letter to the editor audio x press - pearl-hifi.com · pdf fileto predict or design for...

37
Letter to the Editor AudioXPress I read with considerable interest the recent series of articles on “How Horns Work” by Bjorn Kolbrek. Having spent the better part of my life studying these devices I was anxious to read this publication. It was therefore somewhat disappointing to me to find so many errors in the discussion, particularly regarding my own work. I had considered responding to these errors individually, but then decided that this may not be the best approach. The discussion could become contentious, which might lead to arguments that were mostly semantic. What I have decided to do instead is to write how I believe Horns and Waveguides work and the reader can sort out the errors for themselves, or not. Historically, horns served a very specific function and it is important to understand this background because it highlights the motivation for the vast amount of work that I will attempt to debunk. That function was to improve the radiation efficiency of the audio playback system. (Please note that there is a distinct difference in the use and function of a musical instrument horn and the same device when used for music reproduction. I do not pretend to know what makes a good musical instrument horn, although I have read most of Arthur Benade’s work finding it, as expected, to be inapplicable to a reproduction horn. So please do not take anything that I say here as a condemnation or critique of the theory of musical instrument horns.) Early playback systems had a serious problem generating sufficient SPL to be audible in the vast majority of situations. Efficiency was key to an effective design and the horn was well suited to this purpose. However, in a world where one has an almost unlimited availability of power to drive a reproduction device we might want to question what use efficiency has in our current situation. Not that efficiency is unimportant or a bad thing, only that it is not really a major criteria in a modern design (there are exceptions in very large PA systems, but that is not what we are talking about here.) Efficiency is what Webster was concerned with, and nothing more. He wanted to know how much gain a device would have and his approach works fairly well in that context. His work, however, has been extended well beyond the domain for which it is useful and into areas for which it is not even remotely applicable. Webster assumed plane wave propagation in his analysis. Most people know this, however very few ever stop to consider the implications. My favorite Physics writer Phillip Morse (who will come up again) did discuss Webster’s assumptions in his famous texts Methods of Theoretical Physics (1) . In these texts (two volumes) he defines precisely where Webster’s assumptions are valid, namely: 0 1.0 mx d S e dx <<

Upload: doanthuan

Post on 06-Mar-2018

218 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

Letter to the Editor Audio­X­Press  

I read with considerable interest the recent series of articles on “How Horns Work” by Bjorn Kolbrek.  Having spent the better part of my life studying these devices I was anxious to read this publication.  It was therefore somewhat disappointing to me to find so many errors in the discussion, particularly regarding my own work.  I had considered responding to these errors individually, but then decided that this may not be the best approach.  The discussion could become contentious, which might lead to arguments that were mostly semantic.  What I have decided to do instead is to write how I believe Horns and Waveguides work and the reader can sort out the errors for themselves, or not.  

Historically, horns served a very specific function and it is important to understand this background because it highlights the motivation for the vast amount of work that I will attempt to debunk.  That function was to improve the radiation efficiency of the audio playback system.  (Please note that there is a distinct difference in the use and function of a musical instrument horn and the same device when used for music reproduction.  I do not pretend to know what makes a good musical instrument horn, although I have read most of Arthur Benade’s work finding it, as expected, to be inapplicable to a reproduction horn.  So please do not take anything that I say here as a condemnation or critique of the theory of musical instrument horns.) 

Early playback systems had a serious problem generating sufficient SPL to be audible in the vast majority of situations.  Efficiency was key to an effective design and the horn was well suited to this purpose.  However, in a world where one has an almost unlimited availability of power to drive a reproduction device we might want to question what use efficiency has in our current situation.  Not that efficiency is unimportant or a bad thing, only that it is not really a major criteria in a modern design (there are exceptions in very large PA systems, but that is not what we are talking about here.) 

Efficiency is what Webster was concerned with, and nothing more.  He wanted to know how much gain a device would have and his approach works fairly well in that context.  His work, however, has been extended well beyond the domain for which it is useful and into areas for which it is not even remotely applicable. 

Webster assumed plane wave propagation in his analysis.  Most people know this, however very few ever stop to consider the implications.  My favorite Physics writer Phillip Morse (who will come up again) did discuss Webster’s assumptions in his famous texts Methods of Theoretical Physics (1).  In these texts (two volumes) he defines precisely where Webster’s assumptions are valid, namely: 

0 1.0m xd S edx

⋅⋅ <<

Page 2: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

where S0 is the throat area and m is the flare rate. This is actually an extremely limiting restriction as I will show.   

Consider the two figures shown below (from Audio Transducer (2)): 

 

 

This top plot shows the curve for an exponential horn 20

mxy e⋅  as an example, while the bottom curve 

shows a plot of  0m xd S e

dx⋅⋅  .   The region where Webster’s assumptions are valid, according to Morse, 

lie where x < 15 cm., or best case when x < 20 cm. (<< is usually interpreted to mean < .1).  Beyond these lengths (x is the axis along the horns length) one can no longer rely on Webster’s Equation to be accurate.   A line drawn from the center of the throat to its tangent point on the wall contour is shown 

0 10 20 30 40Length (cm.)

0

5

10

15

Rad

ius

(cm

.)

0 10 20 30 40Length (cm.)

0.0

0.5

1.0

1.5

2.0

Page 3: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

in the top curve.  This intersection happens at just about the point where the Webster’s Horn Equation loses its validity. This coincidence highlights an interesting point, namely, that whenever the walls of the horn recede beyond the line where they can be illuminated by the center of the throat (as shown by the straight line) then the equation fails to be reliable.  This also happens to be exactly the same point where the wave‐fronts would have to diffract if they are to remain in contact with the walls.  It is exactly this inability of the Horn Equation to account for internal diffraction that is at the core of its problems.  When there is no internal diffraction then the Horn Equation will probably work well, but if there is diffraction then one must seriously question Webster’s approach. 

How is it then that the Horn Equation has apparently worked so well in the field for all these years?  For “bulk” quantities like impedance it does work well.  This is because the acoustic impedance is an average of the wave‐front details across the waveguide.  As long as one is not concerned with these detailed motions, such as in an impedance calculation, then Webster’s Equation works satisfactorily.  It does an admirable job of predicting the impedance of a wide variety of horn contours, which is completely in line with Webster’s goal of finding the “gain” of the device.  And it does this through a fairly simple calculation procedure.  What’s not to like?  But the price that we must pay for this simplicity is a complete lack of knowledge of the wave‐fronts motion across the contour – the Horn Equation is blind to these details.   

Directivity For a variety of reasons directivity control is a highly desirable feature in loudspeaker systems and such control is basically unavailable without the use of a waveguide.  Much work has been done on directivity control in a waveguide, but much of it is misguided.   

One can draw a complex set of wave‐fronts on a piece of paper and connect them with a contour, but that does not mean that real sound waves would necessarily follow these drawings.  Sound waves have a mind of their own and they will go wherever they want, no matter how much hand‐waving we do.  Take for example defining horn shapes based on the assumption that the wave‐fronts propagate with a constant radius.  This assumption yields some very nice looking curves and horns.  Unfortunately it is a physically impossible for a wave‐front to propagate in such a manner – it violates every concept in physics from Huygen’s Principle to Green’s Theorem.  The wave‐fronts in the real device will not follow the wave‐fronts as drawn on the paper.  It’s just not that simple.   

Further, a horn contour that is based on a geometrical “plot” of how the wave‐fronts will progress relies on a faith that the wave‐fronts will actually propagate that way.  This naive faith is no way to proceed in a scientific study of a real device.  One has no option but to search for a mathematical description that defines precisely how the wave‐fronts will propagate using physics, not naively prescribing a situation that one hopes will occur. 

To predict or design for directivity one has to know exactly what the wave‐fronts look like at the mouth of the waveguide and this is not so easy ‐ certainly not as easy as just calculating the impedance.  It was precisely this point that I found myself in the 80’s.  I wanted to do accurate directivity control in a horn, but I realized that none of the mathematical descriptions available at that time could do this. 

Page 4: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

I had studied the early work of Morse in Vibration and Sound (3) and found his concept of 1P (for one parameter) waves compelling.  It was natural that I looked for solutions along these lines.  Making a long story short, to be 1P means that the waves have to be described by a coordinate system of the so‐ called orthogonal variety.  Orthogonal coordinates are well know and in Morse’s Methods … (1) texts an entire chapter is devoted to this topic (Chapter V, my favorite, one of the most elegant discussions in all of my physics literature).  It can be shown that one can define exactly thirteen (and only thirteen) coordinate systems that are orthogonal in three dimensions.  However, of these thirteen only eleven allow solutions to the wave equation.  In other words, sound waves can be described mathematically by only eleven coordinate systems.  It became readily apparent to me that only in these eleven coordinate systems could one ever hope to find a mathematical description along the lines of the 1P idea.  The problem is that of these eleven only two actually allow for true 1P behavior.  The others, while still orthogonal, are spectrally coupled through their so‐called separation constants and end up not being 1P. 

The Coup de Grace for 1P It is interesting to note that the two (reasonable) 1P possibilities are the radial coordinate in spherical coordinates and the radial coordinate in cylindrical coordinates.  The two horns that are defined by these coordinates turn out to be exactly the same two horns that Putland discusses in his paper on Webster’s Equation(4) – which deserves a short diversion.  “Didn’t Putland show that any solution of Webster’s Equation is a 1P solution?”  Yes, that’s absolutely correct, and he also proved that Webster’s equation is exactly correct for only two horns, not coincidentally the same two that I defined above through a completely different line of reasoning.  I had actually arrived at this exact same conclusion some years before Putland (in “Acoustic Waveguide Theory” (5)), but I guess he must have missed it since he didn’t mention it.   The claim made by Mr. Kolbrek that “Putland later showed that this was not the case”, is incorrect since he did no such thing.  Putland also did not indicate a recognition of the existence of the higher order solutions (they aren’t predicted by Webster’s solutions, but do exist in the Wave Equation approach – it is these details that make all the difference!) 

You see, in order for a 1P wave to propagate within a 1P device, it has to be excited by a purely 1P source wave‐front.   Any other wave‐front will excite Higher Order Modes (HOMs) and the wave propagation will no longer be 1P.  In the case of a conical horn (from spherical coordinates) that’s a spherical cap that vibrates radially.  Unfortunately such a source device does not actually exist; one could hypothesize making one, but they don’t actually exist today.  A dome loudspeaker vibrates axially, not radially, and so it is not 1P.  A conical horn on a dome source is not 1P.  For the horn in cylindrical coordinates the source must be a radially vibrating cylindrical section, which, once again, does not exist. 

So while Putland may have been correct ‐ “Every One‐parameter Acoustic Field Obeys Webster’s Horn Equation” – this fact is of no practical use since 1P devices can only exist in a hypothetical world and real world devices are never 1P.  It is no coincidence that both Morse and I ceased to use the concept of 1P after studying the problem because we both realized that such an ideal solution was only of academic interest in a hypothetical situation.   

 

Page 5: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

What I have said thus far: 

• Unless one is only interested in the impedance of a device, Webster’s Horn Equation is not of much use, and even then it works correctly only in a hypothetical situation of no practical interest. To me, any proposition that uses the Horn Equation at its foundation needs to be viewed with extreme skepticism. 

Impedance (again) “Well at least the horn equation is good for predicting the shapes that one needs in order to achieve good impedance loading – at least at low frequencies!”   Sure, except that it turns out that virtually any shape connecting a given throat and mouth area will yield approximately the same impedance – within a dB or so.  In the long wavelength region where the Horn Equation is valid, shape is simply not a significant factor, the waves don’t see shape.  Basically they only see the inlet and the outlet areas and the distance between them and everything else is of secondary importance.  But, if something secondary is important, then it is almost certain that Webster’s equation won’t apply. 

The Exact Solution of the Waveguide Equations Contrary to some widely propagated errors (one of which is in Mr. Kolbrek’s article), I actually did develop an exact solution for a waveguide using the Oblate Spheroidal (OS) coordinate system (5), (6).  It was in these AES papers that I came to realize the importance of Higher Order Modes (HOMs), as it is precisely these modes that the Horn Equation fails to account for and it is these modes that make true 1P behavior unrealistic.  All horns and waveguides in the real world have HOMs.  It is the HOMs that create the complex wave motion that prevents us from prescribing it.  Whenever we attempt to force the wave‐front to travel a path that it doesn’t want to, it gets back at us by generating HOMs.  The advantage of waveguides based on the orthogonal coordinate geometries is that it can be proven that they will generate the least HOMs of any contour connecting the same input and output apertures.  No shape can do better.  That, to me, is the attraction to the approach and the OS waveguide for a standard circular source. 

It is interesting to note that if one draws the OS contour in the top figure above, that a line from the origin to the walls is never tangent to the walls as it is in the exponential (and virtually every other) horn. 

I have solved the waveguide equations in just about all of the geometries for which the theory applies and designed and built waveguides in them.  They all work well, but with different constraints on the polar patterns and source configurations, etc.  Different coordinate systems can also be combined such as in my Bi‐Spheroidal™ waveguide (patent #7,068,805) in order to achieve specific objectives.  

The reader who is interested in more detail on Waveguide Theory can find them in “Chapter 6 – Waveguides” of my book Audio Transducers (2)(available through Old Colony). 

I should like to point out why I coined the term “waveguide”.  It was done to highlight the fact that the Horn Equation was not used and as such a new name was appropriate.  Unfortunately, usage of this term has gotten out of control and it is now applied to whatever anyone wants to apply it to. 

Owner
Highlight
Owner
Highlight
Page 6: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

With a waveguide, a complete knowledge of the wave‐front is available at any point, the most useful surfaces being the mouth and the throat apertures – the interfaces.  If one has a desired directivity pattern, then the wave‐front shape required in the mouth aperture can be calculated – assuming that such a pattern is obtainable within the given mouth size.  The calculations will, however, define what the mouth size needs to be in the event that it is too small or what must be given up for a fixed mouth size.  With the knowledge of the mouth wave‐front, the wave‐front required at the throat can then be calculated.  Now, in principle, a phase plug could be fabricated that achieves the required throat wave‐front (it’s not likely to be a plane wave).  Since the wave shape may need to change with frequency in order to achieve the desired polar pattern there is no guarantee that such a solution is possible.  But it is guaranteed that no other design could do any better since with Waveguide Theory one can get right up to the limits of what the physics of the situation will allow.  Such a detailed design is not possible with Horn Theory. 

Diffraction Diffraction , that aspect of horns that Horn Theory cannot deal with, turns out to be of predominate importance to sound quality.  Diffraction in a waveguide is a bad thing – a very bad thing as it turns out. It is not readily masked in the ear and this masking effect decreases with sound level (7) meaning that diffraction becomes more audible at higher sound levels – the exact opposite of nonlinear distortion.  Diffraction is what we hear in a waveguide as harshness or poor sound quality.  Reduce the diffraction and the device simple sounds better.  Diffraction can occur in a number of places including the phase plug.  When the waveguide is not presented with the proper wave‐front as prescribed by its specific geometry then a form of diffraction occurs in that HOMs are generated.  Any form of discontinuity anywhere in the device can create this problem.  In my experience no amount of attention to the detail of the throat geometry and its wave‐front is unwarranted.  Even small discontinuities in the throat matching or errors in the phase plug design will generate diffraction in the form of HOMs, which then become amplified by the waveguide.  Specific attention to the phase plug is of paramount importance (patent # 7,095,868 and patents pending).  

The Piece de Resistance Only quite recently I had a revelation regarding waveguides versus horns.  Horn theory is concerned only with the rate of change of area as it relates to the impedance presented by the device.  No consideration is actually given to the shape of the boundary beyond the effect that it has on the area.  Waveguide Theory is almost the opposite in that no explicit consideration is given to the area, it is what it is, and only the shape of the boundary matters.  The key point is that all of the eleven orthogonal coordinate systems (those that allow for expanding waveguides as opposed to parabolic ones) have one very important characteristic in common: every one of them has exactly the same shape boundary, either straight or of the form 

( )220 0( ) ( )y x y xTan θ= +  

Where y0 is the throat radius and θ0 the wall angle.  This curve is known as a catenoid – it is the minimum length of a curve joining two points with prescribed angles at each point, the one at y0 being 

Owner
Highlight
Owner
Highlight
Owner
Highlight
Owner
Highlight
Page 7: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

zero.   A straight line is the catenoid when the two points have the same angles.  In short, Horn Theory is concerned with the rate of change of area and impedance while Waveguide Theory is concerned with the rate of change of the boundary and the ensuing wave‐shape.   Waveguide Theory seeks to minimize the generation of diffraction within the device.   Horn Theory does not even consider it. 

Controlling HOM Having realized the importance of the HOMs there are things that are quite separate of the waveguide design that one can do to minimize these undesirable characteristics.  I have learned that the inclusion of foam within the body of the waveguide will reduce the HOMs much more than the primary wave thus yielding a pronounced net benefit in sound quality (patent pending). 

My POV After 30 years of study I have come to several conclusions that I will highlight here: 

1. The Horn Equation is of no practical use in any useful device. 2. Impedance calculations are of marginal utility – I never do them for my designs ‐ and the 

concepts of loading, cutoff, etc. are all obsolete holdovers from Horn Theory. 3. Nonlinear distortion in a waveguide is irrelevant.  This comes from the fact that this distortion is 

of very low order and as such is inaudible (8), (9). 4. Waveguides are only useful for directivity control and they are the only way practical way to 

achieve this critical design objective. 5. Sound quality goes in inverse relation to the presence of HOMs and attention to detail in this 

regard is essential. 6. Waveguides are not very useful for low frequency transducers.  The directivity control function 

of the waveguide is defeated when its size is small compared to the wavelength; efficiency and low distortion are not that important; and I can get better efficiency and lower distortion using a more efficient approach like an Acoustic Lever (patent # 6,782,112) or a Bandpass design(10). There are some situations where a horn’s good efficiency over a larger bandwidth than Levers or band‐pass designs is useful, but there are also serious tradeoffs both ways.  I have not found horns to be cost and space efficient at low frequencies in any of my work. 

There will be a multitude of people who will disagree with these conclusions and they will use all kinds of arguments about what “sounds better”.  That’s fine, they have every right to their subjective opinions.  But mathematics is not subject to opinion nor open to debate except with alternative mathematical arguments.  Science is not a democracy that can be voted on with the popular opinion becoming reality (except for evolution). 

The reader will note many areas where I disagree with Mr. Kolbrek, but mostly I disagree with continuing to propagate concepts that are not based in reliable science, having been derived from a misguided application of Horn Theory beyond its very limited applicability. 

I would like to thank Mr. Kolbrek for his good historical discussion and many good references, some of which were previously unknown to me.  I hope that he will find my arguments compelling enough to embrace Waveguide Theory as the only viable approach to the problems at hand. 

Owner
Highlight
Owner
Highlight
Page 8: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

References 1. P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Vols. I & II, 1953, McGraw‐Hill, NY 

NY. 2. E.R. Geddes and L.W. Lee, Audio Transducers, 2001, GedLee Publishing, Novi, MI.  3. P.M. Morse, Vibration and Sound, 1948, McGraw‐Hill, NY NY. 4. G.R. Putland, “Every One‐parameter Acoustic Field Obeys Webster’s Horn Equation”, JAES Vol. 41 

No.6, June 1993, pp. 435‐451. 5. E.R. Geddes, “Acoustic Waveguide Theory”, JAES Vol. 37 No.7, July/August 1989, pp.554‐569. 6.  E.R. Geddes, “Acoustic Waveguide Theory Revisited”, JAES Vol. 41 No. 6, June 1993, pp.452‐461. 7. L.W. Lee and E.R. Geddes, “Audibility of Linear Distortion with Variations in Sound Pressure and 

Group Delay”, AES Convention paper no. 6888, Oct. 2006. 8. E.R. Geddes and L.W. Lee, “On the Perception of Non‐Linear Distortion, Theory”, AES convention 

paper no. 5890, Oct. 2003. 9. L.W. Lee and E.R. Geddes, “On the Perception of Non‐Linear Distortion, Results”, AES convention 

paper no. 5891, Oct. 2003. 

10. E.R. Geddes, “Introduction to Bandpass Loudspeaker Enclosures”, JAES Vol. 37, No. 5, May 1989.  Reprinted in the Loudspeakers ‐ an Anthology series. 

 

Page 9: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

United States Patent

US007068805B2

(12) (10) Patent N0.: US 7,068,805 B2 Geddes (45) Date of Patent: Jun. 27, 2006

(54) ACOUSTIC WAVEGUIDE FOR 4,469,921 A * 9/1984 Kinoshita ................. .. 381/340

CONTROLLED SOUND RADIATION 5,163,167 A * 11/1992 Heil ............ .. 181/152 6,059,069 A * 5/2000 Hughes, II 181/152

('76) Inventor: Earl Russell Geddes, 43516 Scenic 6,581,719 B1 * 6/2003 Adamson ........ .. 181/182 La" Nonhville’ MI (Us) 48167 6,585,077 B1 * 7/2003 Vlncenot et a1. .......... .. 181/192

_ _ _ _ _ OTHER PUBLICATIONS

( * ) Not1ce: Subject to any d1scla1mer, the term of this patent is extended or adjusted under 3 5 Geddes, Audio Transducers, Chapter 6 Aug. 2002, 6 ed Lee U.S.C. 154(b) by 0 days. Publishing, Novi, Mi, US

Geddes, “Acoustic Waveguide Theory” J. Audio Eng. Soc. (21) Appl. N0.: 10/616,570 vol. 37 # 7/8 Jul. 1989.

Geddes, “Acoustic Waveguide Theory Revisited” J. Audio (22) Filed: Jul. 11, 2003 Eng. Soc., vol. 41, #6 Jun. 1993.

(65) Prior Publication Data * Cited by examiner

US 2005/0008181 A1 Jan. 13, 2005 Primary ExamineriSinh Tran

(51) Int. Cl. Assistant ExamineriWalter F Briney, Ill H04R 1/30 (2006.01)

(52) US. Cl. ..................................... .. 381/340; 181/187

(58) Field of Classi?cation Search ...... .. 381/3384341, (57) ABSTRACT

381/342’ 343; 181/152’ 159: 175: 177: 178: Acoustic Waveguide contours that approximate either or

S 1_ _ ?l f 181/1185’187118119’ 192’ 195 both of the Elliptic Cylinder and the Prolate Spheroidal ee app lcanon e or Comp ete Seam lstory' coordinate systems that alloWs for a more accurate predic

(56) References Cited tion and control over the sound radiation polar pattern are disclosed.

U.S. PATENT DOCUMENTS

4,324,313 A * 4/1982 Nakagawa ................ .. 181/192 2 Claims, 5 Drawing Sheets

45°

Section A-A

Page 10: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

US 7,068,805 B2 1

ACOUSTIC WAVEGUIDE FOR CONTROLLED SOUND RADIATION

BACKGROUNDiFIELD OF THE INVENTION

The present invention relates to acoustical sound radiation and a technique for controlling the directional aspects of the radiated sound ?eld via an acoustic Waveguide.

BACKGROUNDiDESCRIPTION OF PRIOR ART

There is much prior art relating to the control of sound radiated from Waveguides, Which are also knoW as horns in the audio sound reproduction ?eld of art. The term Waveguides is used here to refer to those contours that adhere to a stricter de?nition for their construction, as described herein. The concept of a device Whose primary task is to control the directional response of the sound radiation, as opposed to a horn Whose primary task Was acoustic loading, is relatively neW. The prior art in the area of horn theory Was almost exclusively concerned With the acoustic loading characteristics of such devices and little attention Was paid to an accurate de?nition the internal Wavefront con?guration or the directional response, Which is highly dependent on this internal Wavefront con?guration.

Classical horn theory is based on the Well knoWn equation of Webster knoWn as Webster’s Horn Equation. This appli cability of this equation suffers from the fact that it is only accurate for relatively small rates of change of the contours that de?ne it or for contours that have very simple geom etries (for example straight sided conical). This fact is Well described in Chapter six of my text Audio Transducers available from GedLee Publishing at WWW.gedlee.com. The theory found in this Work is fundamental to the understand ing of this application. The background to the textbook chapter can be found in my papers on the subject of Waveguides, Waveguide Theory and Waveguide Theory Revisited, both of Which are available from The Audio Engineering Society in their Anthology series.

Current practice in the art is to design a horn that has one or more diffraction apertures created by discontinuities in the conduits cross sectional rate of change of area at points along its axis. The Wavefront, upon reaching this aperture, Will be di?‘racted into a spherical (or sometimes a cylindri cal) Wavefront. If the aperture is not symmetric then this diffraction Will occur only in the direction of the smallest dimension, for example a narroW slit Will di?fract the Wave only in the direction across the Width of the slit. Once the Wavefront has been di?‘racted into a spherical or cylindrical Wave, it is constrained to a speci?c angle by a basically straight side Wall although sometimes there is a slight ?aring in this section. The ?nal section is sometimes ?ared more radically at the exit so as to avoid a second diffraction at the mouth. The diffraction technique does Work for directivity control but is not Without its detrimental consequences. The diffraction at the apertures causes a large amount of Wave front energy to be re?ected from the discontinuity aperture back doWn the Waveguide toWards its input end, Which causes a standing Wave Within the device. It is not possible to use diffraction as a Wavefront control mechanism and not have this characteristic standing Wave occur in the device. This standing Wave creates the outgoing and incoming Wavefronts to interfere resulting in periodic loading effects on the driver and a comb ?lter effect on the radiated response. This is a principle reason Why horns of this type are often deemed to sound poorly.

20

25

30

35

40

45

50

55

60

65

2 Another problem With horns based on diffraction is that

they exhibit an ambiguous acoustic center. That is, the Wavefront that is created has at least tWo different centers of curvature for the vertical and horiZontal patterns. The sec ondary diffraction at the aperture points creates secondary sources that are displaced in space from the ?rst sourceithe driver. TWo distinct acoustic centers are thus created. This problem is also Well knoWn.

It Would be desirable to be able to control the Wavefront curvature Without the use of diffraction, Which is the prob lem that is dealt With in this disclosure. A direct result of the aforementioned publications on

Waveguides is a recent trend toWard hom/Waveguide designs that are derivatives of or minor contour modi?cations of the Oblate Spheroidal (OS) Waveguide, shoWn in FIG. 1. This geometry Was ?rst disclosed in my tWo earlier papers. The OS coordinates are generated from the Elliptical coordinates (shoWn in FIG. 2) by rotating these tWo dimensional (2-D) coordinates about a line normal to this origin at its center. The semi-minor axes of the ellipses make up the lines of constant radial coordinate E. This creates a disk as the origin With the diameter of the disk equal to the length of the origin in the 2-D plot. The lines emanating from the origin are lines of constant angles 11. The rotation angle is the 1p coordinate, the third coordinate in a three dimension coordinate system.

In an OS Waveguide the external shell 10 lies along a coordinate surface for the angular coordinate 11 of the Oblate Spheroidal coordinate system. The speci?c angle is called 110. In an OS Waveguide the throat, 20, is that portion of the origin disk that lies Within the bounding contour de?ned by no. A mouth, 30, results When the shell, 10, is terminated at some ?nite length of the conduit. The Wavefronts in this con?guration Will then correspond to the E coordinates in the OS Waveguide.

To be mathematically correct, each cross section of a true OS Waveguide Would be round, hoWever, satisfactory results have sometimes been obtained With Waveguides Which maintain the proper cross sectional area but are made to sloWly form an ellipse at the mouth as these cross sections move from the throat to the mouth. The device contours are circular at the Waveguide throat, to match the driver outlet shape, and are modi?ed to become elliptical at the mouth in order to create a radiation pattern that is not axi-symmetric. This transition is done in a gradual manner so as to not unduly disturb the Wavefront propagation.

Experience has shoWn that too much of this Waveguide contour manipulation Will yield a device With less than optimal performance. It has been found in practice that not much more than about a tWenty to thirty degree difference in the radiated polar angles (vertical and horizontal) can be achieved With this technique. Thus a typical polar pattern of ninety by forty degrees, readily obtainable With diffraction based designs, Would only be possible With this technique in a compromised design. The prior art suffers from one or more of the folloWing

problems: The horn theory used to de?ne the contour lacks the rigor

required to predict the shape of the Wavefront at the mouth thus limiting the predictive capability of devices that are based on this theory.

In order to control the polar radiation pattern, diffraction Within the device must be used Which results comb ?lter effects and ambiguous acoustic centers.

Waveguides based on Oblate Spheroidal or similar con tours cannot achieve all desirable radiation character istics.

Page 11: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

US 7,068,805 B2 3

Objects and Advantages It is the object of the technique disclosed in this applica

tion to de?ne a Waveguide contour that is free from the use of di?fraction and yet still allows for precise control of the radiated response. This is achieved by using a combination of tWo coordinate systems and matching the Wavefront output of the ?rst to the input of the second. A match betWeen a ?at aperture throat and a high aspect ratio mouth can thus be obtained. This neW Waveguide has characteris tics Which cannot be achieved With the prior art.

DRAWING FIGURES

FIG. 1 shoWs the prior art usage of the Oblate Spheroidal coordinate system in a Waveguide;

FIG. 2 shoWs the tWo dimensional Elliptic coordinate system;

FIG. 3 shoWs the neW Bi-Spheroidal Waveguide in tWo cross sections;

FIG. 4 shoWs the Bi-Spheroidal Waveguide With a ?ared exit to minimize di?fraction at the mouth.

REFERENCE NUMERALS IN DRAWINGS

10 OS Waveguide conduit 20 OS Waveguide throat aperture 30 OS Waveguide mouth aperture 40 origin line in 2-D Elliptical coordinates 50 Prolate Spheroidal section 60 Elliptic Cylinder section 70 Mouth ?are 80 Mouth termination 90 Acoustic transducer

SUMMARY

In accordance With the present invention an acoustic Waveguide design is disclosed that is based on a combina tion of the Elliptical Cylinder (EC) and the Prolate Sphe roidal (PS) coordinate systems.

DESCRIPTION

A detailed study of the eleven coordinate systems for Which the Wave equation is separable reveals that only three of them alloWs for an input aperture at the throat that is ?at (see Audio Transducers Table 6.1). For each of these coor dinate systems the radial dimension yields a useful Waveguide. A ?at origin is desirable since virtually all sources of interest have unidirectional vibration, Which creates an essentially a ?at source irrespective of the fact that the vibrating surface itself may not be ?at-such as a typical domed compression driver diaphragm. The three coordinate systems Which alloW ?at sources are the Oblate Spheroidal (OS), Which has a circle as its origin, the Elliptic Cylindrical, Which has a rectangle as its origin and ?nally the Ellipsoidal, Which has an ellipse as its origin. The OS devices are Widely used and referenced in the prior art discussed above. In my ?rst Waveguide paper, the use of any of the separable coordinate systems as Waveguide contours Was discussed, hoWever, the possibility of combining tWo coordinate sys tems to yield the desired Waveguide characteristics Was not discussed, except for a simple matching of an OS Waveguide to a Spherical coordinate system Waveguide as a Way to match the throat size of the OS Waveguide to the driver exit

20

25

30

35

40

45

50

55

60

65

4 aperture size. No other geometries Were discussed and no general technique for matching throat con?gurations to desired mouth con?gurations Was expounded.

In this application I Will describe a means for combining an EC section With a PS section to obtain a device that can have very di?ferent directional characteristics in tWo perpen dicular planes, the horizontal and the vertical, a very desir able characteristic.

FIG. 2 shoWs a tWo dimensional map of the Elliptic coordinate system. When extended into and out of the page the EC coordinates are generated. When rotated about the semi-major axis of the ellipse then the PS coordinates are generated and When rotated about the ellipses semi-minor axis the OS coordinates are generated, as described above. The tWo dimensional coordinates for each of these coordi nate systems are characterized by an angle 11 and the radius E With the third coordinate being the angle 11). In Waveguides constructed in each of these coordinate systems the Wave fronts correspond to the constant E surfaces. When the tWo foci coalesce into a single point in the

above coordinates, then the Circular Cylindrical coordinates are generated for the 2-D case and the Spherical coordinates for the 3-D case. A PS Waveguide has cross sections that are everyWhere

rectangular. For small angles of 11 the Wavefront surfaces that are generated for small radial coordinates in a PS Waveguide are very nearly a section of a cylinder, regardless of the size of the 1p angle. This means that the tWo angles of the Walls of a PS Waveguide are uncoupled-they are independent of one another-Which is one of the goals. If the smaller of the tWo orthogonal Wall design angles, the vertical and the horizontal, is limited to be small and this angle is alloWed to correspond to the 1] direction, then With a very small error r the Wavefront required to feed this device can be assumed to be cylindrical. For non-zero values of E this section is a ?nite section of a cylinder. This still poses us a problem since this is not the source Wavefront that I Want to match. HoWever, as can be seen, again from FIG. 2, an EC Waveguide Would generate a ?nite section of a cylinder from a ?nite source of rectangular cross section With axial vibration. Proper matching of the output of an EC section to the input of a PS section Would alloW for a ?at rectangular source to develop into a non-axi-symmetric section of a sphere at the mouth of the PS Waveguide. This is the goal. The throat of an EC Waveguide can be feed by several

varieties of sources. First, an actual rectangular source could be used, a phase plug could be made Which had a square outlet instead of the usual round one, or a round source could also simply feed the square opening. It is also quite reason able to assume that a gradual transition from the normal round outlet of a compression driver or speaker to the square section of the EC Waveguide Would function Without undue degradation of the devices performance, so long as the same cross sectional areas are maintained or groW at a sloW rate.

The outlet of the EC Waveguide is a section of a cylinder Whose dimensions depend on the speci?cs of this section of the Waveguide. If a transition to a PS Waveguide is made at a E value such that the input shape of the PS Waveguide matches the output shape of the EC Waveguide then an almost perfect matching of the Wavefronts can be achieved. There are many speci?c angles and locations Where this matching can be done and the preferred embodiment is one Which minimizes discontinuities in the angles of the Walls at the matching location While alloWing for the elliptical sec tion to have progressed far enough to have created the nearly cylindrical Wavefront required by the PS input. Thus the

Page 12: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

US 7,068,805 B2 5

joining of the tWo sections is a compromise between tWo counter relationships. It is a straightforward task to manually determine this matching using typical draWing packages and ?nding the best ?ts of the Wall angles and shapes graphi cally. There is no doubt that some mathematical approach could be developed, but in practice it has been found that drafting this transition graphically has been highly effective and e?icient. A preferred embodiment of this design is shoWn in FIG.

3. The Waveguide is draWn as tWo cross sectional draWings in tWo perpendicular planes Which cross along the axis of the device. The EC section, 50, is shoWn in both vieWs as is the PS section, 60. This neW device is called a Bi-SpheroidalTM Waveguide, because it is composed of tWo Waveguides, “Bi”, With the outer section being “Spheroidal”.

This neW device is an improvement on the prior art in that it can achieve Widely different directional patterns in tWo directions Without the need for di?fraction at any point. This Will yield an improved sound quality through the minimi Zation of internal standing Waves and the resultant comb ?lter effect on the radiated response. This neW device also does not exhibit an ambiguity as to the acoustic center since there is only a single apparent source With a single radius of Wavefront curvature. As is customary With a horn, this Waveguide should have

a ?aring, a large radius, at the mouth to reduce diffraction and re?ections from the mouth termination. A Bi-Spheroidal Waveguide With a ?ared mouth into a ?at ba?le is shoWn in FIG. 4. The mouth can also be ?ared into a spherical surface if desired.

It should be noted that in some applications, such as line arrays, the vertical polar pattern Will be dominated by the

20

25

30

6 array and thus the vertical pattern for the individual Waveguide in this array is not important. In this case it Would be desirable not to have any vertical change in the conduits dimensions With length. This Would correspond then to a purely EC coordinate system and the PS section Would not be required. The Waveguide Would then be composed of a single EC section. The preciseness With Which one must match the coordi

nate systems as de?ned here has never been determined and it is to be noted that small deviations from the coordinate systems de?ned herein are still to be construed as being Within the scope of the claims. For example simplifying the a hyperbolic coordinate curve by circles and lines that closely match said curve Will still be Within the scope of my invention as these small deviations are not signi?cant in the end product. The EC and PS coordinate surfaces then are to be construed as ideals that can be deviated from Without signi?cant deviations from the positive features of these coordinate surfaces as de?ned Within this application.

I claim as my invention:

1. An acoustic Waveguide for propagating sound radiation from an acoustic transducer having a throat and a mouth termination, Wherein tWo or more sections along the length of said Waveguide have bounding surfaces that are substan tially Elliptic Cylinder and Prolate Spheroidal coordinates from the throat to the mouth.

2. The Waveguide of claim 1 Wherein; a mouth termination has a radius.

Page 13: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Jun. 27, 2006 Sheet 1 0f 5 US 7,068,805 B2

10 3O

20

FIG. 1

Page 14: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Jun. 27, 2006 Sheet 2 0f 5 US 7,068,805 B2

FIG. 2

Page 15: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Jun. 27, 2006 Sheet 3 0f 5 US 7,068,805 B2

Section B-B

Section A-A

FIG. 3

Page 16: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Jun. 27, 2006 Sheet 4 0f 5 US 7,068,805 B2

FIG. 4A

Page 17: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Jun. 27, 2006 Sheet 5 0f 5 US 7,068,805 B2

90

L Section A-A

FIG. 4B

Page 18: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

Verso Filler Page♦ ♦

Page 19: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

(12) United States Patent

US007095868B2

(10) Patent N0.: US 7,095,868 B2 Geddes (45) Date of Patent: Aug. 22, 2006

(54) PHASE PLUG WITH OPTIMUM APERTURE 3,852,529 A * 12/1974 Schafft ...................... .. 381/75

SHAPES 4,050,541 A * 9/1977 Henricksen ............... .. 181/159

4,091,891 A * 5/1978 Hino et a1. ............... .. 181/185

(76) Inventor: Earl Geddes, 43516 Scenic La., 4,718,517 A * 1/1988 Carlson 181/159 Northville, MI (US) 48167 4,975,965 A * 12/1990 Adamson .................. .. 381/343

5,117,462 A 5/1992 Bie (*) Notice: Subject to any disclaimer, the term of this 6,026,928 A * 2/2000 Maharaj ................... .. 181/152

patent is extended or adjusted under 35 6,064,745 A * 5/2000 Avera ....................... .. 381/343

U-S-C- 154(1)) by 179 days- 6,628,796 B1* 9/2003 Adamson .................. .. 381/342 6,744,899 B1* 6/2004 Grunberg ..... .. 381/343

(21) APP1- NO-I 10/361,327 2002/0021815 A1* 2/2002 Button et a1. ............. .. 381/343

(22) Filed: Feb. 10, 2003

(65) Prior Publication Data OTHER PUBLICATIONS

Earl Geddes, Audio Transducers Book Jul. 2002, . 126-164, Us 2004/0156519 A1 Aug. 12, 2004 Gedlee Publishing www‘Gedlee‘cém ) PP

(51) Int‘ Cl‘ * cited by examiner H04R 25/00 (2006.01)

(52) us. Cl. .................... .. 3s1/343,381/337,381/339, Primary Examinerisuhan Ni 381/340, 181/177; 181/185; 181/187; 181/189; ASS/‘Slam ExamineriDionne Harvey

181/ 192 (58) Field of Classi?cation Search ...... .. 381/3404343, (57) ABSTRACT

381/182, 186, 335, 351, 386, 3374339, 428; 181/152’ 144’ 148’ 159’ 160’ 185’ 192*195’ A phase plug for optimally matching a driVe-unit’s dia

_ _ Isl/186’ 177’ 184’ 187’ 188} 191’ 199 phragm to the throat of a Waveguide is disclosed. Speci?c See apphcanon ?le for Complete Search hlstory' embodiments of a circular diaphragm matched to an ellip

(56) References Cited tical Waveguide and a circular diaphragm to a rectangular

2,037,187 A

US. PATENT DOCUMENTS

4/1936 Weate

Waveguide are disclosed.

6 Claims, 15 Drawing Sheets

Page 20: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

US 7,095,868 B2 1

PHASE PLUG WITH OPTIMUM APERTURE SHAPES

BACKGROUND

1. Field of the Invention The present invention relates to the design of the phase

plug in an electro-acoustic transducer composed of the phase plug and drive-unit, and Waveguide assemblies.

2. Description of Prior Art In high performance audio playback systems it is common

practice to use Wave guiding devices coupled to an electro acoustic transducer drive-unit (that portion of an electro acoustic transducer that does the direct electrical to acous tical transduction) that act to both amplify and direct the sound energy created therein. These devices go by many names, the most common being “horns” and “Waveguides”, Waveguidesia neWer termiimplies that more importance is given to the directivity controlling aspects of these devices than the loading ones. I Will use the term Waveguide consistent With its neW meaning, but it is also my intention to mean any and all devices performing such tasks regard less of name.

The “shape” of the Wavefront presented to the input aperture of the Waveguide (the throat) has a great in?uence on hoW the device radiates sound from the open end (the mouth), particularly at the higher frequencies. Shape in the context of this application means the bounding area of a plane perpendicular to the sound channel propagation, it is a tWo dimensional surface, but it can also refer to the surface velocity distribution (complex number map) in that same surface. In order to control the formation of the throat Wavefront it is common practice to place a plug containing multiple phase equalizing channels betWeen the drive-unit diaphragm and the throat of the Waveguide. This plug is usually designed so as to direct the sound Waves emitted from the drive-unit diaphragm into the Waveguide throat aperture in a prescribed shape. This plug is also knoW by various names, the most common being “phase plug”, “phasing plug” or “equalizer”.

The art of phase plug design is Well advanced. The ?rst signi?cant disclosure of the function of a phase plug is provided by Wente, US. Pat. No. 2,037,187 (1936). Wente notes that the goal is to provide an essentially planar Wavefront at the horn throat and he achieves this task by directing the sound through phase equaliZing channels of essentially equal length, thereby ensuring that the contribu tions all add in phase.

In Henricksen, US. Pat. No. 4,050,541 (1977), discloses an alternate type of phase plug Wherein the phase equaliZing channels are radial, as opposed to more common circum ferential.

Carlson, US. Pat. No. 4,718,517 (1988), discloses a phase plug Which has a rectangular exit aperture at the throat end to better match the Waveguide throat, but at the input end at the drive-unit diaphragm, the phase equaliZing channels are also rectangular Which is not ideal. Carlson recogniZes the need for a phase plug When transitioning from a circular source to a non-circular one but does so utiliZing only a single channel of non-varying cross section (obviously easy to fabricate) or he uses tWo phase equaliZing channels Which are still not ideally matched to the circular diaphragm. In the later case the phase equaliZing channels vary only in siZei not shapeias they progress, and they are not concentric. In terms of performance (but not necessarily so in terms of manufacturing case) Carlson’s design is not optimal. The phase plug’s phase equaliZing channels entrance shape is not

20

25

30

35

40

45

50

55

60

65

2 Well matched to the diaphragm resulting in unequal phase propagation summation effects at the Waveguide throat Which Will result in distortions of the sound.

Bie, US. Pat. No. 5,117,462 (1992), utiliZes the voice coil motion as part of the radiating surface of the drive-unit and adds a sound channel to said radiating region. He also shoWs a phase plug With non-concentric round phase equaliZing channels.

Finally, Keith, US. Pat. No. 6,064,745 (2000), discloses an improved radial type of phase plug Which is easier to manufacture than previous designs. The input shapes are not circles, they are triangular.

Each of these inventions claims a distinct improvement over the others in regard to performance, manufacturability and/or some other comparable; hoWever, none of them discloses a phase plug design Which optimally matches a drive-unit’s diaphragm shape to a Waveguide throat of different shape (as can be required by Waveguide theory). By using phase equaliZing channels Which transition gradually from circular at the diaphragm to non-circular at the exit an improved phase plug design can be implemented. Adamson acknoWledged in US. Pat. No. 4,975,965

(column 5, lines 56464) that his phase plug “has been found to be particularly useful When applied to acoustic Waveguide speakers of the variety developed by Dr. E. R. Geddes . . . ”ithe current inventor. The Waveguide referred

to by Adamson Was based on the oblate spheroidal coordi nate system. In Chapter 6 of my book Audio Transducers, (GedLee Publishing, July, 2002), I discuss the fact that there are several different coordinate systems Which yield useful Waveguides (see table 6.1 in the text) and that each one has a different set of radiation characteristics. As discussed in this text, these different Waveguides require different Wave front shapes at the throat (“source aperture” and “curvature” in the table of my text) for optimum performance.

In order to optimally match a drive-unit to a Waveguide, it is desirable to have a phase plug that adapts the motion of a generally circular diaphragm to a desired aperture shape in a manner Which brings the velocities of various portions of the circular diaphragm to the exit aperture in a prescribed, but generally in-phase, manner. There are situations Where the velocity distribution (the velocity shape) in the phase plug’s exit aperture (the Waveguides throat) may Want to be non-uniform. An preferred embodiment of the invention disclosed in

this speci?cation occurs When connecting a circular drive unit to a Waveguide that requires an elliptical throat aperture. The phase plug in this case should have a shape at the input end that is circular or annular such as concentric annular rings spaced so that each ring has the smallest path length to those diaphragm points Which excite it, ie the shapes conform to the circular source. At the exit aperture the shapes are concentric elliptical rings, typically of equal area and arranged so that there combined shapes equal the shape required by the Waveguides throat.

In none of the prior art is it recogniZed that the optimum phase plug Would have the requirements highlighted above. It Was generally assumed that the phase plug’s exit aperture (the throat of the Waveguide) should be circular, or one With an equally simple shape to fabricate so long as the shapes of the sound channels at the input and output ends remain constant. In most cases the Waveguide throat is adapted to match the phase plug’s exit apertureinot the other Way around. The prior art generally conforms to a design approach Where ease of manufacture is emphasiZed, steering aWay from more complicated sound channel shapes because of manufacturing concerns. Today, injection molding com

Page 21: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

US 7,095,868 B2 3

plex phase plugs in plastic is a relatively easy manufacturing process and so complex shapes need no be avoided and more effective phase plugs can be readily fabricated.

OBJECTS AND ADVANTAGES

The primary object of this invention is a phase plug design Which alloWs the drive-unit diagram shape to be optimally matched to a Waveguide throat. The advantage of this optimum matching is that it creates a drive-unit/Waveguide combination Which has improved performance over one in Which either; the Waveguide shape is compromised to match the exit aperture from the drive-unit phase plug (usually circular in a “compression driver”ithe usual name for a drive-unit phase plug combination), or; the phase plug input shape is not optimally matched to the diaphragms shape.

DRAWING FIGURES

FIG. 1 shoWs a top vieW of a phase plug horn combination of conventional design;

FIG. 2 shoWs an exploded vieW of the axi-symmetric cross section 0*A of a phase plug and the attachment of the phase plug to the Waveguide;

FIG. 3 shoWs a top vieW of a phase plug Which has an elliptical exit aperture for use on a Waveguide designed around the ellipsoidal coordinate system;

FIG. 4 shoWs a top vieW of a phase plug With a rectangular exit aperture for use on a Waveguide designed around the prolate spheroidal or elliptic cylinder coordinate systems.

FIG. 5 shoWs a top vieW of a phase plug With a multi plicity of independent circular holes at the diaphragm and a rectangular layout of rectangular holes in the exit aperture plane.

REFERENCE NUMERALS IN DRAWINGS

generic drive-unit 20 phase plug 22 phase plug diaphragm end 24 phase plug exit aperture 25 sound equalizing channels 30 Waveguide 40 attachment bolt

SUMMARY

In accordance With the present invention, a phase plug is disclosed Which has the ability to optimally match a given drive-unit diaphragm shape to a chosen Waveguide by utilizing sound equalizing channels that transition from the optimum shape at the diaphragm to the optimum shape at the Waveguide.

DESCRIPTION FIGS. 1 TO 5

There can be many Ways to assemble a drive-unit, phase plug and Waveguide, but only a typical structure Will be shoWn here for brevity.

FIG. 1. shoWs a typical prior art implementation of a phase plug Where FIG. 2 is an axi-symmetric cross section along line 0-A in FIG. 1. A means for connecting a Waveguide (30) to the phase plug (20) is shoWn as bolts (40).

20

25

30

35

40

45

50

55

60

65

4 The phase plug (20) is placed over the diaphragm-motor structure (not shoWn) by some connection means (not shoWn). Annular rings at the diaphragm are brought out to annular rings in the throat aperture With the intention of making the distance traveled along the various sound chan nels (25) approximately equal. FIG. 1 shoWs each channel of equal length and constant cross section, although this is merely a convenience that is not alWays useful or desirable. Much prior art exists for placing and sizing the phase plug sound channels (25) but this art nearly alWays has a basically circular throat aperture. One notable exception is that described beloW for FIG. 5.

FIG. 3 shoWs a preferred embodiment of the neW phase plug design in Which the phase equalizing channels of the design start out With exactly the same areas and shape as in FIG. 1, but they are morphed along their path ending in ellipses at the exit aperture. This design Will optimally match a circular diaphragm to the elliptical throat of an elliptically shaped Waveguide, like that created in ellipsoidal coordi nates according to Geddes. AlloWing the phase plug sound channels to mimic the shape of the diaphragm at the dia phragm While having the shape of these channels match the entrance (throat) of the Waveguide at the phase plug’s exit aperture, is the key invention of this application.

FIG. 4 shoWs another preferred embodiment of the neW phase plug design in Which the phase equalizing channels of the design start out With exactly the same areas and shape as in FIG. 1, but they are morphed along their path into nested rectangles at the exit aperture. This design Will optimally match a circular diaphragm to the rectangular throat of a rectangular cross section Waveguide like that required for an elliptic cylinder Waveguide. The rectangular throat cross section Would usually have a ?nite radius at the corners of the rectangles for various reasons, but t5he basic shape Will be rectangular.

FIG. 5 shoWs another preferred embodiment of the neW phase plug design in Which the phase equalizing channels of the design start out as circular holes, but they are morphed along their path into rectangles at the exit aperture. The rectangular exit holes of the equalizing channels add up to yield the rectangular throat of an rectangular cross section Waveguide. LikeWise the exit exit holes of the equalizing channels could be made to add up to an elliptical aperture.

It should also be recognized that the early part of the Waveguide increasing cross section may Well be part of the phase plug in that the sound equalizing channels may expand in cross section as Well as change shape. One skilled in the art Will recognize that there are many

Ways to assemble an electro-acoustic transducer composed of a drive-unit, phase plug and Waveguide and that the method of assembly shoWn here is but one. They Will also recognize that are many Ways to design the phase plug equalizing channels and that the design shoWn here is but one example. For instance, the ratio of the diaphragm are to the area at the entrance of the phase plug (the compression ratio) could be varied, or the rate of area change along the phase equalizing channels could be varied. The invention described here relates to the change in the shape of the channels normal to the propagation direction as the channels progress from the diaphragm to the Waveguide, the portion of the design usually called the phase plug.

I claim: 1. An electro-acoustic transducer for transmitting sound

comprising: a drive-unit; a Waveguide and;

Page 22: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

US 7,095,868 B2 5

a phase plug With a diaphragm end and an exit aperture, wherein:

said phase plug has sound path equalizing channels Whose shapes normal to the Wave propagation change from being multiple concentric annuluses at the diaphragm end, to being noncircular concentric at the exit aperture.

2. An electro-acoustic transducer as de?ned in claim 1 Wherein:

said phase plugs sound path equalizing channels noncir cular concentric shapes at the exit aperture, are ellipses.

3. An electro-acoustic transducer as de?ned in claim 1 Wherein:

said phase plugs sound path equalizing channels noncir cular concentric shapes at the exit aperture are essen tially rectangular.

6 4. An electro-acoustic transducer as de?ned in claim 1

Wherein: said phase plugs sound path equalizing channels expand,

along their length, corresponding to the cross sectional area expansion of the throat of a Waveguide.

5. An electro-acoustic transducer as de?ned in claim 4 Wherein:

said phase plugs sound path equalizing channels noncir cular concentric shapes at the exit aperture are ellipses.

6. An electro-acoustic transducer as de?ned in claim 1 Wherein:

said phase plugs sound path equalizing channels noncir cular concentric shapes at the exit aperture are essen tially rectangular.

* * * * *

Page 23: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Aug. 22, 2006 Sheet 1 0f 15 US 7,095,868 B2

Sec A

20

(Prior Art) Fig. 1

Page 24: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Aug. 22, 2006 Sheet 2 0f 15 US 7,095,868 B2

Section O-A

Fig. 2

Page 25: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Aug. 22, 2006 Sheet 3 0f 15 US 7,095,868 B2

24 20

Fig. 3a

Page 26: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Aug. 22, 2006 Sheet 4 0f 15 US 7,095,868 B2

Section O-C

Fig. 3b

Page 27: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good
Page 28: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

Section C.2

U.S. Patent Au .22 2006 Sheet 6 0f 15

Fig. 3d

Page 29: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good
Page 30: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Aug. 22, 2006 Sheet 8 0f 15 US 7,095,868 B2

Fig. 4a

Page 31: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Aug. 22, 2006 Sheet 9 0f 15 US 7,095,868 B2

Sec. D.2 -~ - ..

< . I-III-II

Section 0-D

Fig. 4b

Page 32: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

S€CtiOI1 D.1

Fig. 4c

Page 33: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Au .22 2006 Sheet 11 or 15

Section D.2

Fig. 4d

Page 34: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Aug. 22, 2006 Sheet 12 0f 15 US 7,095,868 B2

Section D.3

Fig. 4e

Page 35: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Aug. 22, 2006 Sheet 13 0f 15 US 7,095,868 B2

Fig. 5a

Page 36: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Aug. 22, 2006 Sheet 14 0f 15 US 7,095,868 B2

ix 15%“ I W§i

I See. E.1

Saction O-E

Fig. 5b

Page 37: Letter to the Editor Audio X Press - pearl-hifi.com · PDF fileTo predict or design for directivity one has to ... A conical horn on a ... “Well at least the horn equation is good

U.S. Patent Au .22 2006 Sheet 15 0f 15

Section E.1

Fig. 5b