hook lengths and contents - mit mathematicsrstan/transparencies/hooks.pdf · hook lengths and...

64
Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p.

Upload: others

Post on 15-Apr-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Hook Lengths and ContentsRichard P. Stanley

M.I.T.

Hook Lengths and Contents – p. 1

Page 2: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Standard Young tableau

standard Young tableau (SYT) of shapeλ = (4, 4, 3, 1):

<

<

8

9

10

5

2

1 3

6

7 12

11

4

Hook Lengths and Contents – p. 2

Page 3: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

fλ: number of SYT of shape λ

f3,2 = 5:

1 2 3 1 2 4 1 2 5

4 5 3 5 3 4

1 3 4 1 3 5

2 5 2 4

Hook Lengths and Contents – p. 3

Page 4: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

fλ: number of SYT of shape λ

f3,2 = 5:

1 2 3 1 2 4 1 2 5

4 5 3 5 3 4

1 3 4 1 3 5

2 5 2 4

Hook Lengths and Contents – p. 3

Page 5: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Hook length formula

For u ∈ λ, let hu be the hook length at u, i.e.,the number of squares directly below or tothe right of u (counting u once)

6

124

1

1

2457

4 3

Hook Lengths and Contents – p. 4

Page 6: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Hook length formula

For u ∈ λ, let hu be the hook length at u, i.e.,the number of squares directly below or tothe right of u (counting u once)

6

124

1

1

2457

4 3

Hook Lengths and Contents – p. 4

Page 7: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Theorem (Frame-Robinson-Thrall). Let λ ` n.Then

fλ =n!

u∈λ hu

.

f (4,4,3,1) = 12!7·6·5·43·3·22·13

= 2970

Hook Lengths and Contents – p. 5

Page 8: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Theorem (Frame-Robinson-Thrall). Let λ ` n.Then

fλ =n!

u∈λ hu

.

f (4,4,3,1) = 12!7·6·5·43·3·22·13

= 2970

Hook Lengths and Contents – p. 5

Page 9: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Nekrasov-Okounkov identity

RSK algorithm (or representation theory) ⇒∑

λ`n

f2λ = n!

Nekrasov-Okounkov (2006), G. Han (2008):

n≥0

(

λ`n

f2λ

u∈λ

(t + h2u)

)

xn

n!2

=∏

i≥1

(1 − xi)−t−1

Hook Lengths and Contents – p. 6

Page 10: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Nekrasov-Okounkov identity

RSK algorithm (or representation theory) ⇒∑

λ`n

f2λ = n!

Nekrasov-Okounkov (2006), G. Han (2008):

n≥0

(

λ`n

f2λ

u∈λ

(t + h2u)

)

xn

n!2

=∏

i≥1

(1 − xi)−t−1

Hook Lengths and Contents – p. 6

Page 11: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

A corollary

ek : kth elementary SF

ek(x1, x2, . . . ) =∑

1≤i1<i2<···<ik

xi1xi2 · · · xik

Corollary. Let

gk(n) =1

n!

λ`n

f2λek(h

2u : u ∈ λ).

Then gk(n) ∈ Q[n].

Hook Lengths and Contents – p. 7

Page 12: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

A corollary

ek : kth elementary SF

ek(x1, x2, . . . ) =∑

1≤i1<i2<···<ik

xi1xi2 · · · xik

Corollary. Let

gk(n) =1

n!

λ`n

f2λek(h

2u : u ∈ λ).

Then gk(n) ∈ Q[n].

Hook Lengths and Contents – p. 7

Page 13: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Conjecture of

Conjecture (Han). Let j ∈ P. Then

1n!

λ`n

f2λ

u∈λ

h2ju ∈ Q[n].

True for j = 1 by above.

Stronger conjecture. For any symmetricfunction F ,

1n!

λ`n

f2λ F (h2

u : u ∈ λ) ∈ Q[n].

Hook Lengths and Contents – p. 8

Page 14: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Conjecture of

Conjecture (Han). Let j ∈ P. Then

1n!

λ`n

f2λ

u∈λ

h2ju ∈ Q[n].

True for j = 1 by above.

Stronger conjecture. For any symmetricfunction F ,

1n!

λ`n

f2λ F (h2

u : u ∈ λ) ∈ Q[n].

Hook Lengths and Contents – p. 8

Page 15: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Conjecture of

Conjecture (Han). Let j ∈ P. Then

1n!

λ`n

f2λ

u∈λ

h2ju ∈ Q[n].

True for j = 1 by above.

Stronger conjecture. For any symmetricfunction F ,

1n!

λ`n

f2λ F (h2

u : u ∈ λ) ∈ Q[n].

Hook Lengths and Contents – p. 8

Page 16: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Examples

Let dk(n)=1

n!

λ`n

f2λ

u∈λ

h2ku .

d1(n) = 12n(3n − 1)

d2(n) = 124

n(n − 1)(27n2 − 67n + 74)

d3(n) = 148

n(n − 1)(n − 2)

(27n3 − 174n2 + 511n − 552).

Hook Lengths and Contents – p. 9

Page 17: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Open variants

1

n!

λ`n

f2λ

u∈λ

hu = ?

1

n!

λ`n

u∈λ

hu = ?

1

n!

λ`n

u∈λ

h2u = ?

Hook Lengths and Contents – p. 10

Page 18: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Contents

For u ∈ λ let c(u)= i − j, the content ofsquare u = (i, j).

0 10

012 3

2−1−2−3

−1

Hook Lengths and Contents – p. 11

Page 19: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Contents

For u ∈ λ let c(u)= i − j, the content ofsquare u = (i, j).

0 10

012 3

2−1−2−3

−1

Hook Lengths and Contents – p. 11

Page 20: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Semistandard tableaux

semistandard Young tableau (SSYT) of shapeλ = (4, 4, 3, 1):

<

<

2

1 2 2

3 6 6

4 4 7

7

4

xT= x1 x32 x3

4 x5 x26 x2

7

Hook Lengths and Contents – p. 12

Page 21: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Schur functions

sλ=∑

T

xT ,

summed over all SSYT of shape λ

s3 =∑

i≤j≤k

xixjxk

s1,1,1 =∑

i<j<k

xixjxk = e3.

Hook Lengths and Contents – p. 13

Page 22: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Schur functions

sλ=∑

T

xT ,

summed over all SSYT of shape λ

s3 =∑

i≤j≤k

xixjxk

s1,1,1 =∑

i<j<k

xixjxk = e3.

Hook Lengths and Contents – p. 13

Page 23: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Hook-content formula

f(1t)= f(1, 1, . . . , 1) (t 1′s)

sλ(1t) = #{SSYT of shape λ, max ≤ t}.

Theorem. sλ(1t) =

u∈λ

t + cu

hu

.

Hook Lengths and Contents – p. 14

Page 24: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Hook-content formula

f(1t)= f(1, 1, . . . , 1) (t 1′s)

sλ(1t) = #{SSYT of shape λ, max ≤ t}.

Theorem. sλ(1t) =

u∈λ

t + cu

hu

.

Hook Lengths and Contents – p. 14

Page 25: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Hook-content formula

f(1t)= f(1, 1, . . . , 1) (t 1′s)

sλ(1t) = #{SSYT of shape λ, max ≤ t}.

Theorem. sλ(1t) =

u∈λ

t + cu

hu

.

Hook Lengths and Contents – p. 14

Page 26: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

A curiosity

Let κ(w) denote the number of cycles ofw ∈ Sn. Then

1

n!

u,v∈Sn

qκ(uvu−1v−1) =∑

λ`n

u∈λ

(q + cu).

Restatement:n!∑

λ`n

ek(cu : u ∈ λ)

= #{(u, v) ∈ Sn × Sn : κ(uvu−1v−1) = n − k}

Hook Lengths and Contents – p. 15

Page 27: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

A curiosity

Let κ(w) denote the number of cycles ofw ∈ Sn. Then

1

n!

u,v∈Sn

qκ(uvu−1v−1) =∑

λ`n

u∈λ

(q + cu).

Restatement:n!∑

λ`n

ek(cu : u ∈ λ)

= #{(u, v) ∈ Sn × Sn : κ(uvu−1v−1) = n − k}

Hook Lengths and Contents – p. 15

Page 28: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Another curiosity

w∈Sn

qκ(w2) =∑

λ`n

u∈λ

(q + cu)

Hook Lengths and Contents – p. 16

Page 29: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Han’s conjecture for contents

Theorem. For any symmetric function F ,

1

n!

λ`n

f2λ F (cu : u ∈ λ) ∈ Q[n].

Idea of proof. By linearity, suffices to takeF = eµ.

Hook Lengths and Contents – p. 17

Page 30: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Power sum symmetric functions

x = (x1, x2, . . . )

pm= pm(x) =∑

i xmi

pλ = pλ1pλ2

· · ·

Let `(λ) be the length (number of parts) of λ

pm(1t) = t

pλ(1t) = t`(λ)

Hook Lengths and Contents – p. 18

Page 31: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Power sum symmetric functions

x = (x1, x2, . . . )

pm= pm(x) =∑

i xmi

pλ = pλ1pλ2

· · ·

Let `(λ) be the length (number of parts) of λ

pm(1t) = t

pλ(1t) = t`(λ)

Hook Lengths and Contents – p. 18

Page 32: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Some notation

x(1), . . . , x(k): disjoint sets of variables

ρ(w): cycle type of w ∈ Sn, e.g.,

w = (1, 3, 4)(2)(5) ⇒ pρ(w) = p(3,1,1) = p3p21

Hλ=∏

u∈λ

hu

Hook Lengths and Contents – p. 19

Page 33: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Some notation

x(1), . . . , x(k): disjoint sets of variables

ρ(w): cycle type of w ∈ Sn, e.g.,

w = (1, 3, 4)(2)(5) ⇒ pρ(w) = p(3,1,1) = p3p21

Hλ=∏

u∈λ

hu

Hook Lengths and Contents – p. 19

Page 34: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Some notation

x(1), . . . , x(k): disjoint sets of variables

ρ(w): cycle type of w ∈ Sn, e.g.,

w = (1, 3, 4)(2)(5) ⇒ pρ(w) = p(3,1,1) = p3p21

Hλ=∏

u∈λ

hu

Hook Lengths and Contents – p. 19

Page 35: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

The fundamental tool

Theorem.∑

λ`n

Hk−2λ sλ(x

(1)) · · · sλ(x(k))

=1

n!

w1···wk=1in Sn

pρ(w1)(x(1)) · · · pρ(wk)(x

(k))

Proof. Follows from representation theory:the relation between multiplying conjugacyclass sums in Z(CG) (the center of the groupalgebra of the finite group G) and theirreducible characters of G.

Hook Lengths and Contents – p. 20

Page 36: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

The fundamental tool

Theorem.∑

λ`n

Hk−2λ sλ(x

(1)) · · · sλ(x(k))

=1

n!

w1···wk=1in Sn

pρ(w1)(x(1)) · · · pρ(wk)(x

(k))

Proof. Follows from representation theory:the relation between multiplying conjugacyclass sums in Z(CG) (the center of the groupalgebra of the finite group G) and theirreducible characters of G.

Hook Lengths and Contents – p. 20

Page 37: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Set x(i) = 1ti, so sλ(x(i)) →

ti+cu

hu

pρ(wi)(x(i)) → t

κ(wi)i .

Get∑

λ`n

H−2λ

u∈λ

(t1 + cu) · · · (tk + cu) =

1

n!

w1···wk=1in Sn

tκ(w1)1 · · · t

κ(wk)k .

Hook Lengths and Contents – p. 21

Page 38: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Completion of proof

Take coefficient of tn−µ1

1 · · · tn−µk

k :

1n!

λ`n

f2λ eµ(cu : u ∈ λ)

= #{(w1, . . . , wk) ∈ Skn : w1 · · · wk = 1,

c(wi) = n − µi}.

Elementary combinatorial argument showsthis is a polynomial in n. �

Hook Lengths and Contents – p. 22

Page 39: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Completion of proof

Take coefficient of tn−µ1

1 · · · tn−µk

k :

1n!

λ`n

f2λ eµ(cu : u ∈ λ)

= #{(w1, . . . , wk) ∈ Skn : w1 · · · wk = 1,

c(wi) = n − µi}.

Elementary combinatorial argument showsthis is a polynomial in n. �

Hook Lengths and Contents – p. 22

Page 40: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Shifted parts

Let λ = (λ1, . . . , λn) ` n.

partitions of 3: 300, 210, 111

shifted parts of λ: λi + n − i, 1 ≤ i ≤ n

shifted parts of (3, 1, 1, 0, 0): 7, 4, 3, 1, 0

Hook Lengths and Contents – p. 23

Page 41: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Shifted parts

Let λ = (λ1, . . . , λn) ` n.

partitions of 3: 300, 210, 111

shifted parts of λ: λi + n − i, 1 ≤ i ≤ n

shifted parts of (3, 1, 1, 0, 0): 7, 4, 3, 1, 0

Hook Lengths and Contents – p. 23

Page 42: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Shifted parts

Let λ = (λ1, . . . , λn) ` n.

partitions of 3: 300, 210, 111

shifted parts of λ: λi + n − i, 1 ≤ i ≤ n

shifted parts of (3, 1, 1, 0, 0): 7, 4, 3, 1, 0

Hook Lengths and Contents – p. 23

Page 43: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Contents and shifted parts

Let F (x; y) be symmetric in x and y variablesseparately, e.g.,

p1(x)p2(y) = (x1 + x2 + · · · )(y21 + y2

2 + · · · ).

Theorem. Let

r(n)=1

n!

λ`n

f2λF (cu, u ∈ λ; λi + n − i, 1 ≤ i ≤ n).

Then r(n) ∈ Z (n fixed), and r(n) ∈ Q[n].

Hook Lengths and Contents – p. 24

Page 44: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Contents and shifted parts

Let F (x; y) be symmetric in x and y variablesseparately, e.g.,

p1(x)p2(y) = (x1 + x2 + · · · )(y21 + y2

2 + · · · ).

Theorem. Let

r(n)=1

n!

λ`n

f2λF (cu, u ∈ λ; λi + n − i, 1 ≤ i ≤ n).

Then r(n) ∈ Z (n fixed), and r(n) ∈ Q[n].

Hook Lengths and Contents – p. 24

Page 45: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Similar results are false

Note. Let

P (n)=1

n!

λ`n

f2λ

(

i

λ2i

)

.

ThenP (3) = 16

36∈ Z

P (n) 6∈ Q[n]

Hook Lengths and Contents – p. 25

Page 46: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Similar results are false

Note. Let

P (n)=1

n!

λ`n

f2λ

(

i

λ2i

)

.

ThenP (3) = 16

36∈ Z

P (n) 6∈ Q[n]

Hook Lengths and Contents – p. 25

Page 47: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

ϕ

ΛQ= {symmetric functions over Q}

Define a linear transformation

ϕ : ΛQ → Q[t]

by

ϕ(sλ) =

n∏

i=1

(t + λi + n − i)

.

Hook Lengths and Contents – p. 26

Page 48: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Key lemma for shifted parts

Lemma. Let µ ` n, ` = `(µ). Then

ϕ(pµ) =

(−1)n−`

m∑

i=0

(

m

i

)

t(t + 1) · · · (t + i − 1),

where m= m1(µ), the number of parts of µequal to 1.

Hook Lengths and Contents – p. 27

Page 49: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Proof of main result

Theorem. For any symmetric function F ,

1n!

λ`n

f2λ F (h2

u : u ∈ λ) ∈ Q[n].

Proof based on the multiset identity

{hu : u ∈ λ} ∪ {λi − λj − i + j :

1 ≤ i < j ≤ n}

= {n + cu : u ∈ λ} ∪ {1n−1, 2n−2, . . . , n − 1}.

Hook Lengths and Contents – p. 28

Page 50: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Proof of main result

Theorem. For any symmetric function F ,

1n!

λ`n

f2λ F (h2

u : u ∈ λ) ∈ Q[n].

Proof based on the multiset identity

{hu : u ∈ λ} ∪ {λi − λj − i + j :

1 ≤ i < j ≤ n}

= {n + cu : u ∈ λ} ∪ {1n−1, 2n−2, . . . , n − 1}.

Hook Lengths and Contents – p. 28

Page 51: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Example. λ = (3, 1, 0, 0),

λ − (1, 2, 3, 4) = (2, −1, −3, −4):

{4, 2, 1, 1} ∪ {3, 5, 6, 2, 3, 1}

= {3, 4, 5, 6} ∪ {1, 1, 1, 2, 2, 3}

Hook Lengths and Contents – p. 29

Page 52: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

{hu : u ∈ λ} ∪ {λi − λj − i + j :

1 ≤ i < j ≤ n}

= {n + cu : u ∈ λ} ∪ {1n−1, 2n−2, . . . , n − 1}.

Note.

λi − λj − i + j = (λi + n − i) − (λj + n − j)

Not symmetric in λi + n − i and λj + n − j,but (λi − λj − i + j)2 is symmetric.

Hook Lengths and Contents – p. 30

Page 53: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

{hu : u ∈ λ} ∪ {λi − λj − i + j :

1 ≤ i < j ≤ n}

= {n + cu : u ∈ λ} ∪ {1n−1, 2n−2, . . . , n − 1}.

Note.

λi − λj − i + j = (λi + n − i) − (λj + n − j)

Not symmetric in λi + n − i and λj + n − j,but (λi − λj − i + j)2 is symmetric.

Hook Lengths and Contents – p. 30

Page 54: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Further results

Recall:

Nekrasov-Okounkov (2006), G. Han (2008):

n≥0

(

λ`n

f2λ

u∈λ

(t + h2u)

)

xn

n!2

=∏

i≥1

(1 − xi)−t−1

Hook Lengths and Contents – p. 31

Page 55: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Content analogue

“Content Nekrasov-Okounkov identity”

n≥0

(

λ`n

f2λ

u∈λ

(t + c2u)

)

xn

n!2

= (1 − x)−t.

Proof: simple consequence of “dual Cauchyidentity" and the hook-content formula.

Hook Lengths and Contents – p. 32

Page 56: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Fujii et al. variant

1

n!

λ`n

f2λ

u∈λ

k−1∏

i=0

(c2u − i2)

=(2k)!

(k + 1)!2(n)k+1.

where (n)k+1= n(n − 1) · · · (n − k).

Hook Lengths and Contents – p. 33

Page 57: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Okada’s conjecture

1

n!

λ`n

f2λ

u∈λ

k∏

i=1

(h2u − i2)

=1

2(k + 1)2

(

2k

k

)(

2k + 2

k + 1

)

(n)k+1

Hook Lengths and Contents – p. 34

Page 58: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Proof of Okada’s conjecture

Proof (Greta Panova).

Both sides are polynomials in n.

The two sides agree for 1 ≤ n ≤ k + 2.

Key step: both sides have degree k + 1.

Hook Lengths and Contents – p. 35

Page 59: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Proof of Okada’s conjecture

Proof (Greta Panova).

Both sides are polynomials in n.

The two sides agree for 1 ≤ n ≤ k + 2.

Key step: both sides have degree k + 1.

Hook Lengths and Contents – p. 35

Page 60: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Proof of Okada’s conjecture

Proof (Greta Panova).

Both sides are polynomials in n.

The two sides agree for 1 ≤ n ≤ k + 2.

Key step: both sides have degree k + 1.

Hook Lengths and Contents – p. 35

Page 61: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Proof of Okada’s conjecture

Proof (Greta Panova).

Both sides are polynomials in n.

The two sides agree for 1 ≤ n ≤ k + 2.

Key step: both sides have degree k + 1.

Hook Lengths and Contents – p. 35

Page 62: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Central factorial numbers

xn =∑

k

T (n, k)x(x − 12)(x − 22) · · · (x − k2)

n\k 1 2 3 4 51 12 1 13 1 5 14 1 21 14 15 1 85 147 30 1

Hook Lengths and Contents – p. 36

Page 63: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Central factorial numbers

xn =∑

k

T (n, k)x(x − 12)(x − 22) · · · (x − k2)

n\k 1 2 3 4 51 12 1 13 1 5 14 1 21 14 15 1 85 147 30 1

Hook Lengths and Contents – p. 36

Page 64: Hook Lengths and Contents - MIT Mathematicsrstan/transparencies/hooks.pdf · Hook Lengths and Contents Richard P. Stanley M.I.T. Hook Lengths and Contents – p. 1

Okada-Panova redux

Corollary.1

n!

λ`n

f2λ

u∈λ

h2ku

=

k+1∑

j=1

T (k + 1, j)1

2j2

(

2(j − 1)

j − 1

)(

2j

j

)

(n)j.

Hook Lengths and Contents – p. 37