mapping hydropower suitability in nepal - tufts...

1
Mapping Hydropower Suitability in Nepal Major River Systems of Nepal Table 1: Major River Basins of Nepal and their Hydropower PotenƟal Basin Amount ow (in billions of m 3 ) Catchment Area (in km 2 ) TheoreƟcal PotenƟal (in MW) Sapta Koshi 33 28 140 22 350 Sapta Gandaki 50 31 600 20 650 Karnali 42 41 890 32 010 Mahakali 7 5 410 4 160 Southern Rivers 42 40 141 4 110 Total 174 147 181 83 280 This project aims to map the areas in Nepal suitable for the construcƟon of hydropower plants. It encompasses power plants of all sizes ( from the microhydro plants that generate a few hundred KilowaƩs to mega plants gener aƟng several thousand MegawaƩs) and of dierent basic designs (runofthe river and dams). It will idenƟfy the most important variables for the construcƟon of a hydropower plant, map them, and analyze the aggregate to ascertain what regions are the most suitable for the construcƟon of such power plants. Nepal has an esƟmated theoreƟcal hydropower potenƟal of 83,000 MegawaƩs (and economically feasible potenƟal of 40,000 MegawaƩs), of which only 600 MegawaƩs have been developed. Its demand for energy due to urban growth has far outstripped the supply, and it faces daily powercuts for up to sixteen hours every Winter. Only 40 percent of the Nepali populaƟon has access to electricity. Despite its hydropower potenƟal, Nepal has less than ve percent of its energy needs met by electricity. Nepal is mostly a rural agricultural country, and that is reected in it’s energy paƩern — over sixty percent of energy comes from burning wood, twenty percent from animal and agricultural waste, and about ten percent from imported fossil fuel. With growing urbanizaƟon, the dependency on electricity has been growing tremendously, and is bound to grow for the foreseeable future. Nepal needs a lot more hydropower plants to meet its demands. Even though Nepal has the world’s secondlargest per –capita hydropower potenƟal, less than one percent of that potenƟal has been realized Map produced by Shirish Pokharel December 17, 2012 ProjecƟon: WGS_1984 Nepal’s steep mountains and the rivers owing through them give it its advantage for hydroelectricity generaƟon. Therefore, for this analysis, the slope of the land near a river was given the greatest weightage in the suitability calculaƟons. However, hydroelectric power plants are not constructed above 4000m above sea level, rarely above 3000m, because of high construcƟon, maintenance and environmental costs. That lead to an eliminaƟon of a signicant area, since a large porƟon of Northern Nepal is at a high alƟtude in addiƟon to being quite steep. Land between 3500m to 4000m was given lower priority over land at lower alƟtude for the same reason. To make the analysis more realisƟc, buff‐ ers were created around rivers at 1km, 5km, 10km and 20km, with closer buff‐ ers being weighted heavier. Tunnels up to several kilometers long have been constructed in Nepal for hydropower generaƟon. Nepal has two kinds of hydropower staƟons based on how they operate: runoftheriver staƟons, and those with dams. Hydropower staƟons with dams generate more electricity, and can store water during the monsoon for the dry season, but are not environmentally friendly and usually involve displacing nearby human seƩlements. Runoftheriver staƟons run on rainwater and water from glaciers, and have no dams. They do not store water, so produce liƩle or no electricity during the dry season, but are environmentally friendly and do not require human displacement. In both type of staƟons, rain plays an important part in replenishing the water, and allowing for greater producƟon of electricity. Therefore, places that received greater rainfall are considered more valuable over drier regions. Hydropower in Nepal The environmental and populaƟon aspects of the power plants were also considered. The distance between power plants and human seƩlements was maximized and areas with low human density were given greater priority. Moreover, regions that were close to, or parts of, protected areas (such as watershed conservaƟon areas, naƟonal parks or reserves) were considered to be less suitable than other regions. Hydropower staƟons tend to have a signicant construcƟon footprint, so a hydropower’s distance from nearby road would have a signicant impact on how it aects its surroundings. A hydropower staƟon built far from nearby roads and/or near human seƩlements or natural environments was assumed to have more signicant adverse socioeconomic and environmental impact than that constructed nearby to an exisƟng road network. A power plant's proximity to an exisƟng road network was included as a factor for consideraƟon, and so was the proximity to electrical transmission lines. Soil types of dierent regions were also factored into the modeling. The soiltype of a given locaƟon inuences the kind of construcƟon and civil work that needs to done, which directly corresponds to the costs ( both environmental and economic) of a project, and thus the suitability of a given project. Areas with more suitable soil were given more points as compared with areas that had less suitable soil for the construcƟon of power plants. As is clear from the nal map above, Nepal has incredible unrealized potenƟal in hydropower. There are clusters of high density regions very suitable for hydroelectric plants in the Eastern, Central, MidWestern, and Far Western Regions. While the red regions at the southern part of the country are a surprise, since they would be in midhills or the southern plains, they represent areas with very high gradient of alƟtude, and would be useful for microhydro projects, and make up for the lack of relaƟve abundance of clusters of regions of high suitability regions as in the northern and western parts. Considering the internal growth in demand and its total potenƟal, it becomes obvious that Nepal is wellpoised to become an exporter of hydroelectricity, were the faciliƟes properly developed. It must also be noted that the far eastern and the far western parts are especially suited for electricity exports, with greater hydropower potenƟal, and their proximity to both India and China, who have both a growing appeƟte for energy. Therefore, if the government made policies with the clustering of energyclustering in mind, it could make big economic gains through the internal uƟlizaƟon, and sale of hydroelectricity. DATA SOURCES: Hydropower in Nepal — Chart and Map: hƩp://lib.icimod.org/record/10707/les/5951.pdf , Shaligram Pokharel, Nanyang Technological University, Singapore, 2007 Soil ClassicaƟons Data: hƩp://Ɵnyurl.com/d2agr7o hƩp://nesoil.com/plymouth/classicaƟon.htm hƩp://nagaland.nic.in/funcƟonaries/department/agri/soil/survey.htm Last modied 2004 Maps: www.icimod.org , “InternaƟonal Centre for Integrated Mountain Development (ICIMOD)”, 2010 Conclusion Not to Scale Nepal’s hydropower assets are concentrated in four clusters: East, Center, MidWest, and Far West, and they potenƟally hold the key to Nepal’s growth.

Upload: lythu

Post on 07-Feb-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Mapping Hydropower Suitability in Nepal - Tufts Universitysites.tufts.edu/gis/files/2013/11/Pokharel_Shirish_2.pdf · his project aims to map the areas in Ne‐ ... Northern Nepal

Mapping Hydropower Suitability in Nepal

Major River Systems of Nepal 

Table 1: Major River Basins of Nepal and their Hydropower Poten al 

 

Basin  Amount flow 

(in billions of m3) 

Catchment Area (in km2) 

Theore cal  

Poten al 

(in MW) 

Sapta Koshi  33  28 140  22 350 

Sapta Gandaki  50  31 600  20 650 

Karnali  42  41 890  32 010 

Mahakali  7  5 410  4 160 

Southern Rivers  42  40 141  4 110 

Total  174  147 181  83 280 

This project aims to map the areas in Ne‐pal suitable for the construc on of hydro‐power plants. It encompasses power plants of all sizes ( from the micro‐hydro plants that gen‐erate a few hundred   Kilo‐wa s to mega plants gener‐a ng several thousand Meg‐awa s) and of different basic designs (run‐of‐the riv‐er and dams). It will iden fy the most important varia‐bles for the construc on of a hydropower plant, map them, and analyze the aggre‐gate to ascertain what regions are the most suitable for the construc on of such power plants.    Nepal has an es mated theore cal hydro‐power poten al of 83,000 Megawa s (and economically feasible poten al of 40,000 Megawa s), of which only 600 Megawa s have been developed. Its de‐mand for energy due to urban growth has far outstripped the supply, and it faces daily power‐cuts for up to sixteen hours 

every Winter. Only 40 percent of the Nepali popula on has access to electricity. 

 

Despite its hydro‐power poten al, Nepal has  less than five percent of its energy needs met by electricity. Nepal is mostly a rural agricultural 

country, and that is reflected in it’s energy pa ern — over six‐ty percent of energy comes from burning wood, twenty percent from animal and agri‐cultural waste,  and about ten percent from imported fossil fuel. With growing urbaniza‐on, the dependency on elec‐

tricity has been growing tre‐mendously, and is bound to grow for the foreseeable fu‐ture. Nepal needs a lot more hydropower plants to meet its demands. 

Even though Nepal has the world’s second‐largest        per –capita hydropower  poten al, less than one  percent of that poten al 

has been realized 

Map produced by Shirish Pokharel 

December 17, 2012 

Projec on: WGS_1984 

Nepal’s steep mountains and the riv‐

ers flowing through them give it its ad‐vantage for hydroelectricity genera on. Therefore, for this analysis, the slope of the land near a river was given the greatest weightage in the suitability cal‐cula ons. However, hydroelectric pow‐er plants are not constructed above 4000m above sea level, rarely above 3000m, because of high construc on, maintenance and environmental costs. That lead to an elimina on of a signifi‐cant area, since a large por on of Northern Nepal is at a high al tude in addi on to being quite steep. Land be‐tween 3500m to 4000m was given lower priority over land at lower al tude for the same reason. 

 

To make the analysis more realis c, buff‐ers were created around rivers at 1km, 5km, 10km and 20km, with closer buff‐ers being weighted heavier. Tunnels up to several kilometers long have been constructed in Nepal for hydropower genera on. 

 

Nepal has two kinds of hydropower sta ons based on how they operate: run‐of‐the‐river sta ons, and those with dams. Hydropower sta ons with dams generate more electricity, and can store water during the monsoon for the dry season, but are not envi‐ronmentally friendly and usually in‐volve displacing nearby human se le‐ments. Run‐of‐the‐river sta ons run on rainwater and water from glaci‐ers, and have no dams. They do not store water, so produce li le or no electricity during the dry season, but are environmentally friendly and do not require human displacement. In both type of sta ons, rain plays an important part in replenishing the water, and allowing for greater pro‐duc on of electricity. Therefore, places that received greater rainfall are considered more valuable over drier regions. 

Hydropower in Nepal  

The environmental and popula‐on aspects of the power plants 

were also considered. The dis‐tance between power plants and human se lements was maxim‐ized and areas with low human density were given greater priori‐ty. Moreover, regions that were close to, or parts of, protected ar‐eas (such as watershed conserva‐on areas, na onal parks or re‐

serves) were considered to be less suitable than other regions. 

 

Hydropower sta ons tend to have a significant construc on foot‐print, so a hydropower’s distance from nearby road would have a significant impact on how it affects its surroundings. A hydro‐power sta on built far from near‐by roads and/or near human se lements or natural environ‐ments was assumed to have more significant adverse socioeconomic and environmental impact than that constructed nearby to an ex‐is ng road network. A power plant's proximity to an exis ng road network was included as a factor for considera on, and so was the proximity to electrical transmission lines. 

 

Soil types of different regions were also factored into the mod‐eling. The soil‐type of a given lo‐ca on influences the kind of con‐struc on and civil work that needs to done, which directly cor‐responds to the costs ( both envi‐ronmental and economic) of a project, and thus the suitability of a given project. Areas with more suitable soil were given more points as compared with areas that had less suitable soil for the construc on of power plants.  

As is clear from the final map above, Nepal has incredible unreal‐ized poten al in hydropower. There are clusters of high‐density regions very suitable for hydroelectric plants in the Eastern, Central, Mid‐Western, and Far Western Regions.  While the red regions at the southern part of the country are a surprise, since they would be in mid‐hills or the southern plains, they represent areas with very high gradient of al tude, and would be useful for micro‐hydro projects, and make up for the lack of rela ve abundance of clusters of regions of high suita‐bility regions as in the northern and western parts. 

 Considering the internal growth 

in demand and its total poten‐al, it becomes 

obvious that Ne‐pal is well‐poised to become an ex‐porter of hydroe‐lectricity, were the facili es properly devel‐

oped. It must also be noted that the far eastern and the far west‐ern parts are especially suited for electricity exports, with greater hydropower poten al, and their proximity to both India and China, who have both a growing appe te for energy. Therefore, if the government made policies with the cluster‐ing of energy‐clustering in mind, it could make big economic gains through the  internal u li‐za on, and sale of  

hydroelectricity. 

DATA SOURCES:  Hydropower in Nepal — Chart and Map: h p://lib.icimod.org/record/10707/files/5951.pdf , Shaligram Pokharel, Nanyang Technological University, Singapore, 2007 

Soil Classifica ons Data:   

  h p:// nyurl.com/d2agr7o 

  h p://nesoil.com/plymouth/classifica on.htm 

  h p://nagaland.nic.in/func onaries/department/agri/soil/survey.htm 

Last modified 2004 

Maps: www.icimod.org  , “Interna onal Centre for Integrated Mountain Development (ICIMOD)”,  2010 

Conclusion

Not to Scale 

Nepal’s hydropower assets    are concentrated in four clusters: East, Center,  

   Mid‐West, and Far West,    and they poten ally hold  the key to Nepal’s growth.