lecture 2 particle in an isotropic potential

22
YS – 2019-20 – C2 1 Lecture 2 Particle in an isotropic potential - The angular momentum in Quantum Mechanics -

Upload: others

Post on 04-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

YS – 2019-20 – C2

1

Lecture 2

Particle in an isotropic potential

- The angular momentum in Quantum Mechanics -

YS – 2019-20 – C2

2

The angular momentum in physics

Τ¦β„’ = Τ¦π‘Ÿ Γ— Ԧ𝑝

β„’ = π‘šπ‘Ÿπ‘£βŠ₯

β€’ In an isotropic potential 𝑉(π‘Ÿ), Τ¦β„’ is a constant of motion. The

particle moves in a plane that contains the centre of the

potential, and the area Τ¦π’œ swept by Τ¦π‘Ÿ is swept at a constant rate : Ξ€π‘‘π’œ

𝑑𝑑 = Ξ€β„’ 2π‘š

β€’ Total energy of the particle : 𝐸 =1

2π‘šπ‘£π‘Ÿ

2 +π“›πŸ

2π‘šπ‘Ÿ2+ 𝑉(π‘Ÿ)

Veff(π‘Ÿ)

The problem is equivalent to a 1D problem, where Τ¦β„’ is set by

some initial conditions

Τ¦β„’

O

mass π‘š

Τ¦π‘Ÿ

Ԧ𝑝

YS – 2019-20 – C2

3

The effective potential

Total energy of the particle : 𝐸 =1

2π‘šπ‘£π‘Ÿ

2 +π“›πŸ

2π‘šπ‘Ÿ2+ 𝑉(π‘Ÿ)

Veff(π‘Ÿ)

Energy

𝐸O

Elliptical orbit Τ¦π‘Ÿ

π‘Ÿ

Apogee

Perigee

𝓛1

𝓛2 > 𝓛1

YS – 2019-20 – C2

4

The orbital angular momentum

Classical approach : Τ¦β„’ = Τ¦π‘Ÿ Γ— Ԧ𝑝 =π‘₯𝑦𝑧

Γ—

𝑝π‘₯𝑝𝑦𝑝𝑧

Quantum approach : 𝐿 = 𝑅 Γ— 𝑃 =π‘‹π‘Œπ‘

Γ—π‘ƒπ‘‹π‘ƒπ‘Œπ‘ƒπ‘

=π‘Œπ‘ƒπ‘ βˆ’ π‘π‘ƒπ‘Œπ‘π‘ƒπ‘‹ βˆ’ π‘‹π‘ƒπ‘π‘‹π‘ƒπ‘Œ βˆ’ π‘Œπ‘ƒπ‘‹

𝐿𝑋, πΏπ‘Œ, 𝐿𝑍 are observables (i.e. hermitian operators, the eigenstates of

which form an orthonormal basis of the Hilbert space)

Commutators : ࡞

𝐿𝑋, πΏπ‘Œ = π‘–β„πΏπ‘πΏπ‘Œ, 𝐿𝑍 = 𝑖ℏ𝐿𝑋𝐿𝑍, 𝐿𝑋 = π‘–β„πΏπ‘Œ

and 𝐿2, 𝐿 = 0

There exists a set of common eigenstates of π‘³πŸ and 𝑳𝒁that form an orthonormal basis of the Hilbert space.

YS – 2019-20 – C2

5

The orbital angular momentum

Quantum approach : 𝐿 = 𝑅 Γ— 𝑃 =π‘‹π‘Œπ‘

Γ—π‘ƒπ‘‹π‘ƒπ‘Œπ‘ƒπ‘

=π‘Œπ‘ƒπ‘ βˆ’ π‘π‘ƒπ‘Œπ‘π‘ƒπ‘‹ βˆ’ π‘‹π‘ƒπ‘π‘‹π‘ƒπ‘Œ βˆ’ π‘Œπ‘ƒπ‘‹

𝐿 operators in cartesian coordinates :

𝐿𝑋 =ℏ

𝑖𝑦

πœ•

πœ•π‘§βˆ’ 𝑧

πœ•

πœ•π‘¦

πΏπ‘Œ =ℏ

𝑖𝑧

πœ•

πœ•π‘₯βˆ’ π‘₯

πœ•

πœ•π‘§

𝐿𝑍 =ℏ

𝑖π‘₯

πœ•

πœ•π‘¦βˆ’ 𝑦

πœ•

πœ•π‘₯

YS – 2019-20 – C2

6

The orbital angular momentum

Quantum approach : 𝐿 = 𝑅 Γ— 𝑃 =π‘‹π‘Œπ‘

Γ—π‘ƒπ‘‹π‘ƒπ‘Œπ‘ƒπ‘

=π‘Œπ‘ƒπ‘ βˆ’ π‘π‘ƒπ‘Œπ‘π‘ƒπ‘‹ βˆ’ π‘‹π‘ƒπ‘π‘‹π‘ƒπ‘Œ βˆ’ π‘Œπ‘ƒπ‘‹

𝐿 operators in spherical coordinates :

𝐿𝑋 = 𝑖ℏ sinπœ‘πœ•

πœ•πœƒ+

cos πœ‘

tan πœƒ

πœ•

πœ•πœ‘

πΏπ‘Œ = 𝑖ℏ βˆ’cosπœ‘πœ•

πœ•πœƒ+

sin πœ‘

tan πœƒ

πœ•

πœ•πœ‘

𝐿𝑍 =ℏ

𝑖

πœ•

πœ•πœ‘

𝐿2 = βˆ’β„2πœ•2

πœ•πœƒ2+

1

tan πœƒ

πœ•

πœ•πœƒ+

1

𝑠𝑖𝑛2 πœƒ

πœ•2

πœ•πœ‘2

rπœƒ

πœ‘π‘₯

𝑦

𝑧

YS – 2019-20 – C2

7

The angular momentum in general

By definition : a set Ԧ𝐽 =π½π‘‹π½π‘Œπ½π‘

of observables that fulfill the following

commutation rules: ࡞

𝑱𝑿, 𝑱𝒀 = π’Šβ„π‘±π’π‘±π’€, 𝑱𝒁 = π’Šβ„π‘±π‘Ώπ‘±π’, 𝑱𝑿 = π’Šβ„π‘±π’€

Theorems:

1. 𝐽2, Ԧ𝐽 = 0 There exists a set of common eigenstates of 𝐽2

and 𝐽𝑍 that form an orthornormal basis of the Hilbert space.

2. The eigenvalues of 𝐽2 are of the form ℏ2j j + 1 , with 𝒋 ∈ β„• βˆͺ β„•/2

3. The eigenvalues of 𝐽𝑍 are of the form π‘šβ„, with π’Ž taking

all πŸπ’‹ + 𝟏 possible values in βˆ’π’‹,βˆ’π’‹ + 𝟏,… , 𝒋 βˆ’ 𝟏, 𝒋 .

YS – 2019-20 – C2

8

The angular momentum in general

Examples : 𝑗 = 1 π‘š ∈ {βˆ’1, 0, 1}

𝑗 =3

2 π‘š ∈ {βˆ’

3

2, βˆ’

1

2,1

2,3

2}

Exercise : Prove the following properties :

1. π½βˆ’π½+ = 𝐽2 βˆ’ ℏ𝐽𝑍 βˆ’ 𝐽𝑍2, with 𝐽+ = 𝐽𝑋 + π‘–π½π‘Œ and π½βˆ’ = 𝐽𝑋 βˆ’ π‘–π½π‘Œ

2. 𝐽+π½βˆ’ = 𝐽2 + ℏ𝐽𝑍 βˆ’ 𝐽𝑍2,

3. βˆ’π‘— ≀ π‘š ≀ 𝑗

4. π½βˆ’Θπ‘˜, 𝑗, βˆ’π‘— = 0 and 𝐽+Θπ‘˜, 𝑗, 𝑗 = 0

5. For π‘š > βˆ’π‘—,

a) π½βˆ’Θπ‘˜, 𝑗,π‘š is eigenstate of 𝐽2 with eigenvalue 𝑗(𝑗 + 1)ℏ2

b) π½βˆ’Θπ‘˜, 𝑗,π‘š is eigenstate of 𝐽𝑍 with eigenvalue π‘š βˆ’ 1 ℏ

6. For π‘š < 𝑗,

a) 𝐽+Θπ‘˜, 𝑗,π‘š is eigenstate of 𝐽2 with eigenvalue 𝑗(𝑗 + 1)ℏ2

b) 𝐽+Θπ‘˜, 𝑗,π‘š is eigenstate of 𝐽𝑍 with eigenvalue π‘š + 1 ℏ

βˆ’β„

+ℏ

0

z

YS – 2019-20 – C2

9

The angular momentum in general

Theorems:

4. The common eigenstates of 𝐽2 and 𝐽𝑍 are denoted as Θπ‘˜, 𝑗,π‘š .

They form an orthonormal basis of the Hilbert space.

π‘˜ accounts for the degeneracy of sub-eigenspace β„° 𝑗,π‘š .

π‘±πŸΘπ’Œ, 𝒋,π’Ž = 𝒋 𝒋 + 𝟏 β„πŸΘπ’Œ, 𝒋,π’Ž

π‘±π’Θπ’Œ, 𝒋,π’Ž = π’Žβ„Θπ’Œ, 𝒋,π’Ž

4. For a given value 𝑗, the 2𝑗 + 1 sub-eigenspaces β„°(𝑗,π‘š) all have

the same degeneracy (𝑔(𝑗), independent of π‘š), and are

connected using the Β« raising Β» and Β« lowering Β» operators :

𝐽+ = 𝐽𝑋 + π‘–π½π‘Œ and π½βˆ’ = 𝐽𝑋 βˆ’ π‘–π½π‘Œ

𝐽+Θπ‘˜, 𝑗,π‘š =ℏ 𝑗 𝑗 + 1 βˆ’π‘š π‘š + 𝟏 Θπ‘˜, 𝑗,π‘š + 𝟏

π½βˆ’Θπ‘˜, 𝑗,π‘š =ℏ 𝑗 𝑗 + 1 βˆ’π‘š π‘š βˆ’ 𝟏 Θπ‘˜, 𝑗,π‘š βˆ’ 𝟏𝐽+Θπ‘˜, 𝑗, 𝑗 = 0π½βˆ’Θπ‘˜, 𝑗, βˆ’π‘— = 0

YS – 2019-20 – C2

10

Spectrum of the orbital angular momentum

Theorem : The eigenvalues of 𝐿2 are ℏ2𝑙 𝑙 + 1 , with 𝒍 ∈ β„•

The common eigenstates of 𝐿2 and 𝐿𝑍 are denoted ȁ𝑙,π‘š.

Their associated wave functions in positions space are denotedπœ“ π‘Ÿ, πœƒ, πœ‘ = 𝑅 π‘Ÿ π‘Œπ‘™

π‘š(πœƒ, πœ‘)

Solve ࡝𝐿2 π‘Œπ‘™

π‘š πœƒ, πœ‘ = 𝑙(𝑙 + 1)ℏ2 π‘Œπ‘™π‘š πœƒ, πœ‘

𝐿𝑍 π‘Œπ‘™π‘š πœƒ, πœ‘ = π‘šβ„ π‘Œπ‘™

π‘š πœƒ, πœ‘

Solutions : π‘Œπ‘™π‘™ πœƒ, πœ‘ = 𝑐𝑙 𝑠𝑖𝑛

π‘™πœƒ π‘’π‘–π‘™πœ‘ with 𝑐𝑙 =(βˆ’1)𝑙

2𝑙 𝑙!

2𝑙+1 !

4πœ‹

π‘Œπ‘™π‘šβˆ’1 πœƒ, πœ‘ = πΏβˆ’ π‘Œπ‘™

π‘š πœƒ, πœ‘ /(ℏ 𝑙 𝑙 + 1 βˆ’π‘š(π‘š βˆ’ 1))

Radial part Angular part

Β« Spherical harmonic Β»ΰΆ±0

∞

π‘Ÿ2 𝑅 π‘Ÿ 2π‘‘π‘Ÿ = 1

ΰΆ±0

2πœ‹

π‘‘πœ‘ΰΆ±0

πœ‹

π‘‘πœƒ sin πœƒ π‘Œπ‘™π‘š πœƒ, πœ‘ 2 = 1

YS – 2019-20 – C2

11

Spherical Harmonics

l = 0, m = 0

π‘Œ00 πœƒ, πœ‘ =

1

4πœ‹

Plot of π‘Œπ‘™π‘š πœƒ, πœ‘

YS – 2019-20 – C2

12

Spherical Harmonics

l = 1, m = 0 l = 1, m = 1

π‘Œ10 πœƒ, πœ‘ =

3

4πœ‹cos πœƒ π‘Œ1

1 πœƒ, πœ‘ = βˆ’3

8πœ‹sin πœƒ π‘’π‘–πœ‘

Plot of π‘Œπ‘™π‘š πœƒ, πœ‘

YS – 2019-20 – C2

13

Spherical Harmonics

l = 2, m = 0 l = 2, m = 2l = 2, m = 1

π‘Œ20 πœƒ, πœ‘ =

5

16πœ‹(3π‘π‘œπ‘ 2 πœƒ βˆ’ 1) π‘Œ2

1 πœƒ, πœ‘ = βˆ’15

8πœ‹sin πœƒ cos πœƒ π‘’π‘–πœ‘ π‘Œ2

2 πœƒ, πœ‘ =15

32πœ‹π‘ π‘–π‘›2 πœƒ 𝑒𝑖2πœ‘

Plot of π‘Œπ‘™π‘š πœƒ, πœ‘

YS – 2019-20 – C2

14

Spherical Harmonics

l = 3, m = 0 l = 3, m = 2l = 3, m = 1 l = 3, m = 3

Plot of π‘Œπ‘™π‘š πœƒ, πœ‘

π‘Œπ‘™π‘š πœƒ, πœ‘ = βˆ’1 π‘š

2𝑙 + 1

4πœ‹

𝑙 βˆ’ π‘š !

𝑙 + π‘š !π‘ƒπ‘™π‘š cos πœƒ π‘’π‘–π‘šπœ‘

Legendre function : π‘ƒπ‘™π‘š 𝑒 = 1 βˆ’ 𝑒2 π‘š π‘‘π‘š

π‘‘π‘’π‘šπ‘ƒπ‘™ 𝑒 , βˆ’1 ≀ 𝑒 ≀ 1

Legendre polynomial : 𝑃𝑙 𝑒 =βˆ’1 𝑙

2𝑙 𝑙!

𝑑𝑙

𝑑𝑒𝑙1 βˆ’ 𝑒2 𝑙

YS – 2019-20 – C2

15

The Zeeman effect

β€’ The orbital magnetic moment

Classical mechanics

Current : 𝐼 = π‘žπ‘£

2πœ‹π‘…

Magnetic moment : β„³ = 𝐼 Τ¦π’œ =1

2π‘žπ‘… Γ— Ԧ𝑣

π“œ=𝒒

πŸπ’Žπ’†π“›

Magnetic interaction : βˆ’π“œ.𝑩

Quantum mechanics

Magnetic moment : M =𝒒ℏ

πŸπ’Žπ’†L/ℏ

Magnetic interaction : H = βˆ’M .𝑩 (normal Zeeman effect)

β€’ The normal Zeeman effect predicts that a B-field (along 𝑧) lifts

the degeneracy of the 2𝑙 + 1 sub-states : πΈπ‘›π‘™π‘š = 𝐸𝑛 βˆ’π‘šπœ‡π΅B(βˆ’l ≀ π‘š ≀ 𝑙).

Proton

π‘šπ‘ƒ ≫ π‘šπ‘’

Electron π‘ž,π‘šπ‘’

𝑅Area Τ¦π’œ

M = πœ‡π΅L/ℏ

πœ‡π΅ =𝒒ℏ

πŸπ’Žπ’†: Bohr’s magneton

YS – 2019-20 – C2

16

The Stern & Gerlach experiment

The experiment (1922)

Oven

Ag atoms

𝑧

Strong magnetic

gradient along 𝑧

beam

Ag atoms are neutral

no Laplace forceAg atoms are paramagnetic

Permanent magnetic moments β„³, oriented randomly

Force : Ԧ𝐹 = Grad π“œ.𝑩 𝐹𝑧 =β„³π‘§πœ•π΅π‘§

πœ•π‘§ deviation along 𝑧

Expected result : one spot, symmetric with respect to 𝑧 = 0

Actual result : 2 spots, at Β± 𝝁𝑩𝝏𝑩𝒛

𝝏𝒛

The electron has an intrinsic angular momentum 𝑺 (not of orbital nature),

with eigenvalue β„πŸπ’” 𝒔 + 𝟏 where 𝒔 = ΀𝟏 𝟐

This spin is associated to an intrinsic magnetic moment 𝑀𝑆 = πŸπœ‡π΅S/ℏ

Screen

YS – 2019-20 – C2

17

The Stern & Gerlach experiment

Otto Stern, Nobel Prize 1943

Walther Gerlach

YS – 2019-20 – C2

18

The Stern & Gerlach experiment

Quantization of the

components of the

intrinsic angular

momentum (spin) of

the electron

YS – 2019-20 – C2

19B. Friedrich and D. Herschbach, Phys. Today 56, 53 (2003)

YS – 2019-20 – C2

20

To read more …

β€’ On the angular momentum in quantum mechanics : CDL1, chapter VI

β€’ On the spherical harmonics : CDL1, compl. AVI

β€’ On Bohr’s model : CPP1, chapters I and VI

β€’ On the spin of the electron and the Stern & Gerlach experiment :

TB, chapter VI; CDL1, chapters IV and IX; CPP1, chapter X

CDL1 : Cohen-Tannoudji, Diu, LaloΓ«, Quantum Mechanics, volume 1TB : Tualle-Brouri, Introduction Γ  la MΓ©canique Quantique, Cours 1A de l’IOGS

CPP1&2 : Cagnac, Pebay-Peyroula, Atomic physics, volumes 1 & 2

YS – 2019-20 – C2

21

… about observables that commute.

Take two observables that commute : 𝐴, 𝐡 = 0

In other words, eigenspace 𝓔𝒂 is globally invariant under action of 𝐡

Theorem 1 : Θπœ“ is eigenstate of 𝐴 with eigenvalue π‘Ž

π΅Θπœ“ is eigenstate of 𝐴 with eigenvalue π‘Ž

Some useful theorems …

Θπœ“

π΅Θπœ“

𝓔𝒂

Theorem 2 : Take two eigenstates ΰΈ«πœ“1 and ΰΈ«πœ“2 of 𝐴 with eigenvalues π‘Ž1 and π‘Ž2 (π‘Ž2 β‰  π‘Ž1).

Then, πœ“1 𝐡 πœ“2 = 0

In other words, 𝐡 does

not couple different

eigenspaces

𝐡 =

β‹― β‹―β‹― β‹―

0 00 0

0 00 0

0 00 0

β‹― β‹―β‹― β‹―

0 00 0

0 00 0

0 00 0

β‹― β‹―β‹― β‹―

π“”π’‚πŸ

π“”π’‚πŸ

π“”π’‚πŸ‘

π΅π“”π’‚πŸπ΅π“”π’‚πŸ π΅π“”π’‚πŸ‘

YS – 2019-20 – C2

22

… about observables that commute.

Take two observables that commute : 𝐴, 𝐡 = 0

Some useful theorems …

Theorem 3 : There exists a set of common eigenstates of 𝐴 and 𝐡 that form an orthonormal

basis of the Hilbert space.