klebsiella pneumoniae 에 에에 에 의한 의한

60

Upload: others

Post on 26-Feb-2022

12 views

Category:

Documents


0 download

TRANSCRIPT

Microsoft Word - 001.doc
Klebsiella pneumoniae
NONONONO3333-N


NONONONO3333-N
A A A A Study Study Study Study on on on on the the the the aerobic aerobic aerobic aerobic denitrification denitrification denitrification denitrification of of of of NONONONO3333-N -N -N -N bybybyby
Klebsiella Klebsiella Klebsiella Klebsiella pneumoniaepneumoniaepneumoniaepneumoniae
2008200820082008 8888 24 24 24 24


NONONONO3333-N

....
2008200820082008 4444







2008200820082008 5555

- i -
List List List List of of of of tablestablestablestables
List List List List of of of of figuresfiguresfiguresfigures
ABSTRACTABSTRACTABSTRACTABSTRACT
. . . . 1111
. . . . 3333
1. 1. 1. 1. 3333
1) 1) 1) 1) 3333
2) 2) 2) 2) 11111111
2. 2. 2. 2. 15151515
1) 1) 1) 1) 15151515
2) 2) 2) 2) ammonium ammonium ammonium ammonium 16161616
3) 3) 3) 3) 17171717
3. 3. 3. 3. 17171717
. . . . 18181818
1) 1) 1) 1) Aerobic Aerobic Aerobic Aerobic cultureculturecultureculture 19191919
2)2)2)2) Stationary Stationary Stationary Stationary cultureecultureecultureeculturee 20202020
3. 3. 3. 3. 21212121
- ii -
. . . . 22222222
1. 1. 1. 1. C/NC/NC/NC/N 22222222
2.2.2.2. COD COD COD COD GlucoseGlucoseGlucoseGlucose 25252525
3. 3. 3. 3. NONONONO333333333333-N, -N, -N, -N, COD COD COD COD glucose glucose glucose glucose 26262626
4. 4. 4. 4. 31313131
5. 5. 5. 5. CellCellCellCell 34343434
6. 6. 6. 6. NONONONO3333-N-N-N-N 36363636
7. 7. 7. 7. NHNHNHNH4444-N-N-N-N NONONONO3333-N -N -N -N 37373737
8. 8. 8. 8. T-N T-N T-N T-N 39393939
. . . . 41414141
REFERENCES REFERENCES REFERENCES REFERENCES 42424242
- iii -
Table Table Table Table 1. 1. 1. 1. OOOOxixixixidation dation dation dation of of of of nitrogen nitrogen nitrogen nitrogen species species species species during during during during nitrification.nitrification.nitrification.nitrification. 5555
Table Table Table Table 2. 2. 2. 2. Relationships Relationships Relationships Relationships for for for for oxidation oxidation oxidation oxidation and and and and growth growth growth growth in in in in nitrification nitrification nitrification nitrification reaction reaction reaction reaction
on on on on in in in in relationship relationship relationship relationship to to to to the the the the carbonic carbonic carbonic carbonic acid acid acid acid system.system.system.system. 8888
Table Table Table Table 3.3.3.3. Neutron Neutron Neutron Neutron poison poison poison poison of of of of affecting affecting affecting affecting nitrifying nitrifying nitrifying nitrifying bacteriabacteriabacteriabacteria 10101010
Table Table Table Table 4. 4. 4. 4. Relationships Relationships Relationships Relationships for for for for nitrate nitrate nitrate nitrate dissimilation dissimilation dissimilation dissimilation and and and and growth growth growth growth in in in in
denitrification denitrification denitrification denitrification reactions.reactions.reactions.reactions. 13131313
Table Table Table Table 5. 5. 5. 5. Comparison Comparison Comparison Comparison of of of of energy energy energy energy yields yields yields yields of of of of nitrate nitrate nitrate nitrate dissimilation dissimilation dissimilation dissimilation vsvsvsvs
oxygen oxygen oxygen oxygen respiration respiration respiration respiration for for for for glucose.glucose.glucose.glucose. 14141414
Table Table Table Table 6. 6. 6. 6. Composition Composition Composition Composition of of of of synthetic synthetic synthetic synthetic wastewater.wastewater.wastewater.wastewater. 18181818
Table Table Table Table 7. 7. 7. 7. Analytical Analytical Analytical Analytical methods methods methods methods and and and and parameters.parameters.parameters.parameters. 21212121
- iv -
List List List List of of of of figuresfiguresfiguresfigures
Fig. Fig. Fig. Fig. 1.1.1.1. Effects Effects Effects Effects of of of of different different different different C/N C/N C/N C/N ratios ratios ratios ratios concentrations concentrations concentrations concentrations
on on on on NONONONO3333-N -N -N -N removalremovalremovalremoval 20202020
Fig. Fig. Fig. Fig. 2. 2. 2. 2. Effects Effects Effects Effects of of of of different different different different C/N C/N C/N C/N ratios ratios ratios ratios concentrations concentrations concentrations concentrations
on on on on cell cell cell cell growthgrowthgrowthgrowth 22222222
Fig. Fig. Fig. Fig. 3.3.3.3. Effects Effects Effects Effects of of of of different different different different C/N C/N C/N C/N ratios ratios ratios ratios concentrations concentrations concentrations concentrations
on on on on COD COD COD COD removalremovalremovalremoval 23232323
Fig. Fig. Fig. Fig. 4. 4. 4. 4. Effects Effects Effects Effects of of of of different different different different C/N C/N C/N C/N ratios ratios ratios ratios concentrations concentrations concentrations concentrations
on on on on Glucose Glucose Glucose Glucose removalremovalremovalremoval 24242424
Fig. Fig. Fig. Fig. 5. 5. 5. 5. Effects Effects Effects Effects of of of of different different different different nitrogen nitrogen nitrogen nitrogen concentrations concentrations concentrations concentrations
on on on on NONONONO3333-N -N -N -N removalremovalremovalremoval 25252525
Fig. Fig. Fig. Fig. 6. 6. 6. 6. Effects Effects Effects Effects of of of of different different different different nitrogen nitrogen nitrogen nitrogen concentrations concentrations concentrations concentrations
on on on on NONONONO3333-N -N -N -N removalremovalremovalremoval 26262626
Fig. Fig. Fig. Fig. 7. 7. 7. 7. Effects Effects Effects Effects of of of of different different different different nitrogen nitrogen nitrogen nitrogen concentrations concentrations concentrations concentrations
on on on on cell cell cell cell growthgrowthgrowthgrowth 27272727
Fig. Fig. Fig. Fig. 8. 8. 8. 8. Effects Effects Effects Effects of of of of different different different different nitrogen nitrogen nitrogen nitrogen concentrationsconcentrationsconcentrationsconcentrations
on on on on COD COD COD COD removalremovalremovalremoval 28282828
Fig. Fig. Fig. Fig. 9.9.9.9. Effects Effects Effects Effects of of of of different different different different nitrogen nitrogen nitrogen nitrogen concentrations concentrations concentrations concentrations
on on on on Glucose Glucose Glucose Glucose removalremovalremovalremoval 30303030
Fig. Fig. Fig. Fig. 10. 10. 10. 10. Effects Effects Effects Effects of of of of different different different different carbon carbon carbon carbon sources sources sources sources on on on on NONONONO3333-N -N -N -N removalremovalremovalremoval 31313131
Fig. Fig. Fig. Fig. 11. 11. 11. 11. Effects Effects Effects Effects of of of of different different different different carbon carbon carbon carbon sources sources sources sources on on on on cell cell cell cell growthgrowthgrowthgrowth 32323232
- v -
Fig. Fig. Fig. Fig. 12. 12. 12. 12. Effects Effects Effects Effects of of of of different different different different cell cell cell cell concentrations concentrations concentrations concentrations
on on on on NONONONO3333-N -N -N -N removalremovalremovalremoval 34343434
Fig. Fig. Fig. Fig. 13. 13. 13. 13. Effects Effects Effects Effects of of of of different different different different cell cell cell cell concentrations concentrations concentrations concentrations
on on on on cell cell cell cell growthgrowthgrowthgrowth 35353535
Fig. Fig. Fig. Fig. 14. 14. 14. 14. Effects Effects Effects Effects of of of of stationary stationary stationary stationary culture culture culture culture
on on on on NONONONO3333-N -N -N -N removal removal removal removal and and and and cell cell cell cell growthgrowthgrowthgrowth 36363636
Fig. Fig. Fig. Fig. 15. 15. 15. 15. Effects Effects Effects Effects of of of of C/N C/N C/N C/N 5 5 5 5 ratio ratio ratio ratio concentrations concentrations concentrations concentrations
on on on on NHNHNHNH4444-N -N -N -N and and and and NONONONO3333-N -N -N -N removal removal removal removal and and and and cell cell cell cell growthgrowthgrowthgrowth 37373737
Fig. Fig. Fig. Fig. 16. 16. 16. 16. Analysis Analysis Analysis Analysis of of of of T-N T-N T-N T-N in in in in cultural cultural cultural cultural supernatant supernatant supernatant supernatant and and and and cellscellscellscells 39393939
- vi -
ABSTRACTABSTRACTABSTRACTABSTRACT
A A A A Study Study Study Study on on on on the the the the aerobic aerobic aerobic aerobic denitrification denitrification denitrification denitrification of of of of NONONONO3333-N -N -N -N bybybyby
Klebsiella Klebsiella Klebsiella Klebsiella pneumoniaepneumoniaepneumoniaepneumoniae
by Kim Sol Jin
Advisor : Prof. Kyeong-Hoon Cheong
Department of Environmental Engineering,
Graduate School, Chosun University
The aim of this research is to investigate the effects of several factors
on the removal of NO3-N under aerobic condition by Klebsiella pneumoniae.
In the synthetic wastewater initially containing 350 mg/ of NO3-N. NO3-N
were completely consumed at C/N ratios of 5, 10, 20 and 34.3, but at C/N
2.5, the consumption of NO3-N stopped at 207 mg/. For the complete remo
val of NO3-N and complete consumption of glucose, the optimal C/N was 5.
Therefore, the addition of external carbon is necessary in the wastewater tr
eatment of NO3-N at C/N less than 5.
The effect of shaking and standing cultures on NO3-N removal also
- vii -
investigated.
NO3-N was removed complete after 24 hours on the shanking culture. NO3-N
was removed complete attained in after 24 hours on the shaking culture. Si
milarly the NO3-N was slowly removed on the standing culture.
By taking the nitrogen balance after cultivation of 24 hours, about 82.5%
of removed T-N was denitrified and 7.6% of removed T-N was converted
to the intracellular nitrogen.
. . . .


.
.
,

(U.S. EPA,
1993)
,
.
, A2O
, ,
1). Watanabe 2,3) RBC
, 4) C/N . Gupta 5)

.



.

. NH4 + N2


6,7). ,
N2 8,9)
- 2 -
Thiosphaera pantotropha11)
(Mona Kshirsagar et al., 1995),
Alcaligenes faecalis12)
(Joo et al., 2005), prokaryotic eukaryotic heterotrophs
NO2 - NO3-N 13).

.


ANAMMOX . ANAMMOX
,
. 14)
.
NO3-N
Klebsiella pneumoniae NO3-N
C/N, , , Cell .
- 3 -
. . . .
1. 1. 1. 1.
.
(NH4-N)
. (assimilation) -
.
(NH4-N) () . (NH4-N)
. -
.
(nitrate) .
.
. .
,
. (denitrification)
(terminal electron
acceptor) , (anoxic)
25).
1) 1) 1) 1)
(Org-N), (NH4-N),
(NO2-N) (NO3-N) ,
.
,
(Nitrification) .
Nitrosomonas
Nitrobacter .
- 4 -
.
.

. Nitrosomonas Nitrobacter
.
. hydroxylamine(NH2OH)

hydroxylamine , (1)
NH2OH NO2 - cytochrome semiclical
, (NO2-N) 15-17).
NH2OH + O2 → H2 + NO2 - + H2O +Energy (1)
(NO2-N) .

18).
- 5 -
Table 1
,
hydroxylamine Hypothetical nitroxyl ,
19).
DO
. Monod (2) DO
. Monod Nitrosomonas
N DO .
N = N
N : Nitrosomonas , day-1
DO : , mg/L
KO2 : , mg/L
(2) KO2 1.3 mg/L, 15 0.15 mg/L, 2
5 0.42 mg/L . DO
DO 0.5 mg/L
.
Nitrosomonas 1.0 mg/L , Nitrobacter 2.0
mg/L 20). U.S. EPA21)
, floc
, 0.5 ∼ 2.5 mg/L .

0.2 mg/L 20).
- 7 -
. Nitrifier
Nitrosomonas 30 ∼ 36, Nitrobactor 28 22).
Nitrifier 4 ∼ 50 , 4 45
. 15
.
pH . HCO3 -
(H2CO3) pH
pH . CaCO3
1 mg 7.14 mg
7 mg 23).
- 8 -
pH
. 50 mg/L
. ,
(Buffer) pH
. (Table 2),
1 mg CaCO3
7.14 mg.
Table 2. Relationships for oxidation and growth in nitrification reaction on in
relationship to the carbonic acid system
Reaction Equation
) ) ) )
,
.
,
. , pH 7.5 ∼ 9.0 10 ∼ 20
mg/L . Fig. 2 Painter(1970)
24).

.
.
OrganicsOrganicsOrganicsOrganics InorganicsInorganicsInorganicsInorganics
Thiourea Zn
Allyl-Thiourea OCN-1
- 11 -
2) 2) 2) 2)
(Nitrate ion) N2, N2O, NO
. Achromobacter, Bacillus, Brevib-acterium,
Micrococcus, Pseudomonas . .
, , 80%
.
,
, (NO3 -,SO4
2-)
.
,
.
. 2 ,
26) ,
.
.
.
N2, N2O . Nitrate dissimilation
respirationd , (Micrococcus, Psuedomonas, Denitrobacill
us, Spirillum, Achromobacter)
. (Assimilation)
,
.
, Nitrate assimilation
Neurospora, Achromobacter Aspergillus, Lactob
acillus, Escherichia coli, Azotobacter .
- 12 -
) ) ) )
5 ∼ 25 5 . 5 ∼ 2
5 10 2
. 3 ∼ 30 (3) Arrhenius 25).
K = Ae-E/RT (3)
T :
) ) ) ) pH pH pH pH
. Table 4
(Carbonic acid) (Bicarbonate)
. 3.57 mg(as CaCO3)/mg Nreduced,
2.3 ∼ 3.0 mg(as CaCO3)/mg Nreduced 27).
pH ,
. pH bacteria
pH 7 ∼ 8 .
pH .
- 13 -
Table 4. Relationships for nitrate dissimilation and growth in denitrification
reactions.
-
28).
, ATP
.
29).
- 14 -
Table 5. Comparison of energy yields of nitrate dissimilation vs oxygen
respiration for glucose
glucose kilocalories
Nitrate Dissimilation
5C6H12O6 + 24KNO3 →
C6H12O6 +6O2 → 6CO2 + 6H2O 686 Kcal
DO 30).
0.2 mg/L
0.3 ∼ 1.5 mg/L 29).
NO2 - , NO3
-
NO2 - 31). 5
DO N2O 32). NO2 -
13% NO3 - 13%
.
- 15 -
2. 2. 2. 2.


.
.
.
(heterotrophic nitrification) (aerobic de-
nitrification), ammonium (anaerobic ammonium oxidization),
33).
nitrite
.
,
.
.
1) 1) 1) 1)

(Pochana, 1999)
DO (Puznava, 2000)
(Kubleman, 1988). DO
(Pochana, 1999).

DO
(Kubleman, 1988).
(Helmer, 1998),


- 16 -
(Sakadibara and Kuroda, 1993; Felekke, 1998)1).
floc, ,
cluster
.
. floc 150

. aggregates 100
34).
. (specific activity)
,
33).
2) 2) 2) 2) ammonium ammonium ammonium ammonium
. Bock35)
Nitrosomonas eutropha
, ammonium 1.3 × 10-6 mol NH4 +/kg protein s
. Ammonium nitite( NO) 40 ∼ 60%
, N2O hydroxylamine . Nitrosomonas
eutropha NO2 3 ∼ 4 mg/L
. nitrite 50%
. Nitrosomonas
ammonia nitrite nitrous oxide
.
- 17 -
3) 3) 3) 3)
ammonium mono-oxygenase
.
, free energy 36).

37).
38).


.

.
3. 3. 3. 3.
-
, DO ( 1 mg/L )
BOD .
, DO 1 mg/L
, DO 1 mg/L
. DO
.
39). Langeland40)
- 100% ,

41). -
- ,
, DO .
- 18 -
1. 1. 1. 1.
1) 1) 1) 1)
14) Klebsiella pneumoniae
.
Components Concentration Remarks
NH4NO3
NaNO3
2) 2) 2) 2)
Table 6 , MgSO47H2O
NH4NO3 autoclave 48).
2. 2. 2. 2.
1) 1) 1) 1) Aerobic Aerobic Aerobic Aerobic cultureculturecultureculture
Table 6 Agar 1.5% K. pneumoniae
K. pneumoniae 10 ml
12 10 ml
1% 12 .
500 mL 150 mL K. pneumoniae 1%
30 140 rpm . C/N NO3-N
glucose C/N 2.5 ∼ 34.3
,
NaNO3 50 /L∼700 /L (C/N:5),
NO3-N . 25 /L~700 /L NO3-N
COD Glucose .
glucose methanol acetate
. K. pneumoniae cell 0.5%, 1%,
2% 4% .
- 20 -
O D
2) 2) 2) 2) Stationary Stationary Stationary Stationary cultureculturecultureculture
500 mL 150 mL K. pneumoniae
1% 30 . NaNO3
, 350 /L (C/N : 5).
- 21 -
3. 3. 3. 3.
Table 7 . pH, NH4-N
NO3-N 42) , Glucose
DNS method49,50) .
Table 7. Analytical methods and parameters
Items Analytical methods
NH4-N Indophenol method
Glucose DNS method
- 22 -
. . . .
1. 1. 1. 1. C/NC/NC/NC/N NONONONO3333-N -N -N -N
Fig. 2 C/N NO3-N .
glucose C/N , Klebsiella pneumoniae
Fig. 3 . C/N 2.5~10 9 lag time
NO3-N 18 NO3-N
207.4 mg/L, 7.024 mg/L, 7 mg/L 41.3%, 98.3%, 98%
. C/N 20 34.3 lag time 12 18 C/N
NO3-N C/N 34.3
24 91.5% . , C/N 2.5
NO3-N 41.3% .
Time (hr)
N O
3- N
C/N 2.5 C/N 5 C/N 10 C/N 20 C/N 34.3
Fig. 2. Effects of different C/N ratios on NO3-N removal.
- 23 -
Fig. 3 C/N 2.5 NO3-N Optical density
. C/N 10 20
Optical density C/N 5 cell growth
. C/N 34.3 C/N cell growth 24
C/N 20 .
Klebsiella pneumoniae NO3-N cell growth
C/N 5 .
Time (hr)
O D
C/N 2.5 C/N 5 C/N 10 C/N 20 C/N 34.3
Fig. 3. Effects of different C/N ratios on cell growth.
- 24 -
2. 2. 2. 2. COD COD COD COD GlucoseGlucoseGlucoseGlucose
Fig 4 C/N COD . glucose
C/N 2.5 70.7% COD , C/N 5 68.1%,
C/N 10 71.5% C/N 20 C/N 34.3
36.4% 17.24% . C/N2.5 5 NO3-N 1
g COD 6.79 5.37 gCOD/gNO3-N, C/N 10 20
12.05 11.49 gCOD/gNO3-N, C/N 34.3 9.3 gCOD/gNO3-N.
Time (hr)
C O
C/N 2.5 C/N 5 C/N 10 C/N 20 C/N 34.3
Fig. 4. Effects of different C/N ratios on COD removal.
- 25 -
Fig. 5 C/N glucose . C/N 2.5 91.68%,
C/N 5 96.8%, C/N 10 70%, C/N 20 C/N 34.3 37%
24% Glucose NO3-N . Fig. 2
C/N 34.3 94.8% NO3-N 24% glucose
.
Time (hr)
G lu
co se
C/N 2.5 C/N 5 C/N 10 C/N 20 C/N 34.3
Fig. 5. Effects of different C/N ratios on Glucose removal.
- 26 -
3. 3. 3. 3. NONONONO333-N, -N, -N, -N, COD COD COD COD glucose glucose glucose glucose



47). Klebsiella pneumoniae
1% NaNO3 Klebsiella pneumoniae
.
f Fig. 6 Fig. 7 .
Time (hr)
N O
3- N
Fig. 6. Effects of different nitrogen concentrations on NO3-N removal.
- 27 -
NO3-N 50 /L ~ 700 /L , C/N
5 . NO3-N 700 /L 15 97.6%
350 /L 9 97% . 175 /L 50 /L
24 55%, 90% .
Fig. 7 cell growth NO3-N
cell growth .
Time (hr)
O D
Fig. 7. Effects of different nitrogen concentrations on cell growth.
- 28 -
NaNO3 Klebsiella pneumoniae
COD Glucose
.
C O
Fig. 8. Effects of different nitrogen concentrations on COD removal.
- 29 -
Fig. 8 C/N 5 glucose
. glucose COD 700 /L 64.3%,
350 /L 175 /L 74%, 77% 50 /L 25 /L 76% 71%
COD
.
- 30 -
NO3-N Fig. 6 Fig. 9
glucose glucose NO3-N
NO3-N glucose NO3-N
.
Time (hr)
G lu
co se
Fig. 9. Effects of different nitrogen concentrations on Glucose removal.
- 31 -
Fig. 10 11 Klebsiella pneumoniae
. Fig. 10 Glucose NO3-N 24
, Acetate 24.4% , Methanol
. Fig. 11 Glucose Acetate
Methanol
.
Time (hr)
N O
3- N
Fig. 10. Effects of different carbon sources on NO3-N removal.
- 32 -
Fig. 10 11 Klebsiella pneumoniae
. Fig. 11 Glucose OD
12 OD 2.00 Acetate
Methanol
. 46) A2O
(TIN)
46). Glucose(C/N:5), Acetate(C/N
:5), Methanol(C/N:5) , NO3-N 350
/L , C/N 5 Acetate
Methanol , Klebsiella pneumoniae
Glucose .
Time (hr)
O D
Fig. 11. Effects of different carbon sources on cell growth.
- 33 -
, 24 OD 0.997
Methanol
Methanol .
- 34 -
5. 5. 5. 5. cellcellcellcell
Cell NO3-N ,
Fig. 12 Fig. 13 . Fig. 12 cell 2% 4%
12 , 0.5% 24
. Pseudomonas aeruginosa cell
cell NO3-N
2% NO3-N 48).
Time (hr)
N O
3- N
Fig. 12. Effects of different cell concentrations on NO3-N removal.
- 35 -
Fig. 13 cell growth cell
cell cell .
NO3-N cell cell growth
.
O D
Fig. 13. Effects of different cell concentrations on cell growth.
- 36 -
6. 6. 6. 6. NONONONO3333-N-N-N-N
Fig. 14 K. pneumoniae 1% 30
. NaNO3 , 350 /L
(C/N : 5). DO
NO3-N DO NO3-N
51). 30 140
rpm Fig. 6 350 /L Fig. 11 Glucose
NO3-N 98%
Optical density
.
0 3 6 9 12 15 18 21 24 0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
)
Fig. 14. Effects of stationary culture on NO3-N removal and cell growth.
:NO3-N (350 mg/L) :Optical Density (660 nm)
- 37 -
7. 7. 7. 7. NHNHNHNH4444-N-N-N-N NONONONO3333-N -N -N -N
NH4Cl NaNO3 150
/L, 350 /L, C/N 5 NH4-N NO3-N Fig.
16 .
Time (hr)
N H
)
Fig. 15. Effects of C/N 5 ratio on NH4-N and NO3-N removal and cell growth.
- 38 -
NH4-N 175 /L 30
. , Klebsiella pneumoniae 350 /L
NO3-N 12 , 150 /L NH4-N 24 50%
. Fig. 15 12 NH4-N 75
/L Klebsiella pneumoniae

.
- 39 -
Klebsiella pneumoniae . Fig. 16
, 24 .
NaNO3 C/N 5 60.7 mg, NO3-
N 404.64 mg/L . 30, 140 rpm 24
5.99 mg 4.61 mg, NO3-N
6 mg/L. Klebsiella pneumoniae 82.5%
7.6% .
Time (hr)
T -N
Fig. 16. Analysis of T-N in cultural supernatant and cells.
- 40 -
Pseudomonas aeruginosa 64%
52) , Alcaligenes faecalis No. 4

, 90% 10).
53) NH4NO3 T-N 70 mg
Klebsiella pneumoniae F-5-2 T-N 10%
.
- 41 -
Klebsiella pneumoniae NO3-N C/N, C/N
COD(Chemical Oxygen Demand) DNS(), , , cell
NH4-N, NO3-N T-N
.
1. C/N 5 NO3-N 24 C/N
. C/N 2.5
. C/N 5.
2. 24 NO3-N 700 /L 98%
, 50 /L 55% .
3. 700 /L glucose NO3-N NO3-N 50 /L
glucose NO3-N .
4. glucose NO3-N
methanol acetate .
5. cell NO3-N 2% NO3-N
. cell cell
Optical density .
.
7. C/N 5 60.7 mg 30, 140 rpm 24
T-N Klebsiella pneumoniae 82.5%
7.6% .
- 42 -
REFERENCES REFERENCES REFERENCES REFERENCES
1) Barnes. D. and Bliss. P. J., "Biological control of nitrogen in wastewater tr
eatment.", (1st ed) E.& F.N.Spon Co., pp. 89~112, 1983.
2) Watanabe. Y., Masuda. S. and Ishiguro. M., "Simultaneous nitrification and
denitrification in microaerobic biofilms.", Wat. Sci. Tech. 26(3-4). 511~52
2, 1992.
3) Masuda. S. Watanabe. Y. and Ishiguro. M. "Biofilm properties and simultan
eous nitrification and denitrification in Aerobic RBCs.", Wat. Sci. Tech. 23
(3). 1355~1363, 1991.
4) , , “A2O C/N
.” , 21(6).1037~1045, 1999.
5) Gupta. A. B. Gupta. S. K. "Simultanceous carbon and nitrogen removal in
a mixed culture aerobic RBC biofilm.", Wat.Res. 33(2).555~561,
1999.
6) Carrera J, Baeza JA, Vicent T, Lafuente J., "Biological nitrogen removal of
high-strength ammonium industrial wastewater with two-sludge system.",
WaterRes. 37 4211-4221, 2003.
7) Itokawa H, Hanaki K, Matsuo T., "Nitrous oxide production in high-loading
biological nitrogen removal process under low COD/N ratio condition.", Wa
ter Res. 35 657-664, 2001.
8) Schmidt I, Sliekers O, Schmid M, Bock E, Fuerst J, Kuenen JG, Jetten MS
M, Strous M, "New concepts of microbial treatment processes for the nitro
gen removal in wastewater.", FEMS Microbiol. Rev. 772 481-492, 2003.
9) Khin T, Annachhatre AP., "Novel microbial nitrogen removal processes.", Bi
otechnol. Adv. 22 519-532, 2004.
10) , Makoto Shoda, "A Study on the Pathway of High-Strength Ammo
nium Removal by Heterotrophic Nitrification-Aerobic Denitrification Bacteriu
m, Alcaligenes faecalis No.4.", 2006. pp.230-235
- 43 -
11) Mona Kshirsagar, A. B. Gupta, S. K Gupta, “Aerobic denitrification stu
dieson activated sludge mixrd with Thiosphaera pantotropha.”, Environment
al technology, 16:35-43, 1995.
removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes f
aecalis no.”, The Society for Biotechnology, 100:184-191, 2005.
13) Kuenen, J. G. and Robertson, L. A, “Combined nitrification denitrification
processes.”, FEMS Microbiol. Rev. 15:109-117, 1994.
14) , , , , “
.” Microbiol. Biotechnol, 33(1):65-6
9, 2005.
15) Focht, D. D., and Chang, A. C., “Nitrification and denitrification Process
es Related to Wastewater Treatment.” Adu Appl. Microbiol, 20: 631, 1997.
16) , , , , “
.” , 13(3):255-263 1997.
17) EPA, “Process Design Mannual Nitrogen Control.” Washington, DC, 1975.
18) Sharma, B., and Ahlert, R, C., “Nitrification and Removal.” Wat Res., 11:
393-400, 1964.
19) Poduska, R. A. and Adrews, J. F.. “Dynaamics of nitrificationin the Activa
ted Sludge Process”, Jour. water poll. control Fed.,47:2599-2619, 1975.
20) Sorm, R., Wanner, J., Bortone, G. and Tilche, A. “Behaviour of Activated
Sludge from a System with Anoxic Phosphate Uptake”, Wat, Sci. Tech., 3
7:563-566, 1998.
21) U.S EPA. “Manual Nitrogen Control, Office of Wasetwater Enforcement an
d Compliance.”, Washington, D.c. 1993.
22) Nilson, I. Hilson, S, Morin, N. and K. Mosbach, “Denitrificationin of Water
using Immobilized Psedomonas Denitrificationin Cells”, Eur. J. Appl. Microb
iol biotechnol, 10:261-274, 1991.
mpter, 1993.
24) Painter, H. A.,,"A Review of Literature on Inorganic Metabolism in Microor
- 44 -
ganism.“ Wat. res., 4(6):393-450,1970.
25) Tchobanoglous, G., Burton, F.L. and Stensel, H.D. Wastwater engi neerin
g, McGraw Hill Inc., New Yok, N.Y. 2003.
26) Sumino, T. Nakamura, H. and K. Yukio, “TImmobilization of Nitri-fying Ba
cteria by Polyethylene Glycol Prepolymer”,J. Ferment. Bioeng, 73:37-42, 1
992.
27) Wanger, M., Rath, G., Amann, R., Koops, H.p. and Schleiferm, K.H. “In
situ Identification of ammonia - Oxidizing Bacteria”, sys. Appl. Microbio.,
18:251-264, 1995.
28) WEF, “Design of Wastewater Treatment Plants, 4th ed., Manual of Practic
e No.8.”, Water Environmental Federation, Alexandria, 1998.
29) Simpkin, T.J. “The Lack of Repression by Oxygen of the Denitrifying Enzy
mes in Activated Siuge.” Water res., 22:201-206, 1981.
30) Payne, W. J, Denitrification, Wiley-interscience, New York, N.Y.1981.
31) Hockenbury,M.R. and Grady, C.P.L.“Inhibitition of Nitrification Effects of S
elected Organic Compounds.”J. Water Pollu. Cont. Fed., 49:768,1977 13-3
3, 1985.
32) Hochstein, P., Ramasarma, T. and Muakkassah-Kelly,s. “Inhibitition of Nitr
ification of Dissolved Oxygen.” Water Res.,20(3):243-250, 1984.
33) Jetten, M.S.M, “Newpathways for ammonia conversion in soil and aquatic
systems.” Plant and Soil., 230:9-19, 2001.
34) Van Loosdrecht, M.C.M., and Jetten, M.S.M., “Microbiological conversions
in nitrogen removal.”Wat. Sci. Tech., 38:1-7, 1998.
35) Winogradsky, M.S.“Recherches Sur Les Organismes de la Nitrification”, A
nnals Institute Pasteur, 5:92, 1981.
36) Brodda, E., “Two kind of lithortophs missing in nature”, Z. Allg. Microb 1
7:491-493, 1977.
37) Wild, H.E., Sawyer, C.N. and McMahon, T.D. “Factors affectiing nitrificati
on kinetics.” J. Water Pollu. Cont. Fed, 43:1845, 1971.
38) Jetten, M. S. M., Horn, S. J., Van Loosdrecht, M.C.M., “Towards a more
sustainable municipal wastewater treatment system”, Wat. SciTech. 35:171
- 45 -
-180, 1997.
39) Rittman, B. E., and McCarty, P. L., "Environmental Biotechnology : Princi
pal and Applications.", McGraw-Hill, pp, 508-511, 2002.
40) Rittmann, B. E., and Langeland, W. E.,“Simultaneous denitrification with n
itrification in single-channel oxidation ditches.”, Appl environ. Microb 55:30
0-308, 1985.
41) Bertanza, G., “Simultaneous nitrification-denitrification process in extende
d aeration plants: pilot and real scale experience.” Wat. Sci.Tech., 35(6):53:6
1, 1997.
43) , , , “ -
” . pp.323~329, 2005.
44) , , , “ C/N SBR Two -sludg
e ” . pp.7~14, 2006.
45) , , , , , “Biofilter C/N D
O ” .pp 355~361,
2006.
46) , , , “ A2O
C/N ” . pp 687~
692, 2006.
47) , , , “Effect of Initial Concentration of Ammonium Ion
and Active Nitrifiers on Nitrification" 26(4):421~426
48) , , , , , , "Simultaneous Removal of
NH4+ and NO3- by Pseudomonas aeruginosa " pp 68~7
3, 2006.
49) Sun, Y. and J. Cheng, "Hydrolysis of lignocellulosic materials for ethanol
production: a review" Bioresource Technol. 83, 1-11., 2002.
50) Kadar, Z., Z. Szengyel, and K. Reczey, "Simultaneous saccharification an
d fermentation (SSF) of industrial wastes for the production of ethanol." l
nd. Crop prod. 20. 103-110, 2004.
51) , , “The Study of Simultaneous Nitrification and Denitrification
- 46 -
52) , “Pseudomonas aeruginosa NH4 + NO3
-
53) Young-Ju Kim, Makoto YOSHIZAWA, Shinji TAKENKA, Shuichiro
MURAKAMI, and Kenji AOKI,, "Isolation and Culture Conditions of a
Klebsiella pneumoniae Strain That Can Utilize Ammonium and Nitrate
Ions Simultaneously with Controlled Iron and Molybdate Ion
Concentrations." Biosci. Biotechnol. Biochem., 66(5), 996-1001, 2002.
- 47 -
.
3 4 2
.

.

.

.
,
, , , .
, ,
,

.
.


.

.


. 3

.
- 48 -
20077111
: : : Kim Sol Jin
806 E-MAIL : [email protected]


: A Study on the aerobic denitrification of NO3-N by
Klebsiella pneumoniae
.
- - 1. DB , ,
2. . , .
3. ,, . 4. 5 , 3 .
5. 1 .
6.
7. .
:::((( ))) ((( )))
2008 8

2.
3.
.
1.
2.
3.
3. NO3-N, COD glucose
4.
6. NO3-N