull it back to equilibrium=⇒Production of entropy

Perturb a (static) black hole=⇒The black hole absorbs the energy of perturbations=⇒Increase of the black-hole entropy

Do the above two physical processes have direct relationship?

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

The physical picture

Thanks to holography!Bulk: a black hole thateats everythingBoundary: transportationthat smoothes everything

Figure : A sketch map

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Outline

1 Overview and preparationHolography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

2 Non-equilibrium and �uid dynamicsIn non-equilibrium: transportation and entropy productionDiscussions

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

Outline

1 Overview and preparationHolography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

2 Non-equilibrium and �uid dynamicsIn non-equilibrium: transportation and entropy productionDiscussions

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

Holography: a brief introduction

Early (rough) ideas of holographyG. 't Hooft (1993); L. Susskind (1995).

A more precise prescription: AdS/CFTJ. Maldacena (1998).S.S. Gubser et al (1998); E. Witten (1998).Basic principle (Euclidean):

ZBd+1 [φ + δ φ ] = ZBd+1 [φ ]

⟨exp

∫Sd

δ φOφ

⟩CFT

Generalization: bulk/boundary correspondenceAdS/QCD, AdS/CMT, holographic entanglement entropy,gravity/�uid, . . .

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

Holography: a brief introduction

Early (rough) ideas of holographyG. 't Hooft (1993); L. Susskind (1995).

A more precise prescription: AdS/CFTJ. Maldacena (1998).S.S. Gubser et al (1998); E. Witten (1998).Basic principle (Euclidean):

ZBd+1 [φ + δ φ ] = ZBd+1 [φ ]

⟨exp

∫Sd

δ φOφ

⟩CFT

Generalization: bulk/boundary correspondenceAdS/QCD, AdS/CMT, holographic entanglement entropy,gravity/�uid, . . .

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

Holography: a brief introduction

Early (rough) ideas of holographyG. 't Hooft (1993); L. Susskind (1995).

A more precise prescription: AdS/CFTJ. Maldacena (1998).S.S. Gubser et al (1998); E. Witten (1998).Basic principle (Euclidean):

ZBd+1 [φ + δ φ ] = ZBd+1 [φ ]

⟨exp

∫Sd

δ φOφ

⟩CFT

Generalization: bulk/boundary correspondenceAdS/QCD, AdS/CMT, holographic entanglement entropy,gravity/�uid, . . .

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

The bulk/boundary correspondence

bulk: not necessarily (asymptotic) AdSboundary: not necessarily conformal (e�ective FT)[Takayanagi et al (2010), Strominger et al (2011), Maldacenaet al (2013), . . . ]

The general principle:[φ |bdry ↔ Non-dynamical (background) �eld φ ]

Zbulk[φ ] =∫Dψ exp(−IFT[φ ,ψ]) =⇒

Zbulk[φ + δ φ ] = Zbulk[φ ]

⟨exp

∫bdry

δ φOφ

√gddx

⟩FT

Oφ = −δ IFT[φ ,ψ]√gδ φ(x)

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

The bulk/boundary correspondence

bulk: not necessarily (asymptotic) AdSboundary: not necessarily conformal (e�ective FT)[Takayanagi et al (2010), Strominger et al (2011), Maldacenaet al (2013), . . . ]

The general principle:[φ |bdry ↔ Non-dynamical (background) �eld φ ]

Zbulk[φ ] =∫Dψ exp(−IFT[φ ,ψ]) =⇒

Zbulk[φ + δ φ ] = Zbulk[φ ]

⟨exp

∫bdry

δ φOφ

√gddx

⟩FT

Oφ = −δ IFT[φ ,ψ]√gδ φ(x)

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

The bulk/boundary correspondence

The general principle under classical approximation of the bulkgravity:

exp(−Ibulk[φ ]) =∫Dψ exp(−IFT[φ ,ψ])

with Ibulk[φ ] the on-shell action (Hamilton's principal function).

Variation with respect to φ gives

− δ Ibulk[φ ]√gδ φ(x)

=⟨Oφ (x)

⟩FT

Further variations give the correlations of Oφ on the boundary.

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

The bulk/boundary correspondence

The general principle under classical approximation of the bulkgravity:

exp(−Ibulk[φ ]) =∫Dψ exp(−IFT[φ ,ψ])

with Ibulk[φ ] the on-shell action (Hamilton's principal function).

Variation with respect to φ gives

− δ Ibulk[φ ]√gδ φ(x)

=⟨Oφ (x)

⟩FT

Further variations give the correlations of Oφ on the boundary.

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

The bulk/boundary correspondence

Important examples (with nµ the unit normal to the boundary)Fields Bulk Boundary

EM Aµ −nµFµa|bdry Current 〈Ja〉

Grav. gµν Brown-York tab|bdry Stress tensor⟨T ab

⟩Additional dictionaryBlack holes ↔ Thermal �eld theory[Euclidean partition function = partition function of the(grand) canonical ensemble]

=⇒

{Local Hawking temperature = Temperature

Bekenstein-Hawking entropy = Entropy

Macroscopic investigation: Thermodynamic and hydrodynamicdescriptions under the low-frequency/long-wavelength limit,where

⟨Oφ (x)

⟩FT are just the macroscopic physical quantities.

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

The bulk/boundary correspondence

Important examples (with nµ the unit normal to the boundary)Fields Bulk Boundary

EM Aµ −nµFµa|bdry Current 〈Ja〉

Grav. gµν Brown-York tab|bdry Stress tensor⟨T ab

⟩Additional dictionaryBlack holes ↔ Thermal �eld theory[Euclidean partition function = partition function of the(grand) canonical ensemble]

=⇒

{Local Hawking temperature = Temperature

Bekenstein-Hawking entropy = Entropy

Macroscopic investigation: Thermodynamic and hydrodynamicdescriptions under the low-frequency/long-wavelength limit,where

⟨Oφ (x)

⟩FT are just the macroscopic physical quantities.

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

The bulk/boundary correspondence

Important examples (with nµ the unit normal to the boundary)Fields Bulk Boundary

EM Aµ −nµFµa|bdry Current 〈Ja〉

Grav. gµν Brown-York tab|bdry Stress tensor⟨T ab

⟩Additional dictionaryBlack holes ↔ Thermal �eld theory[Euclidean partition function = partition function of the(grand) canonical ensemble]

=⇒

{Local Hawking temperature = Temperature

Bekenstein-Hawking entropy = Entropy

Macroscopic investigation: Thermodynamic and hydrodynamicdescriptions under the low-frequency/long-wavelength limit,where

⟨Oφ (x)

⟩FT are just the macroscopic physical quantities.

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

Why macroscopic investigation?

Figure : A prestigious example: Quark-gluon plasma produced in LHC

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

Why macroscopic investigation?

The holographic prediction η

s= 1

4πfor QGP in N = 4 SYM

(Policastro, Son & Starinets, 2002) is in qualitative agreementwith the RHIC data.

We hope to know how general holography can be, throughmacroscopic investigation.(Tentative answer: As general as gravitation!)

We hope to know the general features of holography, throughmacroscopic investigation.

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

Why macroscopic investigation?

The holographic prediction η

s= 1

4πfor QGP in N = 4 SYM

(Policastro, Son & Starinets, 2002) is in qualitative agreementwith the RHIC data.

We hope to know how general holography can be, throughmacroscopic investigation.(Tentative answer: As general as gravitation!)

We hope to know the general features of holography, throughmacroscopic investigation.

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

Outline

1 Overview and preparationHolography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

2 Non-equilibrium and �uid dynamicsIn non-equilibrium: transportation and entropy productionDiscussions

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

Thermodynamics

Equilibrium thermodynamics from the bulk point of view(Brown & York, 1993)

The Brown-York tensor for Einstein's gravity

tab =1

8πG(Kgab−K ab)

in static con�gurations has a form

tab = εuaub +phab, hab = gab +uaub

of the (relativistic) perfect �uid.

=⇒ dE +pdV = TdS + µdQ (the 1st law of thermodynamics)

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

Holography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

Thermodynamics

The holographic interpretation of the Brown-Yorkthermodynamics

In more general gravitational theories: Hamilton-Jacobi-likeanalyses

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Outline

1 Overview and preparationHolography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

2 Non-equilibrium and �uid dynamicsIn non-equilibrium: transportation and entropy productionDiscussions

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Transportation in non-equilibrium thermodynamics

Small perturbations: Linear response theoryExample 1: Ohm's law

J i = σE i

Example 2: Newton's law of viscosity

T xy =−2ησxy

Type Response Driving Force Transport

Heat conduction Heat �ow Temp. gradient Energy

Shear viscosity Momentum �ow Gradient of v ‖ p‖Bulk viscosity Momentum �ow Gradient of v⊥ p⊥

Eletric conduction Electric current Potential gradient Charge

Table : Transportation

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Transportation in non-equilibrium thermodynamics

Cross-transportation (such as the thermoelectricityphenomena):

JA = ∑B

LABXB

where the matrix (LAB) of transport coe�cients is symmetricand positive de�nite (Onsager's reciprocal relation).

The holographic realization:

linear (grav. and material) perturbations around the static bulkspacetime (black hole)ingoing boundary conditions on the horizonsolving the linear perturbation equations in the bulk

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Transportation in non-equilibrium thermodynamics

Cross-transportation (such as the thermoelectricityphenomena):

JA = ∑B

LABXB

where the matrix (LAB) of transport coe�cients is symmetricand positive de�nite (Onsager's reciprocal relation).

The holographic realization:

linear (grav. and material) perturbations around the static bulkspacetime (black hole)ingoing boundary conditions on the horizonsolving the linear perturbation equations in the bulk

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Transportation in non-equilibrium thermodynamics

gµν → gµν +hµν , nµhµν = 0

Type Driving Force Bulk perturbation

Heat conduction Temp. gradient ∇i1T

Grav. perturb. 1fcT

∂thti

Shear viscosity Gradient of v ‖ Grav. perturb. 1√fc

∂thij

Bulk viscosity Gradient of v⊥ Grav. perturb. 1√fc

∂thii

Eletric conduction Potential gradient Ei EM perturb. 1√fcFti (rc)

Table : Holographic realization of transp. (in certain gauge)

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Entropy production

The general (non-relativistic) entropy production rate

Σ = ∑A

JAXA = ∑AB

XALABXB

Type Driving force Entropy production

Heat conduction Temperature gradient -

Viscosity Velocity gradient Friction heat/T

Electric condution Electric �eld Joule heat/T

Table : Entropy production of transport processes

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Entropy production

The boundary side: entropy production rate

Σ = Jq ·∇1

T− 1

TΠ : ∇u+

1

TJ ·E = J iq∇i

1

T− 1

TΠij

σij +1

TJ iEi

with Πij the dissipation part of the stress tensor and

σij =1

2(∇iuj + ∇jui ) (∇ ·u = 0)

The bulk side: entropy variation

δS =δE

TH

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Entropy production

The boundary side: entropy production rate

Σ = Jq ·∇1

T− 1

TΠ : ∇u+

1

TJ ·E = J iq∇i

1

T− 1

TΠij

σij +1

TJ iEi

with Πij the dissipation part of the stress tensor and

σij =1

2(∇iuj + ∇jui ) (∇ ·u = 0)

The bulk side: entropy variation

δS =δE

TH

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Entropy production

Consider the Q = 0 (chargeless black hole background) case,where it turns out that there is no cross-transportation, forsimplicity.

By construction of conserved currents relating the horizon andthe boundary, one can verify δS =

∫bdry Σ, the equality of

entropy increase of the bulk black hole and total entropyproduction of the boundary �uid (YT, X.-N. Wu & H.-B.Zhang, 2012).

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Entropy production

Consider the Q = 0 (chargeless black hole background) case,where it turns out that there is no cross-transportation, forsimplicity.

By construction of conserved currents relating the horizon andthe boundary, one can verify δS =

∫bdry Σ, the equality of

entropy increase of the bulk black hole and total entropyproduction of the boundary �uid (YT, X.-N. Wu & H.-B.Zhang, 2012).

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Outline

1 Overview and preparationHolography (bulk/boundary correspondence)In equilibrium: thermodynamics (and phase transition)

2 Non-equilibrium and �uid dynamicsIn non-equilibrium: transportation and entropy productionDiscussions

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Discussions

Non-equilibrium thermodynamics (boundary): energy isdissipated in irreversible processesThe holographic point of view (bulk): energy of perturbationsis absorbed by the black hole

In cases with bulk viscosity, it seems that the spatial isotropy isrequired for a holographic realization of entropy production.

The Q 6= 0 (charged black hole background) case (withcross-transportation)YT, X.-N. Wu and H.-B. Zhang, in preparation.

Cases for more general gravitational theories with variousmatter content

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Discussions

Non-equilibrium thermodynamics (boundary): energy isdissipated in irreversible processesThe holographic point of view (bulk): energy of perturbationsis absorbed by the black hole

In cases with bulk viscosity, it seems that the spatial isotropy isrequired for a holographic realization of entropy production.

The Q 6= 0 (charged black hole background) case (withcross-transportation)YT, X.-N. Wu and H.-B. Zhang, in preparation.

Cases for more general gravitational theories with variousmatter content

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Towards boundary �uid dynamics: The 1st way

Non-relativistic long-wavelength expansionI. Bredberg, C. Keeler, V. Lysov & A. Strominger,[arXiv:1101.2451].R.-G. Cai, L. Li & Y.-L. Zhang, JHEP 1107 (2011) 027[arXiv:1104.3281].C. Niu, YT, X. Wu & Y. Ling, Phys. Lett. B 711 (2012) 411[arXiv:1107.1430].

Works for boundary at �nite distanceBut only works for intrinsically �at boundary

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Towards boundary �uid dynamics: The 2nd way

Petrov-like boundary conditionV. Lysov & A. Strominger, [arXiv:1104.5502].T. Huang, Y. Ling, W. Pan, YT & X. Wu, JHEP 1110 (2011)079 [arXiv:1107.1464].T. Huang, Y. Ling, W. Pan, YT & X. Wu, Phys. Rev. D 85(2012) 123531 [arXiv:1111.1576].C.-Y. Zhang, Y. Ling, C. Niu, YT & X. Wu, Phys. Rev. D 86(2012) 084043 [arXiv:1204.0959].

Works for intrinsically curved boundaryBut only works for boundary approaching the horizon

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Open problems

Holographic entropy production in the far-from-equilibriumcase?

Holographic thermodynamics and entropy production withquantum corrections to the bulk gravity

Boundary �uid dynamics in more general cases?

Boundary �uid dynamics with higher-order transportcoe�cients

Holographic (non-linear) super�uid dynamics

. . .

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Open problems

Holographic entropy production in the far-from-equilibriumcase?

Holographic thermodynamics and entropy production withquantum corrections to the bulk gravity

Boundary �uid dynamics in more general cases?

Boundary �uid dynamics with higher-order transportcoe�cients

Holographic (non-linear) super�uid dynamics

. . .

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

In non-equilibrium: transportation and entropy productionDiscussions

Open problems

Holographic entropy production in the far-from-equilibriumcase?

Holographic thermodynamics and entropy production withquantum corrections to the bulk gravity

Boundary �uid dynamics in more general cases?

Boundary �uid dynamics with higher-order transportcoe�cients

Holographic (non-linear) super�uid dynamics

. . .

Yu Tian (田雨) Holographic entropy production

Overview and preparationNon-equilibrium and �uid dynamics

The end

The end

Thank you!

Yu Tian (田雨) Holographic entropy production