lesson 02 - 名大の授業 (nu ocw)5 representation by components when and a = (a1,a 2) b = (b 1,b...

13
1 1 Lesson 02 Scalar Product 2A Definitions of the scalar product • Basic rules Course III

Upload: others

Post on 11-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

1 1

Lesson 02

Scalar Product

2A •  Definitions of the scalar product •  Basic rules

Course III

Page 2: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

2

Example : Work

Movement by a constant force

F!

a!

θ

Work θcosaFW!!

=

aF!!⋅Scalar product

θcosF!

Page 3: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

リンクされたイメージを表示できません。ファイルが移動または削除されたか、名前が変更された可能性があります。リンクに正しいファイル名と場所が指定されていることを確認してください。

3

Definition of the Scalar Product Scalar Product

a!

b!

θθcosbaba =⋅!!

πθ ≤≤0( where )

[Examples 2-1] Find the following dot products where and . (1) (2) (3)

60º 90º 135º

(1)

(2)

(3)

360cos23 =°⋅=⋅ba!!

090cos23 =°⋅=⋅ba!!

23135cos23 −=°⋅=⋅ba!!

2=a!

a!

3=b!

b!

b!

b!

a!

a!

Page 4: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

4

Properties and Rules

1.  Perpendicular condition

2.  Parallel condition

3.  Unit vectors

Properties 0=⋅ba

!!

baba ±=⋅!!

Fundamental Rules

1.  Commutative law

2.  Distributive law

3.  Scalar multiplication

abba!!!!⋅=⋅

cabacba!!!!!!!⋅+⋅=+⋅ )(

bkabakbak!!!!!!

⋅=⋅=⋅ )(

0=⋅ ji!!

1=⋅=⋅ jjii!!!!

Page 5: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

5

Representation by Components When and ),( 21 aaa =

!),( 21 bbb =

!

2211 bababa +=⋅!!

a!b!

O

B

A θ

Applying Pythagorean theorem

babbaaabab!!⋅−+++=−+− 2)()()()( 2

221

22

21

222

211

After rearrangement

2211 bababa +=⋅!!

1a

ab!!

[ Proof ] From the Law of Cosine

θcosOBOA2OBOAAB 222 ××−+=By using vectors, we have

babaab!!!!!!⋅−+=− 2

222a!

2a

Page 6: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

6

Example [Examples 2-1] Find the scalar product and the angle of the following two vectors. (1) (2)

Ans. (1)  Inner product Let the angle be , then

)1,3(),1,2( −== ba!!

)2,6(),3,1( =−= ba!!

θ511)3(22211 −=⋅+−⋅=+=⋅ bababa

!!

5cos1)3(12 2222 −=+−⋅+ θTherefore

21

1055cos −=−

=θ °=135θ

(2) Inner product Therefore

0236)1(2211 =⋅+⋅−=+=⋅ bababa!!

°= 90θ

Page 7: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

7

Exercise

[Ex.2-1] Find unit vectors which are perpendicular to the vector  

Ans.

Pause the video and solve the problem by yourself.

)1,3( −=a!

Page 8: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

8

Answer to the Exercise

[Ex.2-1] Find a unit vectors which are perpendicular to the vector  

Ans.

)1,3( −=a!

(1)  Let the unit vector be

1−

3 x

y

O θ

)sin,(cos θθ=e!

From the given condition,

0sincos3 =−=⋅ θθae!!

3tan =∴ θ

°°=∴ 240,60θ

Page 9: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

9 9

Lesson 02

Basic Rules of Vectors

2B •  Application of the scalar product

Course III

Page 10: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

10

Area of a Triangle Area

H

Perpendicular line : BH

a!

b!

O

B

A θBH= θsinb!

( ) ( ) ( )222222

2

-21cos-

21

cos-121sin

21BH

21

babababa

babaaS

!!!!!!!!

!!!!!

⋅==

===

θ

θθ

Therefore, the area is

( )222 -21 babaS

!!!!⋅=

Page 11: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

11

Example [Examples 2-2] (1) Find the area made by two vectors and . (2) There are three points A(2, 1), B(7, 2), C(4, 5). Find the area of △ABC

),( 21 aaa =!

),( 21 bbb =!

O

A

x

y

Bb!a

!

C

(2) )1,5()1,2()2,7(BA =−==!!

a )4,2()1,2()5,4(CA =−==!!

b

9214521

21

1221 =⋅−⋅=−= babaS

Ans. (1) Magnitudes of vectors are 22

21 aaa +=

! 22

21 bbb +=

!

The scalar product is 2211 bababa +=⋅!!

Then ( )( )

12212

1221221121

22

22

21

22211

22

21

22

21

222

21)(

212-)(

21

-))((21

-21

babababababababa

bababbaa

babaS

−=−=+=

+++=

⋅=!!!!

Page 12: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

12

Exercise [Ex2-2] There are three points A(4, 1), B(5, 4) and C(2, 3) on a plane. Answer the following questions. (1) Let ∠BAC= . Find and (2) Find the area of △ABC. Ans.

Pause the video and solve the problem by yourself.

θ

θcos .sinθ

Page 13: Lesson 02 - 名大の授業 (NU OCW)5 Representation by Components When and a = (a1,a 2) b = (b 1,b 2) a ⋅ b = a 1 b 1 + a 2 b 2! ! a! b! O B A θ Applying Pythagorean theorem b

13

Answer to the Exercise [Ex2-2] There are three points A(4, 1), B(5, 4) and C(2, 3) on a plane. Answer the following questions. (1) Let ∠BAC= . Find and . (2) Find the area of △ABC.

Ans.

θ θcos.sinθ

)3,1()1,4()4,5(BA =−==!!

a )2,2()1,4()3,2(CA −=−==!!

b,1031BA 22 =+=

!222)2(CA 22 =+−=

!

423)2(1CABA =⋅+−⋅=⋅!!

51

22104

CABACABAcos ==

⋅= !!

!!

θ

0sin >θ

52

511cos1sin 2 =−=−= θθ

4522210

21sinCABA

21

=⋅⋅⋅== θ!!

(1)

.

Therefore,

,

From the formula,

Since , we have

(2) △ABC

A

B

C

θ