karerbirás´m¨artiselikmrurwerh:ssüúglieneg pdf... · 2013. 4. 9. ·...

20
saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH edá¨tWm¨g´KNitviTüa 262 MATHEMATICS DEPARTMENT CMBUken¼bgHajBIKMrUrWERh:ssüúglIenEG‘rkøasik EdlCab´Tak´Tgnwg k Gefr (Y nig X 2 , X 3 , ..., X k ) CaTMrg´m¨aRTIs . KMrU k Gefr CakarBRgIkd¾smrmüBIKMrUBIrGefr EdlánBnül´rYcmkehIy . dUecñ ¼ CMBUken¼bgHajBI bBaØtifμImYycMnYnCaTMrg´ma¨RTIs . BiCKNitm¨aRTIspþl´viFIgaysMrab´KMrUrWERh:ssüúg EdlCab´Tak´TgnwgGefreRcIn . enAeBleyIgman k Gefr eKGaceda¼Rsayedaybeg;ItrUbmnþCaTMrg´m¨aRTIs . 9¿1 KMrUrWERh:ssüúglIenEG‘r k Gefr (The k Variable Linear Regression Model) RbsinebIeyIgeFVITUeTAnIykmμKMrUrWERh:ssüúgBIr nig 3 Gefr , PRF EdlmanGefrTak´Tg Y nig GefrKit bBa©Úl k - 1 , X 2 , X 3 , ... , X k GacsresrCa £ PRF : Y i = 1 + 2 X 2i + 3 X 3i + ... + k X ki + u i , i = 1, 2,3, ... , n (9.1.1) Edl 1 = cMnuckat´G&kß , 2 , ... , k = emKuNRáb´TisedayEpñk, u = tYclkr{kas nig i = tMélseg;tTI i, n CaTMhMb¨UBuyLasüúg. PRF (9.1.1) RtUvbkRsayCa£ vapþl´eGaymFüm rWsgÇwmKNit E(Y/X 2 , X 3 , ... ,X ki ) én Y eRkamlkçxNÐtMélefr (kñúgkareFVIKMrUtagRcMEdl) én X 2 , X 3 , ... , X k , . smIkar (9.1.1) GacsresrCasMnMuén n smIkar £ Y 1 = 1 + 2 X 21 + 3 X 31 + ... + k X k1 + u 1 Y i = 1 + 2 X 22 + 3 X 32 + ... + k X k2 + u 2 (9.1.2) Y n = 1 + 2 X 2n + 3 X 3n + ... + k X kn + u n eyIgGacsresrRbB&n§smIkar (9.1.2) eTACaTMrg´m¨aRTIsdUcxageRkam £ Y 1 1 X 21 X 31 ... X k1 1 u 1 Y 2 1 X 22 X 32 ... X k2 2 u 2 = + (9.1.3) Y n 1 X 2n X 3n ... X kn k u n y = X u n 1 n k k 1 n 1 y = vicT&rCYrQr n 1 éntMélseg;telIGefrTak´Tg Y X = m¨aRTIs n k Edlman n tMélseg;telI k 1 Gefr X 2 , ... , X k , CYrQrTI 1 EdlmanFatu 1 tageGaytYcMnuckat´G&kß (m¨aRTIsen¼GacehAfa ma¨RTIsTinñ n&y (Data Matrix) ) . CMBUk 9 kareRbIRás´m¨aRTIselIKMrUrWERh:ssüúglIenEG‘r THE MATRIX APPROACH TO LINEAR REGRESSION MODEL

Upload: others

Post on 31-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 262 MATHEMATICS DEPARTMENT

    CMBUken¼bgHajBIKMrUrWERh:ssüúglIenEG‘rkøasik EdlCab´TaḱTgnwg k Gefr (Y nig X2, X3, ..., Xk)

    CaTMrg´m¨aRTIs . KMrU k Gefr CakarBRgIkd¾smrmüBIKMrUBIrGefr EdlánBnül´rYcmkehIy . dUecñ¼ CMBUken¼bgHajBI

    bBaØtifµImYycMnYnCaTMrg´´ma¨RTIs .

    BiCKNitm¨aRTIspþl´viFIgaysMrab´KMrUrWERh:ssüúg EdlCab́Tak´TgnwgGefreRcIn . enAeBleyIgman k

    Gefr eKGaceda¼Rsayedaybeg;ItrUbmnþCaTMrg´m̈aRTIs .

    9¿1 KMrUrWERh:ssüúglIenEG‘r k Gefr (The k Variable Linear Regression Model) RbsinebIeyIgeFVITUeTAnIykmµKMrUrWERh:ssüúgBIr nig 3 Gefr , PRF EdlmanGefrTaḱTg Y nig GefrKit

    bBa©Úl k - 1 , X2 , X3 , ... , Xk GacsresrCa £

    PRF : Yi = 1 + 2X2i + 3X3i + ... + kXki + ui , i = 1, 2,3, ... , n (9.1.1)

    Edl1 = cMnuckat´G&kß , 2 , ... , k = emKuNRáb́TisedayEpñk, u = tYclkr{kas nig i = tMélseg;tTI i,

    n CaTMhMb¨UBuyLasüúg. PRF (9.1.1) RtUvbkRsayCa£ vapþl´eGaymFüm rWsgÇwmKNit E(Y/X2, X3 , ... ,Xki)

    én Y eRkamlkçxNÐtMélefr (kñúgkareFVIKMrUtagRcMEdl) én X2, X3 , ... , Xk , .

    smIkar (9.1.1) GacsresrCasMnMuén n smIkar £

    Y1 = 1 + 2X21 + 3X31 + ... + kXk1 + u1

    Yi = 1 + 2X22 + 3X32 + ... + kXk2 + u2 (9.1.2)

    Yn = 1 + 2X2n + 3X3n+ ... + kXkn + un

    eyIgGacsresrRbB&n§smIkar (9.1.2) eTACaTMrg´m̈aRTIsdUcxageRkam £

    Y1 1 X21 X31 ... Xk1 1 u1

    Y2 1 X22 X32 ... Xk2 2 u2 = + (9.1.3)

    Yn 1 X2n X3n ... Xkn k un

    y = X u

    n 1 n k k 1 n 1

    y = vicT&rCYrQr n 1 éntMélseg;telIGefrTaḱTg Y

    X = m¨aRTIs n k Edlman n tMélseg;telI k – 1 Gefr X2, ... , Xk , CYrQrTI 1 EdlmanFatu 1

    tageGaytYcMnuckat´G&kß (m¨aRTIsen¼GacehAfa ma¨RTIsTinñn&y (Data Matrix) ) .

    CMBUk 9

    kareRbIRás´m¨aRTIselIKMrUrWERh:ssüúglIenEG ‘r THE MATRIX APPROACH TO LINEAR REGRESSION MODEL

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 263 MATHEMATICS DEPARTMENT

    = viT&rCYrQr k 1 éntMélá¨r¨aEm¨tmins:al´ 1 , 2 ,..., k

    u = viT&rCYrQr n1 én n clkr ui

    eRbIc,ab́plKuN nigplbUkm¨aRTIs eKGacepÞógpÞat́fa RbB&n§smIkar (9.1.2) nig (9.1.3) smmUlKña .

    RbB&n§smIkar (9.13) ehAfam¨aRTIstMNag (Matrix Representation) énKMrUrWERh:ssüúglIenEG‘r ( k Gefr) .

    eKGacsresredayxøICa £

    y = X + u (9.1.4)

    n 1 n k k 1 n 1

    RbsinebIminRclMelIvimaRt rWlMdab́énm¨aRTIs X nig y , nig u, smIkar (9.1.4) GacsresredaygayCa £

    y = X + u (9.1.5)

    CakarcgðúlbgHajénm¨aRTIstMNag eyIgBinitüemIlKMrUkareRbIRás´-cMnUlBIrGefr EdlánBnül´kñúgCMBUk 3, Yi =

    1 + 2Xi + ui Edl Y CacMNayeRbIRás´ nig X CacMnUl . edayeRbITinñn&ypþl´eGaykñúgtarag 3.2, eyIg

    GacsresrCaTMrg´m¨aRTIs £

    70 1 80 u1

    65 1 100 u2

    90 1 120 u3

    95 1 140 1 u4 110 = 1 160 + u5 (9.1.6)

    115 1 180 2 u6 120 1 200 u7

    140 1 220 u8

    155 1 240 u9

    150 1 260 u10

    y = X + u

    10 1 10 2 2 1 10 1

    dUckñúgkrNIBIrGefrnig 3 Gefr eKalbMNgrbśeyIgKWRtUvá¨n´RbmaNtMélá¨r¨aEm¨ténBhurWERh:ssüúg

    (9.1.1) nig TaysnñidæanGMBItMélTaMgena¼ BITinñn&yEdlman . CaTMrg´m̈aRTIs krNIen¼Cakará¨n´RbmaN

    nig TajsnñidæanGMBItMélen¼ () . sMrab´eKalbMNgénkará¨n´RbmaN eyIgGaceRbIviFI OLS rWviFI ML . b¨uEnþ

    dUcánkt́sMKal´mun viFITaMgBIren¼pþl´eGaytMélá¨n´RbmaNesµIKñaénemKuNrWERh:ssüúg . dUecñ¼ eyIgGackMnt´

    ykviFI OLS .

    9¿2 karsnµténKMrUrWERh:ssüúglIenEG‘rkøasikCaTMrǵm¨aRTIs (Assumptions of the Classical Linear Regression Model in Matrix Notation)

    karsnµt EdlCaRKw¼énKMUrrWRh:ssüúglIenEG‘rkøasik RtUvpþl´eGaykñúgtarag 9.1 . karsnµtTaMgen¼

    RtUvbgHajCaTMrg´s;aEl nigTMrg´m¨aRTIs . karsnµt (1) pþl´eGaykñúg (9.2.1) mann&yfa sgÇwmKNiténvicT&r u

    esµIsUnü KWfa E(u) = 0 £

    u1 E(u1) 0

    u2 E(u2) 0

    E = = (9.2.1)

    un E(un) 0

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 264 MATHEMATICS DEPARTMENT

    tarag 9.1 £ karsnµténKMrUrWERh:ssüúglIenEG‘rkøasik

    TMrg´s;aEl TMrg´m̈aRTIs

    1. E(ui) = 0, i (3.2.1) 1. E(u) = 0

    u nig 0 CavicT&rCYrQr n 1 (0 CavicT&rsUnü)

    2. E(uiuj) = 0, i j (3.2.5) 2. E(uu') = 2 I

    I CamäRTIsÉkta n n

    3. X2, X3, ... , Xk CatMél

    minEmn{kas (tMélefr)

    3. m̈aRTIs (n k) X minEmn{kas KWfa vamansMnMutMélefr

    4. KµanTMnak´TMnglIenEG‘r (7.1.7)

    Cak´lak´rvagGefrX KWfaKµanBhukUlIenEG‘r

    4. r¨g´én X KW (X) = k

    k CacMnYnCYrQrkñúg X nig k < n (cMnYntMélseg;t)

    5.sMrab́karBinitüemIlsmµtikmµ (4.2.4)

    ui N(0, 2)

    5. vicT&r u manráyn&rm̈al´eRcInGefr KWfa

    u N (0, 2I)

    karsnµt 2 [smIkar (9.2.2) ] CaviFIxøIénkarsresrkarsnµtTaMgBIrEdlpþl´eGaykñúg(3.2.5)nig (3.2.2)

    CaTMrg´s;aEl . edIm,Iyl´krNIen¼ eyIgGacsresr £

    u1

    u2

    E(uu') = E = [ u1 u2 ... un]

    un

    u' Ca Transpose énviT&rCYrQr u . edayeFVIRbmaNviFIKuN eyIgán £

    2

    21

    22212

    12121

    ...

    ...

    ...

    )'(

    nnn

    n

    n

    uuuuu

    uuuuu

    uuuuu

    EuuE

    edayeRbIRbmaNviFIsgÇwmKNit E elIFatunImYy@énm¨aRTIxagelI eyIgán £

    )()...()(

    )()...()(

    )()...()(

    )'(2

    21

    22212

    212121

    nnn

    n

    uEuuEuuE

    uuEuEuuE

    uuEuuEuE

    uuE (9.2.2)

    BIeRBa¼karsnµténGUm¨Us:IdasÞIsIuFI nig lkçN£KµankUrwLasüúges‘rI / m¨aRTIs (9.2.2) GacsresrCa £

    2

    2

    2

    ...000

    0...00

    0...00

    )'(

    uuE

    1...000

    0...010

    0...001

    2

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 265 MATHEMATICS DEPARTMENT

    = 2 I (9.2.3)

    I Cam̈aRTIsÉkta N N .

    m¨aRTIs(9.2.2) [nigm̈aRTIstMNag pþl´eGaykñúg (9.2.3)] ehAfa m¨aRTIsv¨arü¨g´-kUv¨arü̈g´énclkr ui .

    FatuelIGg;t́RTUgénm¨aRTIsen¼ (rt´BIxageqVgEpñkelI rhUtdl´xagsþaMEpñkeRkam) pþl´eGayv¨arü¨g´ nigFatuminenA

    elIGg;t́RTUgpþl´kUv¨arü̈g´ . kMnt´sMKal´fa m¨aRTIsv¨arü̈g´-kUv¨arü̈g´manlkçN£qøú¼ (FatuxagelI nigxageRkamGg;t´RTUg

    Føú¼Kña ) .

    karsnµt 3 bgHajfa m¨aRTIs n k X minEmn{kas KWfa vamantMélefr . dUcánkt´sMKal´mun

    viPaKrWERh:ssüúgrbśeyIg CaviPaKrWERh:ssüúgmanlkçxNÐelItMélefrénGefr X .

    karsnµt 4 bgHajfa m¨aRTIs X manr¨g´CYrQrTaMgGś esµInwg k (cMnYnCYrQrkñúgm¨aRTIs) . krNIen¼man

    n&yfa CYrQrénm¨aRTIs X minGaRs&ylIenEG‘r KWfa KµanTMnak´TMnglIenEG‘rBitRàkdkñúgcMeNamGefr X . mü̈ag

    eTot KµanBhukUlIenEG‘r . CaTMrg´s;aEl eKGacniyayfa KµansMnMutMél 1, 2, ... , n (minsUnüTaMgGś) Edl£

    1X1i + 2X2i + ... + kXki = 0 (9.2.4)

    X1i = 1, i ( eFVIeGaymanma¨RTIsCYrQrmanFatu 1 kñúgm̈aRTIs X ) . CaTMrg´m̈aRTIs , (9.2.4) GacsresrCa £

    ' x = 0 (9.2.5)

    ' CavicT&rCYredk 1 k nig x CavicT&rCYrQr k 1 .

    RbsinebImanTMnaḱTMnglIenEG‘rBitRàkddUcCa (9.2.4), eKfa Gefr CaGefrkUlIenEG‘r . mü̈ageTot

    RbsinebI (9.2.4) Bit ( 1 = 2 = 3 = ... = 0) ena¼Gefr X ehAfa GefrminGaRs&ylIenEG‘r . ehtupl

    smrmüsMrab´karsnµténlkçN£KµanBhukUlIenEG‘r RtUvànpþl´eGaykñúgCMBUk 7 nig eyIgnwgCYbkarsnµten¼kñúg

    CMBUk 10 .

    9¿3 kará¨ńRbmaN OLS (OLS Estimation) edIm,IrktMélá¨n´RbmaN OLS én CatMbUgeyIgsresrrWERh:ssüúgKMrUtag k Gefr (SRF) Ca £

    Yi = ikikii uXXX ˆ...ˆˆˆ 33221 (9.3.1)

    EdleKGacsresredayxøICaTMrg´m¨aRTIs £

    y = X ̂ + û (9.3.2)

    nigCaTMrg´m̈aRTIs £

    nkknnn

    k

    k

    n u

    u

    u

    XXX

    XXX

    XXX

    Y

    Y

    Y

    ˆ

    ˆ

    ˆ

    ˆ

    ˆ

    ˆ

    ...1

    ...1

    ...1

    2

    1

    2

    1

    32

    23222

    13121

    2

    1

    (9.3.3)

    y X ̂ + û

    n 1 n k k 1 n 1

    ̂ CavicT&rCYrQrmanFatu k énsnÞsßn_á¨n´RbmaN OLS énemKuNrWERh:ssüúg nig û CavicT&rCYrQr

    n 1 én n sMnl´ .

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 266 MATHEMATICS DEPARTMENT

    dUckñúgKMrUBIr nig3 Gefr, kñúgkrNI k Gefr snÞsßn_á¨n´RbmaN OLS RtUvKNnaedayrktMélGb,brmaén

    2ˆiu = (Yi - 2

    221 )ˆ...ˆˆ kiki XX (9.3.4)

    2ˆiu CaplbUksMnl´kaer (RSS) . CaTMrg´m¨aRTIs krNIen¼ CakarrktMélGb,brmaén 'û û edayehtufa £

    'û û =

    n

    n

    u

    u

    u

    uuu

    ˆ

    ˆ

    ˆ

    ˆ...ˆˆ2

    1

    21 = 222

    221 ˆˆ...ˆˆ in uuuu (9.3.5)

    }LÚven¼ BI (9.3.2) eyIgán £

    û = y - X ̂ (9.3.6)

    dUecñ¼

    'û û = ( y - X ̂ )' (y -X ̂ )

    = y'y - 2' X´y + '̂ X'X ̂ (9.3.7)

    edayáneRbIlkçN£ Tranpose énm¨aRTIs:

    (X ̂ )' = '̂ X'

    nigedayehtufa '̂ X´y CatMéls;aEl (cMnYnBit) tMélen¼esµInwg Transpose rbśva y'X ̂ .

    smIkar (9.3.7) Cam̈aRTIstMNagén(9.3.4) . CaTMrg´s;aEl viFI OLS mantMélá¨n´RbmaN 1, 2,...

    ,k EdleFVIeGay 2ˆiu mantMélGb,brma . eKeFVIDIepr¨g´Esül (9.3.4) edayEpñkeFobnwg 1̂ , 2̂ , ... , k̂

    nigkMnt́eGayesµIsUnü . dMeNIren¼pþl´eGaysmIkarelI k GBaØti . dUcánbgHajkñúgesckþIbEnSm 9A.1 smIkar

    TaMgen¼mandUcxageRkam £

    n ikikii YXXX ˆ...ˆˆˆ 33221

    iikiikiiii YXXXXXXX 2232322221

    ˆ...ˆˆˆ

    iikiikiiii YXXXXXXX 3323323231

    ˆ...ˆˆˆ

    (9.3.8)

    ikikikikiikiki YXXXXXXX 2

    33221ˆ...ˆˆˆ

    CaTMrg´m¨aRTIs smIkar (9.3.8) GacsresrCa £

    nknkk

    n

    n

    kkiikiikiki

    kiiiiii

    kiiiiii

    kiii

    Y

    Y

    Y

    Y

    XXX

    XXX

    XXX

    XXXXXX

    XXXXXX

    XXXXXX

    XXXn

    3

    2

    1

    21

    33231

    22221

    3

    2

    1

    232

    323233

    232222

    32

    ...

    ...

    ...

    1...11

    ˆ

    ˆ

    ˆ

    ˆ

    ...

    ...

    ...

    ...

    ...

    (X'X) ̂ X' y

    (9.3.9)

    rWeKGacsresredayxøI £

    (X'X) ̂ = X´y (9.3.9)

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 267 MATHEMATICS DEPARTMENT

    kMnt´sMKal´lkçN£énm̈aRTIs (X'X) : (1): vapþl´eGayplbUkkaer nigplKuNExVgénGefr X Edl

    mantYmYyCatYcMnuckat́G&kß EdlmantMél 1 sMrab́RKb´tMélseg;t . FatuelIGg;t́RTUgpþl´eGayplbUkkaeredIm

    nigFatuenAxageRkAGg;t́RTUgpþl´eGayplbUkénplKuNExVg (Bakü ²edIm³ mann&yfa ÉktargVas´edIm ) . (2):

    vaqøú¼Kña edayehtufaplKuNExVgrvag X2i nig X3i dUcKñanwgrvag X3i nig X2i . (3): vamanlMdab´ (kk) KWfa k

    CYredk nig k CYrQr .

    kñúg (9.3.10) tMéls:al´ KW (X´X) nig (X'y) ( plKuNExVgrvagGefr X nig y ) nig GBaØti KW ̂ .

    }LÚven¼ edayeRbIm¨aRTIs RbsinebIcMraś (X'X)-1

    én (X'X) man ena¼edayKuNGg:TaMgBIrén (9.3.10) nwg

    cMraś eyIgán £

    (X'X)-1

    (X'X) ̂ = (X'X)-1X'y

    b¨uEnþedayehtufa (X'X)-1

    (X´X) = I (m¨aRTIsÉktalMdab´ k k )/ eyIgán £

    I ̂ = (X'X)-1X'y

    rW ̂ = (X'X)-1 X' y (9.3.11)

    k 1 k k (k n) (n 1)

    smIkar (9.3.11)CalT§plRKw¼énRTwsþI OLS CaTMrg´m̈aRTIs . lT§plen¼bgHajfa etIvicT&r ̂ GacRtUv

    á¨n´RbmaNBITinñn&ypþl´eGayrWeT . eTa¼Ca (9.3.11) RtUvánKNnaBI (9.3.9) k¾eday eKGacrkvaedaypÞal´BI

    (9.3.7)edayKNnaDIepr¨g´Esülén uu ˆ'ˆ eFobnwg ̂ . sMraybBa¢ak´pþl´eGaykñúgesckþIbEnSm 9A Epñk 9A.2 .

    bMNkRsay

    CakarcgðúlbgHajénviFIm¨aRTIs EdlánBnül´ eyIgeda¼Rsay«TahrN_kareRbIRás´-cMnUlénCMBUk 3 eLIgvij EdlTinñn&yRtUvbeg;IteLIgvijtam (9.1.6) . sMrab´krNIBIrGefr eyIgman £

    ̂ =

    2

    1

    ˆ

    ˆ

    (X'X) =

    23

    2

    1

    321

    1

    1

    1

    1

    1...111

    ii

    i

    N

    n XX

    Xn

    X

    X

    X

    X

    XXXX

    nig X'y =

    ii

    i

    n

    n YX

    Y

    Y

    Y

    Y

    Y

    XXXX3

    2

    1

    321

    1...111

    edayeRbITinñn&ypþl´eGaykñúg (9.1.6), eyIgán £

    X'X =

    3220001700

    170010

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 268 MATHEMATICS DEPARTMENT

    nig X'y =

    205500

    1110

    edayeRbIc,ab´cMras´m¨aRTIspþl´eGaykñúgesckþIbEnSm B / eyIgeXIjfa cMraśénm¨aRTIsxagelI (X'X) KW £

    (X'X)-1

    =

    0000303,0005152,0

    005152,097576,0

    dUecñ¼ £

    ̂ =

    205500

    1110

    0000303,0005152,0

    005152,097576,0

    ˆ

    ˆ

    2

    1

    =

    5079,0

    4545,24

    BImuneyIgánKNna 1̂ = 24,4545 nig 2̂ = 0,5091 edayeRbIkmµviFIkMuBüÚT&r . PaBxusKñarvag

    tMélá¨n´RbmaNTaMgBIrGaRs&yedaylMeGogkarkat́xÞg´ . kt´sMKal´fa kñúgkareRbIm̈asIunKitelx vaCakarcaMác´

    edIm,IrklT§plkMnt́eGayáneRcInxÞg´edIm,IeFVIeGaykMritlMeGogtUc .

    m¨aRTIsv̈arü¨g-́kUv̈arüg̈´én ̂

    viFIm̈aRTIsGaceFVIeGayeyIgrkrUbmnþ minRKańEtsMrab´v¨arü¨g´én î (tMélNamYyén ̂ ) b¨ueNÑa¼eT b¨uEnþEfm

    TaMgsMrab´kUv¨arü¨g´rvagFatuBIrén ̂ ( î nig ĵ ) . eyIgRtUvkarv¨arü¨g´ nigkUv¨arü̈g´sMrab́eKalbMNgsnñidæansSiti .

    tamniymn&y ma¨RTIsv¨arü̈g-kUv¨arü̈g´én ̂ KW [RtUvKñanwg (9.2.2)] :

    var-cov( ̂ ) = E{[ ̂ - E( ̂ )][ ̂ -E( ̂ )]'}

    EdlGacsresrCa £

    var-cov( ̂ ) =

    )ˆvar(...)ˆ,ˆcov()ˆ,ˆcov(

    )ˆ,ˆcov(...)ˆvar()ˆ,ˆcov(

    )ˆ,ˆcov(...)ˆ,ˆcov()ˆvar(

    21

    2212

    1211

    kkk

    k

    k

    (9.3.12)

    eKbgHajkñúgesckþIbEnSm 9A Epñk 9A.3 fa ma¨RTIsv¨arü̈g´-kUv¨arü̈g´xagelIGacRtUvKNnaBIrUbmnþxageRkam £

    var-cov( ̂ ) = 2(X'X)-1 (9.3.13)

    Edl2Cav¨arü¨g´GUm¨Us:IdasÞIsIuFI én ui nig (X´X)-1

    Cam̈aRTIsRcas EdlánmkBI(9.3.11) Edlpþl´eGaysnÞsßn_

    á¨n´RbmaN OLS ̂ .

    kñúgKMrUrWERh:ssüúgBIr nig 3 Gefr snÞsßn_á¨n´RbmaNminlMeGogén 2 RtUvpþl´eGayeday 2̂ =

    )2/(ˆ2 nui nig 2̂ = )3(ˆ2 nui erogKña . kñúgkrNI k Gefr rUbmnþRtUvKñaKW £

    2̂ =kn

    ui

    = kn

    uu

    ˆ'ˆ (9.3.14)

    Edlman df = n – k (ehtuGVI?) .

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 269 MATHEMATICS DEPARTMENT

    eTa¼Ca tameKalkarN_ uu ˆ'ˆ GacRtUvKNnaBIsMnl´á¨n´RbmaNk¾eday tamkarGnuvtþ eKGacKNnatMél

    en¼edaypÞal´dUcxageRkam . rMlwkfa 2ˆiu (=RSS) = TSS – ESS kñúgkrNI 2 Gefr eyIgGacsresr £

    2ˆiu = 2iy -

    22̂

    2ix (3.3.6)

    nigkñúgkrNI 3 Gefr £

    2ˆiu = 2iy - 2̂ yix2i - 3̂ yix3i (7.4.19)

    edayBRgIkeKalkarN_en¼ eKeXIjfa sMrab´KMrU k Gefr £

    2ˆiu = 2iy - 2̂ yi x2i - ... - k̂ yi xki (9.3.15)

    CaTMrg´m¨aRTIs £

    TSS : 2iy = y 'y – n 2Y (9.3.16)

    ESS : 222 ''ˆˆ...ˆ YnyXxyxy kiikii (9.3.17)

    Edl n 2Y ehAfatYkMEntMrUvsMrab́mFüm . dUecñ¼ £

    uu ˆ'ˆ = y'y - yX ''̂ (9.3.18)

    enAeBl uu ˆ'ˆ RtUvánKNna/ 2 RtUvKNnaedayRsYlBI (9.3.14) EdleFVIeGayeyIgGacá¨n´RbmaNm¨aRTIs

    v¨arü¨g´- kUv¨arü̈g´ (9.3.13) .

    sMrab́«TarN_cgðúlbgHajrbśeyIg £

    uu ˆ'ˆ = 132100 – [24,4545 0,5091]

    205500

    1110 = 337,373

    dUecñ¼ 2̂ =337,273/8 = 42,1591 EdlCatMélRbhak´RbEhlnwgtMélKNnamunkñúgCMBUk 3 .

    lkçN£énvicT&r OLS ̂ (Property of OLS Vector ̂ ) kñúgkrNIBIrGefr nig 3 Gefr eyIgdwgfa snÞsßn_á¨n´RbmaN OLS KWlIenEG‘r nigminlMeGog nigkñúgfñak´

    énsnÞsßn_à¨n´RbmaNlIenEG‘rminlMeGogTaMgGś vamanv¨arü̈g´´Gb,brma (lkçN£ Gauss-Markov) . Casegçb

    snÞsßn_á¨n´RbmaN OLS CasnÞsßn_à¨n´RbmaNlIenEG‘r nigminlMeGoglðbMput (BLUE). lkçN£en¼Gac

    RtUvBRgIkeTAvicT&r ̂ KWfa ̂ lIenEG‘r [tMélnImYy@rbśvaCaGnuKmn_lIenEG‘rénY ( GefrTak´Tg) ] . E( ̂ ) =

    ̂ KWfasgÇwmKNiténFatunImYy@én ̂ esµInwgFatuRtUvKñaéntMélBit nigkñúgfñaḱénsnÞsßn_á¨n´RbmaNlIenEG‘r

    minlMeGogTaMgGśén , snÞsßn_á¨n´RbmaN OLS ̂ manv¨arü¨g´Gb,brma .

    sMraybBa¢aḱRtUvpþl´eGaykñúgesckþIbEnSm 9A Epñk 9A.4 . dUcánbgHajkñúgkarBnül´dMbUg krNI k

    Gefr PaKeRcInCakarBRgIkénkrNIBIr rW 3 Gefr .

    9¿4 emKuNkMnt ́R2 CaTMrg´m̈aRTIs (The Coefficient of Determination R2 in Matrix Notation) emKuNkMnt́ R

    2 RtUvánkMnt́Ca £

    R2 =

    TSS

    ESS

    kñúgkrNIBIrGefr £

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 270 MATHEMATICS DEPARTMENT

    R2=

    2

    222ˆ

    i

    i

    y

    x

    (3.5.6)

    nigkñúgkrNI 3 Gefr £

    R2 =

    2

    3322ˆˆ

    i

    iiii

    y

    xyxy

    (7.5.5)

    edayeFVITUeTAnIykmµ eyIgán sMrab́krNI k Gefr £

    R2 =

    2

    3322ˆˆˆ

    i

    kiikiiii

    y

    xyxyxy

    (9.4.1)

    edayeRbI (9.3.16) nig (9.3.17) smIkar (9.4.1) GacsresrCa £

    R2 =

    2

    2

    '

    Ynyy

    YnyX

    (9.4.2)

    Edlpþl´eGaym̈aRTIstMNagén R2 .

    sMrab́«TahrN_cgðúlbgHajrbs´eyIg £

    205500

    11105079,03571,24''ˆ yX = 131409,831

    y'y = 132100

    nig n 2Y = 123210

    bBa©ÚltMélTaMgen¼kñúg (9.4.2) eyIgeXIjfa R2 = 0,9224 EdlmantMélRbhak´RbEhlKñanwgtMél

    KNnamun (manlMeGogkat́xÞg´tUc) .

    9¿5 m¨aRTIskUrwTLasüúg (The Correlation Matrix) kñúgCMBUkmun eyIgáns:al´kUrwLasüúglMdab́sUnü (rWkUrWLasüúggay) kUrWLasüúg r12, r13, r23 nig

    kUrWLasüúglMdab´ 1 (rWkUrWLasüúgedayEpñk) r12.3, r13.2, r23.1 nigGnþrTMnak´TMngrbs´va . kñúgkrNI k Gefr eyIg

    nwgman k(k – 1)/2 emKuNkUrWLasüúglMdab́sUnüTaMgGś (ehtuGVI ?) . kUrWLasüúg k(k – 1)/2 TaMgen¼ GacRtUv

    daḱeTACam¨aRTIs EdlehAfa m¨aRTIskUrWLasüúg (Correlation Matrix) R dUcxageRkam £

    kkkkk

    k

    k

    rrrr

    rrrr

    rrrr

    R

    ...

    ...

    ...

    321

    2232221

    1131211

    1...

    ...1

    ...1

    321

    22321

    11312

    kkk

    k

    k

    rrr

    rrr

    rrr

    (9.5.1)

    EdlsnÞsßn_ 1 (dUcmun) kMnt´eGayGefrTaḱTg Y ( r12 £ emKuNkUrWLasüúgrvag Y nig X2¿¿¿¿) nig edayeRbI

    lkçN£emKuNkUrWLasüúgénGefrmYyeFobnwgGefrxøÜnva Canic©kalesµI 1 (r11 = r22 = r33 = ... = rkk = 1) .

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 271 MATHEMATICS DEPARTMENT

    BIm̈aRTIskUrWLasüúg R eKGacrkemKuNkUrWLasüúglMdab´ 1 (emIlCMBUk 7) niglMdab´x

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 272 MATHEMATICS DEPARTMENT

    edaysnµtfa clkr ui Caráyn&rm¨al´ nigsmµtikmµsUnüKW 2 = 3 = ... = k = 0 nig tamCMBUk 8

    eyIgGacbgHajfa £

    F = )/()''ˆ'(

    )1/()''ˆ( 2

    knyXyy

    kYnyX

    (9.7.1)

    eKarBtamráy F edayman df = k – 1 nig df = n – k .

    tarag 9.2 : TMrg´m̈aRTIséntarag ANOVA sMrab́KMrUrWERh:ssüúglIenEG‘r k Gefr

    RbPBbMErbMrYl SS df MSS

    GaRs&yedayrWERh:ssüúg

    ( GaRs&yedayX2, X3, ..., Xk)

    2''ˆ YnyX k – 1

    1

    ''ˆ 2

    k

    YnyX

    GaRs&yedaysMnl´ yXyy ''ˆ' n – k

    kn

    yXyy

    ''ˆ'

    srub y'y – n 2Y n - 1

    kñúgCMBUk 8 eyIgeXIjfa eRkamkarsnµt EdlánbgHajmun manTMnak´TMngmYyrvag F nig R2 KW £

    F = )/()1(

    )1/(2

    2

    knR

    kR

    (8.5.11)

    dUecñ¼tarag ANOVA 9.2 GacRtUvsresrCa tarag 9.3 . RbeyaCn_éntarag 9.3 eFobnwgtarag 9.2 KWfa viPaK

    TaMgmUlGacRtUveFVIántam R2 . eKmincaMác´BinitüemIltY (y'y – n 2Y ) BIeRBa¼vaminmankñúgpleFob F .

    tarag 9.3 : tarag ANOVA k Gefr CaTMrg´m̈aRTIselItMél R2

    RbPBbMErbMrYl SS df MSS

    GaRs&yedayrWERh:ssüúg

    ( GaRs&yedayX2, X3, ..., Xk)

    )'( 22 YnyyR k – 1

    1

    )'( 22

    k

    YnyyR

    GaRs&yedaysMnl´ )')(1( 22 YnyyR n – k

    kn

    YnyyR

    )')(1( 22

    srub y'y – n 2Y n - 1

    9¿8 karBinitüemIllkçxNÐlIenEG‘r £ karBinitüemIlTUeTA F edayeRbITMrg´m̈aRTIs (Testing Linear Restrictions: General F Testing Using Matrix Notation) kñúgEpñk 8.7 eyIgánbgHajkarBinitüemIlTUeTA F edIm,IBinitüemIlsuBlPaBénlkçxNÐlIenEG‘r Edl

    manelItMélà¨r¨aEm̈tmYy rWeRcInénKMrUrWERh:ssüúglIenEG‘r k Gefr . karBinitüemIlsmrmüRtUvánpþl´eGaykñúg

    (8.7.9) [ rWsmIkarsmmUlrbs´va (8.7.10)] . TMrg´m¨aRTIsén (8.7.9) GacRtUvTajánedaygay .

    tag £

    Rû = vicT&rsMNl´BIrWERh:ssüúgkaertUcbMputmanlkçxNÐ

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 273 MATHEMATICS DEPARTMENT

    URû = vicT&rsMnl´BIrWERh:ssüúgkaertUcbMputKµanlkçxNÐ

    dUecñ¼ £ RR uu ˆ'ˆ = 2ˆRu = RSS BIrWERh:ssüúgmanlkçxNÐ

    URUR uu ˆ'ˆ = 2ˆURu = RSS BIrWERh:ssüúgKµanlkçxNÐ

    m = cMnYnlkçxNÐlIenEG‘r

    k = cMnYná¨r¨aEm¨t ( rYmmancMnuckat´G&kß) kñúgrWERh:ssüúgKµanlkçxNÐ

    n = cMnYntMélseg;t

    dUecñ¼ TMrg´m¨aRTIsén (8.7.9) KW £

    F = )/()ˆ'ˆ(

    /)ˆ'ˆˆ'ˆ(

    knuu

    muuuu

    URUR

    URURRR

    (9.8.1)

    EdleKarBtamráy F edayman df = (m, n – k) . tamFmµta RbsinebItMélKNna F BI (9.8.1) FMCagtMél

    RKITik F, eyIgGacbdiesFrWERh:ssüúgmanlkçxNÐ eRkABIen¼eyIgminbdiesF .

    9¿9 karTsßn_TaytMéledayeRbIBhurWERh:ssüúg £ TMrǵm¨aRTIs

    (Prediction Using Multiple Regression: Matrix Formulation) kñúgEpñk 8.10 eyIgánBnül´ (edayeRbITMrg´s;aEl) viFIEdlBhurWERh:ssüúgGacRtUveRbIsMrab́Tsßn_Tay

    (1): tMélmFümnig (2): tMélÉktþ£én Y eBlmantMélrWERh:ssüúg X . kñúgEpñken¼ eyIgbgHajviFITsßn_Tay

    tMélen¼CaTMrg´m¨aRTIs . eyIgk¾bgHajBIrUbmnþedIm,Iá¨n´RbmaNv¨arü¨g´ niglMeGogKMrUéntMélTsßn_Tay . kñúgCMBUk 8

    eyIgánkt´sMKal´fa rUbmnþTaMgen¼RtUváneRbICaTMrg´m̈aRTIsgayRsYlCag eRBa¼kenßams;aEl rWkenßamBiCKNit

    énrUbmnþTaMgen¼mankarsµúKsµaj .

    karTsßn_TaytMélmFüm (Mean Prediction)

    tag

    kX

    X

    X

    x

    0

    03

    02

    0

    1

    (9.9.1)

    CavicT&réntMélGefr X EdleyIgcg´Tsßn_TaytMél 0Ŷ (karTsßn_TaytMélmFümén Y ) .

    }LÚven¼ BhurWERh:ssüúgá¨n´RbmaNCaTMrg´s;aElKW £

    iŶ = kikii XXX ˆ...ˆˆˆ 33221 (9.9.2)

    EdlCaTMrg´m̈aRTIs GacsresredayxøICa £

    iŶ = ̂'ix (9.9.3)

    Edl ix' = [ 1 X2i X3i ... Xki ] nig

    k

    ˆ

    ˆ

    ˆ

    ˆ 2

    1

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 274 MATHEMATICS DEPARTMENT

    smIkar (9.9.2) rW (9.9.3) CakarTsßn_TaytMél énYi RtUvKñanwg ix' .

    RbsinebI ix' dUcánpþl´eGaykñúg (9.9.1) nig (9.9.3) GacsresrCa £

    ̂')'/ˆ( 00 xxYi (9.9.4)

    EdltMélén x0 RtUvánkMnt́ . kt́sMKal´fa (9.9.4) pþl´eGaykarTsßn_TayminlMeGogén E(Yi /x'0) eday

    ehtufa E(x'0 ̂ ) = x'0 (ehtuGVI?) .

    karTsßn_TaytMélÉktþ£ (Individual Prediction)

    dUceyIgándwgBICMBUk 5 nig 8 karTsßn_TaytMélÉktþ£én Y ( Y0) CaTUeTApþl´eGayeday (9.9.3) rW

    (9.9.4) . KWfa £

    (Y0 / x'0) = x'0 ̂ (9.9.5)

    dUecñ¼ sMrab́«TahrN_cgðúlbgHajénEpñk 8.11 TMrg´m̈aRTIsénkarTsßn_TaytMélmFüm nigkarTsßn_TaytMél

    Éktþ£ KW £

    x0 = x1971 =

    16

    567

    1

    nig

    7363,2

    7266,0

    1603,53

    ̂

    dUecñ¼

    7363,2

    7266,0

    1603,53

    165671)'/ˆ( 19711971 xY = 508,9297 (9.9.6)

    = (8.10.2)

    nig 9297,508)'/( 19711971 xY (ehtuGVI?) (9.9.7)

    v¨arü¨g´énkarTsßn_TaytMélmFüm (Variance of Mean Prediction) rUbmnþedIm,Iá¨n´RbmaNv¨arü¨g´én ( )'/ˆ 00 xY KW£

    var( )'/ˆ 00 xY = 2x'0 (X'X)

    -1x0 (9.9.8)

    2 Cav̈arü¨g´én ui , x'0 CatMéls:al´énGefr X EdleyIgcg´Tsßn_Tay nig (X'X) Cam̈aRTIspþl´eGaykñúg

    (9.3.9) KWfaCam¨aRTIsEdleRbIedIm,Iá¨n´RbmaNBhurWERh:ssüúg . CMnYs 2 edaysnÞsßn_á¨n´RbmanminlMeGog

    rbśva 2̂ eyIgGacsresrrUbmnþ (9.9.8) Ca £

    var( )'/ˆ 00 xY = 2̂ x'0 (X'X)

    -1x0 (9.9.9)

    sMrab́«TahrN_cgðúlbgHajénEpñk 8.10 eyIgmantMélxageRkam £

    2̂ =6,4308 X'X-1 =

    1120,00063,06532,1

    0063,00004,00982,0

    6532,10982,03858,26

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 275 MATHEMATICS DEPARTMENT

    edayeRbITinñn&yTaMgen¼ BI (9.9.9) eyIgán £

    var(

    16

    567

    1

    )'(1656714308,6)'/ˆ 119711971 XXxY =6,4308 (0,5688)

    = 3,6580 (9.9.10)

    = (8.10.3)

    nig se( 1971Ŷ /x1971) = 9126,16580,3 (9.9.11)

    =(8.10.3)

    dUecñ¼ BIkarBnül´kñúgCMBUk 5 nig 8 eyIgeXIjfa cenøa¼TMnukcitþ 100(1-) % elItMélmFümRtg´ x0 KW £

    01

    02

    2/0 )'(ˆˆ xXXxtY E(Y/x0) 0

    10

    22/0 )'(ˆ

    ˆ xXXxtY (9.9.12)

    sMrab́«TahrN_rbśeyIg cenøa¼TMnukcitþ 95% sMrab́tMélmFüm KWdUcbgHajkñúg (8.10.6) :

    504,7518 E(Y1971) 513,0868

    v¨arü¨g´énkarTsßn_TaytMélÉktþ£ (Variance of Individual Prediction) rUbmnþsMrab´v¨arü̈g´énkarTsßn_TaytMélÉktþ£ KW £

    var(Y0 / x0) = 2̂ [1+ x'0(X'X)

    -1x0] (9.9.13)

    Edl var(Y0/x0) Ca E[(Y0 - 2

    0 )/ˆ XY ] [GñkGanGacemIlpgEdr (5.10.6)] .

    dUecñ¼edayeRbITinñn&yrbśeyIg eyIgán £

    var(Y1971 / X1971) = 6,4308 (1 + 0,5688) = 10,0887 (9.9.14)

    = (8.10.4)

    nig se(Y1971 / x1971) = 0887,10 = 3,1763 (9.9.15)

    = (8.10.4)

    RbsinebIeyIgcg´beg;Itcenøa¼TMnukcitþ 100(1-) %sMrab́karTsßn_TaytMélÉktþ£ eyIgeFVIdUckñúg (9.9.12)elIk

    ElgEtlMeGogKMrUénkarTsßn_TaytMélRtUveKKNnaBI (9.9.13) . lMeGogKMrUénkarTsßn_TaysMrab´karTsßn_Tay

    tMélÉktþ£RtUveKrMBwgfa mantMélFMCagtMéllMeGogKMrUénkarTsßn_TaytMélmFüm [emIl (8.10.7) ] .

    9¿10 esckþIsegçbénviFIm¨aRTIs £ «TahrN_cgðúlbgHaj

    (Summary of the Matrix Approach: An Illustrative Example)

    CakarsegçbviFIm̈aRTIskñúgviPaKrwERh:ssüúg eyIgbgHaj«TahrN_CaelxEdlCab´Tak´TgnwgbIGefr .

    rMlwk«TahrN_cgðúlbgHajénCMBUk 8 EdlCab´Tak´TgnwgrWERh:ssüúgéncMNaykareRbIRás´pÞal´xøÜnRbmUlpþúMelI

    cMnUlpÞal´xøÜnRbmUlpþúMbnÞab́BIbg´Bn§ nigFanar¨ab́́rg nigGefreBlsMrab´GMlugeBl 1956-1970 . eKánbgHajfa

    Gefrninñakar t GactageGay (kñúgcMeNamGefrepßgeTot) b¨UBuyLasüúgsrub rWRbmUlpþúM £ cMNayeRbIRás´RbmUlpþúM

    RtUveKrMBwgfa ekIneLIg enAeBlb¨UBuyLasüúgfycu¼ . viFImYyénkarpþac´}T§iBlénb̈UBuyLasüúg KWRtUvbþÚrcMNay

    kareRbIRás´RbmUlpþúM nigtYelxcMnUlRbmUlpþúMeTACamUldæankñúgmnusßmñak´ rWmYymuxedayEcknwgcMnYnb̈UBuyLasüúg

    srub . rWERh:ssüúgéncMnayeRbIRás´RbmUlpþúMkñúgmnusßmñak´ elIcMnUlkñúgmnusßmñak´@ nwgpþl´eGayTMnaḱTMngrvag

    cMNayeRbIRás´ nigcMnUleFobnwgbMErbMrYlb̈UBuyLasüúg (rW}T§iBlkMrit) . GefrninñakarGacenAEtrkßaTukkñúgKMrUCa

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 276 MATHEMATICS DEPARTMENT

    }T§ilRbmUlpþúMsMrab}́T§iBlepßgeTot Edlman}T§iBlelIcMNaykareRbIRás´ («/ bec©kviTüa) . sMrab́eKalbMNg

    BiesaFn_ KMrUrwRh:ssüúgrbśeyIgKW £

    Yi = iii uXX ˆˆˆˆ

    33221 (9.10.1)

    Y = cMNayeRbIRás´kñúgmnusßmñak´@/ X2 = cMnUlpÞal´xøÜnkñúgmnusßmñak´@bnÞab´BIbg´Bn§nigFanar¨ab´rg nig X3 =

    eBl . Tinñn&yRtUvkaredIm,IeFVIrWERh:ssüúg (9.10.1) pþl´eGaykñúgtarag 9.4 .

    CaTMrg´m¨aRTIs dMeNa¼Rsayrbs´eyIgGacRtUvbgHajxageRkam £

    15ˆ14ˆ13ˆ12ˆ11ˆ10ˆ

    9ˆ8ˆ7ˆ6ˆ5ˆ4ˆ3ˆ2ˆ1ˆ

    3ˆ2ˆ1ˆ

    1525951

    1425351

    1324871

    1224041

    1123361

    1022391

    921261

    820161

    719691

    619101

    518831

    418811

    318311

    218441

    118391

    2324

    2316

    2257

    2165

    2128

    2048

    1948

    1867

    1815

    1756

    1749

    1735

    1666

    1688

    1673

    u

    u

    u

    u

    u

    u

    u

    u

    u

    u

    u

    u

    u

    u

    u

    (9.10.2)

    y = X ̂ + û

    (15 1) (15 3) (3 1) (15 1)

    tarag 9.4 £ cMNayeRbIRás´pÞal´xøÜnkñúgmnusßmñaḱ@ (PPCE)

    nigcMnUlpÞal´xøÜnkñúgmnusßmñaḱbnÞab́BIbg´Bn§ nigFanar¨ab́rgenAGaemrik (1956-1970) CaduløaqñaM 1958

    PPCE (Y) PPDI (X2) eBl (X3)

    1673 1839 1 ( = 1956) 1688 1844 2 1666 1831 3 1735 1881 4 1749 1883 5 1756 1910 6 1815 1969 7 1867 2016 8 1948 2126 9 2048 2239 10 2128 2336 11 2165 2404 12 2257 2487 13 2316 2535 14 2324 2595 15 (=1970)

    RbPB £ Economic Report of the President, January 1972, Table B-16

    BITinñn&yxagelI eyIgán £

    Y = 1942,333 2X =2126,333 3X =8,0

    (Yi - Y )2 = 830121,333

    (X2i - 2X )2 = 1103111,333 (X3i - 3X )

    2 = 280,0

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 277 MATHEMATICS DEPARTMENT

    X'X =

    nn

    n

    n

    XX

    XX

    XX

    XX

    XXXX

    XXXX

    32

    3323

    3222

    3121

    3333231

    2232221

    1

    1

    1

    1

    ...

    ...

    1...111

    =

    23323

    32222

    32

    iiii

    iiii

    ii

    XXXX

    XXXX

    XXn

    =

    1240272144120

    272144513,6892231895

    1203189515

    (9.10.3)

    X'y =

    247934

    62905821

    29135

    (9.10.4)

    edayeRbIc,ab´éncMraśm¨aRTIspþl´eGaykñúgesckþIbEnSm B eKeXIjfa £

    (X'X)-1

    =

    054034,00008319,0336707,1

    0008319,00000137,00225082,0

    336707,10225082,0232491,37

    (9.10.5)

    dUecñ¼ £

    ̂ = (X'X)-1 X´y =

    04356,8

    74198,0

    28625,300

    (9.10.6)

    plbUksMnl´kaerGacRtUvKNna £

    2ˆiu = uu ˆ'ˆ = y'y - yX ''̂

    = 57420003 – [300,28625 0,74198 8,04356]

    247934

    62905821

    29135

    (9.10.7)

    = 1976,85574

    dUecñ¼eyIgán £

    73797,16412

    ˆ'ˆˆ 2

    uu (9.10.8)

    m¨aRTIsv¨arü¨g´-kUv¨arü̈g´sMrab́ ̂ GacRtUvsresrCa £

    var-cov( ̂ ) = 2̂ (X'X)-1 =

    90155,813705,020634,220

    13705,000226,070794,3

    20634,22070794,3650,6133

    (9.10.9)

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 278 MATHEMATICS DEPARTMENT

    FatuGg;t́RTUgénm̈aRTIsen¼pþl´eGayv¨arü¨g´én 1̂ , 2̂ nig 3̂ erogKña nigrWskaerviC¢manrbs´vapþ;l´eGaylMeGog

    KMrURtUvKña .

    BITinñn&yxagelI eKGacepÞógpÞat´fa £

    ESS : ̂ X'y – n 2Y = 828144,47786 (9.10.10)

    TSS : y'y – n 2Y = 830121,333 (9.10.11)

    dUecñ¼ £

    R2 =

    2

    2

    '

    ''ˆ

    Ynyy

    YnyX

    = 99761,0

    333,830121

    47786,828144 (9.10.12)

    edayeRbI (7.8.4) emKuNkMnt´kMEntMrUv (Adjusted Coefficient of Determination) GacRtUvKNna £

    2R =0,99722 (9.10.12) edayRbmUlpþúMlT§pl eyIgán£

    iŶ = 300,28625 + 0,74198 X2i + 8,04356X3i

    (78,31763) (0,04753) (2,98354) (9.10.14)

    t = (3,83421) (15,61077) (2,69598)

    R2 = 0,99761 2R = 0,99722 df = 12

    bMNkRsayén (9.10.14) KW £ RbsinebI X2 nig X3 yktMélefrRtg´ 0 ena¼tMélmFüméncMnayeRbIRás´pÞal´

    xøÜnkñúgmnusßmñaḱ@ RtUvá¨n´RbmaN esµInwg $ 300 . tamFmµta bMNkRsayéncMnuckat´G&kßen¼minc,as´las´ .

    emKuNrWERh:ssüúgedayEpñk 0,74198 mann&yfa edayrkßatMélGefrepßgeTotefr kMenIncMnUlpÞal´xøÜnkñúg

    mnusßmñak´@ $1 eFVIeGaymankMenIncMnayeRbIRás´pÞal´xøÜnCamFümkñúgmnusßmñak´@ $ 0,74 . Casegçb MPC

    RtUvá¨n´RbmaNesµInwg 0,74 rW 74% . dUcKñaen¼Edr edayrkßaGefrTaMgGs´epßgeTotefr cMNayeRbIRás´pÞaĺ

    xøÜnCamFümkñúgmnusßmñak´@ ekIneLIg edaykMrit $ 8 kñúgmYyqñaM kñúgGMlugqñaM 1956-1970 . R2 = 0,9976

    bgHajfa GefrKitbBa©ÚlBIrRtUvánbBa©Úl 99 % énbMErbMrYlelIcMNayeRbIRáśkñúgmnusßmñak´enAGaemrikkñúgGMlug

    qñaM 1956-1970 . eTa¼Ca 2R Føaḱcu¼ bnþick¾eday vaenAEtmantMélx

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 279 MATHEMATICS DEPARTMENT

    GviC¢man (kUv¨arü¨g´rvagsnÞsßn_á¨n´RbmaNTaMgBIr KW – 0,13705 ) . dUecñ¼ eyIgminGaceRbIkarBinitüemIl t edIm,I

    BinitüemIlsmµtikmµsUnü 2=3 = 0 .

    b¨uEnþrMlwkfa smµtikmµsUnü 2 = 3 = 0 RBmKña GacRtUvBinitüemIledayviFIviPaKv¨arü¨g´ nigkarBinitüemIl

    F EdlánBnül´kñúgCMBUk 8 . sMrab́dMeNa¼Rsayrbs´eyIg taragviPaKv¨arü¨g´ KWCatarag 9.5 . eRkamkarsnµt

    Fmµta eyIgán £

    F = 52,251373797,164

    3893,414072 (9.10.15)

    tarag 9.5 : tarag ANOVA sMrab́Tinñn&ytarag 9.4

    RbPBbMErbMrYl SS df MSS

    GaRs&yedayX2, X3, 828144,47786 2 414072,3893

    GaRs&yedaysMnl´ 1976,85574 12 164,73797

    srub 830121,33360 14

    EdlCaráy F edayman df = 2 nig df = 12 . tMélKNna F mansar£sMxan´sSitix

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 280 MATHEMATICS DEPARTMENT

    eyIgTukeGayGñkGanepÞógpÞat´ edayeRbI (9.9.13) fa £

    var(Y1971 / x'1971 ) = 213,3806 (9.10.19)

    nig se(Y1971 / x'1971 ) = 14,6076

    kMnt´sMKal´ £ var(Y1971 / x'1971 ) = E[Y1971 - 1971Ŷ / x'1971]2 .

    kñúgEpñk 9.5 eyIgánbgHajm¨aRTIskUrWLasüúg R . sMrab´Tinñn&yrbs´eyIg m¨aRTIskUrWLasüúgKW £

    R =

    19664,09743,0

    9664,019980,0

    9743,09980,01

    (9.10.20)

    kt́sMKal´fa kñúg(9.10.20) eyIgánkMnt́RBMEdnm̈aRTIskUrWLasüúgtamGefrénKMrU edIm,IeGayeyIgGackMnt́fa

    etIGefrmYyNaCab´TaḱTgkñúgkarKNnaénemKuNkUrWLasüúg . dUecñ¼ emKuN 0,9980 kñúgCYrTI 1 énm¨aRTIs

    (9.10.20) Ráb´eyIgeGaydwgfa vaCaemKuNkUrWLasüúgrvag Y nig X2 ( r12) . BIkUrWLasüúglMdab´sUnü Edlpþl´

    eGaykñúgm¨aRTIs (9.10.20) eKGacrkemKuNkUrWLasüúglMdab´ 1 edaygay (emIllMhat´ 9.7) .

    9¿11 esckþIsegçb nigkarsnñidæan

    eKalbMNgd¾FMénCMBUken¼ KWRtUvbgHajviFIm̈aRTIselIKMrUrWERh:ssüúglIenEG‘rkøasik . eTa¼CamanbBaØt imYy cMnYntUcénviPaKrWERh:ssüúgRtUvànBnül´k¾eday TMrg´m̈aRTIspþl´eGayviFIxøIéndMeNa¼RsayKMrUrwERh:ssüúglIenEG‘r

    EdlCab´TaḱTgnwgGefrmYycMnYn .

    kñúgkarbBa©b´CMBUken¼ kt́sMKal´fa RbsinebI Gefr Y nig X RtUvvas´TMrg´KMlat (KWfaKMlatBImFümKMrU

    tagrbs´va) mankarERbRbYlmYycMnYntUcelIrUbmnþ EdlánBnül´mun . karERbRbYlen¼RtUváncu¼kñúgtarag 9.6 .

    dUctaragen¼ánbgHaj CaTMrg´KMlat kMEntMrUvsMrab´mFüm n 2Y RtUvykecjBI TSS nig ESS (ehtuGVI ?) .

    karát´tYtMélen¼eFVIeGaymankarpøas´bþÚrkñúgrUbmnþsMrab´ R2 . eRkABIen¼ rUbmnþPaKeRcIn EdlánbkRsaytam

    ÉktargVas´dIm enAEtBitsMrab´TMrg´KMlat .

    tarag 9.6 : KMrUrWERh:ssüúg k GefrtamÉktargVas´edIm nigCaTMrg´KMlat * (Deviation Form)

    Y X2 X3

    Y

    X2

    X3

  • saklviTüal&yPUminÞPñMeBj ROYAL UNIVERSITY OF PHNOM PENH

    edá̈tWm¨ǵKNitviTüa 281 MATHEMATICS DEPARTMENT

    ÉktargVas´edIm TMrg´KMlat

    y =X ̂ + û (9.3.2) y =X ̂ + û

    CYrQrmanFatu 1 kñúgm̈aRTIs X RtUvát́

    (ehtuGVI?)

    ̂ = (X'X)-1X'y (9.3.11) dUcKña

    var-cov( ̂ ) =2(X'X)-1 (9.3.13) dUcKña

    uu ˆ'ˆ = y'y - yX ''̂ (9.3.18) dUcKña

    2iy =y'y – n 2Y (9.3.16) 2iy = y'y (9.11.1)

    ESS = yX ''̂ - n 2Y (9.3.17) ESS = yX ''̂ (9.11.2)

    R2 =

    2

    2

    '

    ''ˆ

    Ynyy

    YnyX

    (9.4.2) R

    2 =

    yy

    yX

    '

    ''̂ (9.11.3)

    * : kt́sMKal´fa eTa¼CakñúgkrNITaMgBIr nimitþisBaØasMrab́m̈aRTIs nigvicT&r dUcKñak¾eday kñúgTMrg´KMlat Fatuénm̈aRTIs

    nigvicT&rRtUvsnµtfa CaKMlat CaCagTinñn&yedIm . kt́sMKal´pgEdrfa kñúgTMrg´KMlat ̂ manlMdab́ k – 1 nig

    var-cov ( ̂ ) manlMdab´ (k – 1)(k – 1) .