mecot fastsetting av sil krav2

Upload: yasmine-

Post on 07-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    1/47

    - Deterministic vs. risk-based approach- Layer Of Protection Analysis (LOPA) overview

    SIL Allocation

    2012-03-07

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    2/47

     

    15% Design and

    Implementat ion

    6% Instalat ion

    and Start-up

    44% Specif icat ion

    15% Maintenance

    and Operat ion

    20% Changes after

    Start-up

    Ref “Out of Control: Why control systems go wrong and how to prevent failure”

    Published by UK HSE

    Origin and causes of accidents involving control system failure

    2012-03-072

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    3/47

    SIS Safety Lifecycle, IEC61511 Assessment of hazard s

    and risks 

     Allocation of the safety

    functions to the protectionlayers 

    Specification of the safety

    requirements for the safetyinstrumented system 

    Design and engineering ofthe safety instrumented

    system 

    Installation , reception and validation 

    Operation and maintenance 

    Modification 

    Decommissioning 

    Managementof functional

    safety andassessment

    and audit of

    functionalsafety 

    Structureand

    planning ofth e safety

    life cycle 

    Verification 

    8  9 11 10 

     Assessment of hazardsand risks 

     Allocation of the safety

    functions to the protectionlayers 

    Specification of the safety

    requirements for the safetyinstrumented system 

    Des ign and engineering ofthe safety instrumented

    system 

    Installation , Receipt and Validation 

    Operation and maintenance 

    Modification 

    Decommissioning 

    Managementof functional

    assessment

    and audit of

    functionalsafety 

    Structureand

    planning of

    life cycle 

    Verification 

    8  9 11 10 

    other  means of reducing risk Design and development of

    2012-03-073

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    4/47

    SIL Allocation in the IEC61511 Safety Lifecycle Assessment of hazard s

    and risks 

     Allocation of the safety

    functions to the protectionlayers 

    Specification of the safety

    requirements for the safetyinstrumented system 

    Design and engineering ofthe safety instrumented

    system 

    Installation , reception and validation 

    Operation and maintenance 

    Modification 

    Decommissioning 

    Managementof functional

    safety andassessment

    and audit of

    functionalsafety 

    Structureand

    planning ofth e safety

    life cycle 

    Verification 

    8  9 11 10 

     Assessment of hazardsand risks 

     Allocation of the safety

    functions to the protectionlayers 

    Specification of the safety

    requirements for the safetyinstrumented system 

    Des ign and engineering ofthe safety instrumented

    system 

    Installation , Receipt and Validation 

    Operation and maintenance 

    Modification 

    Decommissioning 

    Managementof functional

    assessment

    and audit of

    functionalsafety 

    Structureand

    planning of

    life cycle 

    Verification 

    8  9 11 10 

    other  means of reducing risk Design and development of

    2012-03-074

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    5/47

    SIL Allocation & SIL Verification Assessment of hazardsand risks

    Specification of the safetyrequirements for the safetyinstrumented system

    system

    In

    stallation,receptionandvalidation

    Modification

    Decommissioning

    Man

    agementof functionalsafety andassessmentand audit offunctionalsafety

    andp

    lanning ofthe safety

    3

    4

    56

    7

    ,

    and

    SIL 1

    SIL 2

    SIL3

    SIL Allocation

    Minimum SIL requirementsLOPA, Risk graphs,

     Assessment of hazardsand risks

    Specification of the safetyrequirements for the safetyinstrumented system

    system

    In

    stallation,receptionandvalidation

    ModificationDecommissioning

    Man

    agementof functionalsafety andassessmentand audit offunctionalsafety

    andplanning ofthe safety 1

    3

    5

    6

    7

    ,

    and

    Design & EngineeringSIL Verification calculations (PFD)

    FMECA, SAR, Safety Manuals,

    etc.

    Set targetDemonstrate

    target is met

    Determine if additional

    SIF are required and ifyes then allocate the

    target SIL

    Address target SIL (Fault

    Tolerance & PFD)

    • Select system technology• Configuration / vooting

    • Test interval

    • Diagnostic

    2012-03-075

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    6/47

    SIL Allocation – The two approaches

    Deterministic

    ISO10418

    OLF070

    Risk-Based

    LOPA, Risk graph,

    QRA

    2012-03-076

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    7/47

    SIL Allocation – Deterministic approach

    ISO10418, API RP14C

    for offshore

    installations

    NFPA 85, 86, APIRP556 for various

    types of fired

    equipments

    …etc. 

    • Prescriptive recommendation for protective

    measures

    • Based on experience and recognized

    practice

    •  Acceptable level of safety achieved (refer to

    clearly defined hazards and standardized

    behavious of safety systems and barriers)

    1. Design in accordance with process industry standards

    2012-03-077

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    8/47

    SIL Allocation – Deterministic approach

    Minimum SIL Requirements

    OLF070 Application of IEC

    in the Norwegian Petroleum

    Industry

    Company Governing

    Documentation

    2. Allocate SIL based on predetermined requirements

    • Minimum SIL requirement is

    derived from expected reliability

    (PFD) of typical SISs. i.e.

    achievable by standard solutions

    considered good industry practice.

    • Not based on required risk

    reduction conforming to specific

    RTC

    • Enforces quality requirements inthe SIS design, installation and

    operation

    2012-03-078

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    9/47

    SIL Allocation – The two approaches

    Deterministic

    ISO10418

    OLF070

    TES

    Risk-Based

    LOPA, Risk graph,

    QRA

    2012-03-079

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    10/47

    The safety „onion‟ – Integrated approach

    COMMUNITY EMERGENCY REPSONSE

    PLANT EMERGENCY REPSONSE

    PHYSICAL PROTECTION (DI KES)

    PHYSICAL PROTECTION (RELIEF DEVICES)

    AUTOMATIC ACTION SIS OR ESD

    CR ITICAL ALARMS, OPER ATOR

    SUPERVISION , AND MANUAL IN TERVENTION

    BASIC CONTROLS, PROCESS ALARMS,

    AND OPERATOR SUPERVISION

    PROCESS

    DESIGN

    LAH

    1

    I

    Independent

    Protection

    Layers

    Layer of SIS

    2012-03-0710

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    11/47

    Trip set point

    High level

    High Level Alarm Operator  Takes Action

    Process level

    SIS Action

    Low level

    Normal Level

    PT 

    PCS 

    PT 

    PSD logic 

     Alternative view - protecting by multiple protection layers

    2012-03-0711

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    12/47

    Reducing risks with protection layers

    Increasing risk  

    Required risk reduction 

    Initial

    Risk

    (frequency)

    Risk

    tolerance

    criteria

    Risk reduction

    externalRisk reduction

    Other technologies

    Risk reduction

    SIS

    Achieved risk reduction 

    Remaining

    risk

    Closing the safety gap

    between risk and target

    2012-03-0712

    Missing

    adequate

     barriers ?

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    13/47

     Applicability of risk assessment methods for risk judgements

    HAZOP, What if LOPA, Risk Graph ETA, FTA, QRA

    Good Good Overkill

    Poor to Okay for risk

     judgmentUsually Good Good

    Technique

     Applicability to

    simple issues

     Applicability to

    complex issues

    Qualitative analysis(100% of scenarios are

    analyzed using qualitativemethods)

    Simplified-quantitative

    or semi-qualitative

    analysis(1-5% of scenarios, 100% of SIF)

    Quantitative analysis(

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    14/47

    SIL Allocation process (risk-based)

    Risk Assessment / Process Hazard Analysis (PHA) / IPL definition(e.g. HAZOP)

    For each scenario, SIF determination & SIL allocation with

    simplified risk analysis technique(e.g. LOPA, risk graph)

       E

      v  a   l  u  a   t  e  o   t   h  e  r  n  o  n  -   S   I   S

       I   P   L  o

      r   d  e  s   i  g  n  c   h  a  n  g  e

    SIL1, SIL2

    or SIL3 with TESwhere further

    assessment is

    needed?

    Quantitative risk assessment for dedicated scenario

    SRS, CDD, etc.

    YES

    NO

    Complete SIL allocation for each SIF & Reporting

    Plant  – Facilities & SafetyConceptual strategies / philosophies

    Design & Operating principles / Performance Standards / Acceptance criteriaPlant Design development input (e.g., process conditions, P&ID, C&E, FDS, etc.)

    NO

    NO

    SIL4 Requiredby a single

    SIS?

     Apply fordispensation to

    TR2041

    YES

    SIF determination & SIL Allocation

    SIL4?

    ORSIL3 with no TES?

    Design change or

    other non-SIS IPLpossible?

    YES

    SIL1, SIL2, SIL3or SIL4 by

    multiple SIS?

    YES

    NO

    Qualitative

    Semi-qualitative

    Simplified-quantitative

    Quantitative

    2012-03-0714SRS, SAR, etc.

    GALE

    GALE

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    15/47

    LOPA – Layer of Protection Analysis

    • Multidiscipline team exercise. Immediately after HAZOP (1w/m)

    • Good synergy with HazOp (Cause, consequence, safeguards)

    • Simple rules (reproducible), order of magnitude of the risk

    • Barrier/Protection layers analysis methodology

    • Focus on Safety Instrumented Systems

    • Will also address credit for other Safety Related Systems

    • Identification of required and expected performance of critical systems

    • Closes the gap between „expected‟ system performance and required „Risk

    Tolerance‟

    • Determines Safety Integrity Level (SIL) of „gap‟ 

    • Can be an entry point to QRA

    2012-03-0715

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    16/47

    • Does my system (planned or actual) ensure my criteria are met?

    • Do I need additional Safety Instrumented System?•  Are there alternatives?

    • IEC 61511 - LOPA will meet requirements (Part 3, Annex F))

    •  AIChE endorsement

    • Risk-based approach common in downstream industry, especially for PSD

    • LOPA often used In Americas. Europe often using risk graphs

    • Some O&G companies have developed their own software / spreadsheets

    LOPA – Can address the following

    LOPA – References and applicability in the industr y

    2012-03-0716

    http://www.amazon.com/gp/reader/0816908117/ref=sib_dp_pt/190-8041986-6626733http://www.amazon.com/gp/reader/0816908117/ref=sib_dp_pt/190-8041986-6626733http://www.amazon.com/gp/reader/0816908117/ref=sib_dp_pt/190-8041986-6626733

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    17/47

    LOPA – Procedure

    Step 1: Establish TTC

    Step 4: Determine IE frequency

    Step 5: Identify IPLs and select the

    probability of failure

    Step 6: Identify Conditional Modifiers and

    select the probability

    Step 7: Evaluate Scenario frequency and

    compare with TTC

    Step 3: Evaluate impact severity on

    safety, environment and assets

    Step 2: Preliminary selection of scenarios

    Step 8: Identify SIF and

     Allocate SIL

    Step 10: Evaluate consequences of

    spurious failure

    Step 9: Evaluate need for

    other non-SIS IPL or redesign

    Step 11: Reporting

    2012-03-0717

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    18/47

    Step1  – Establish Target Tolerance Criteria (TTC)

    2012-03-0718

       I  m  p  a  c   t

       l  e  v  e   l

    Frequency (/year) 

    < 1E-4  1E-4 1E-3  1E-3 0.01  0.01  – 0.05  0.05  – 0,3  0.3  – 0.7  0.7- 1.4  > 1.4 

    1 2 3 4 5 6 7 8

    Frequency Level

    Category

    Target

    Tolerance

    Criteria

    8 /

    Catastrophic1 x E-6 pr year

    7 /Major

    1 x E-5 pr year

    6 /

    Severe

    1 x E-4 pr year

    5 /

    Serious

    1 x E-3 pr year

    4 /

    Moderate

    1 x E-2 pr year

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    19/47

    Step1  – Establish TTC

    • The criteria are dependant on numbers used for initiating events,

    risk reduction factors etc.

    • Economic impact should include the total loss• Demolition cost

    • Installed equipment costs (x3 purchase price)

    • Cost of business interruption

    (value of product that cannot be shipped out, not cost of lost production)

    • Corporate TTC should be used as a basis to establish localapplicable TTC

    2012-03-0719

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    20/47

    Step2  – Preliminary selection of scenarios/SIFs

    • Scenarios/SIF identified from C&E, interlocks narrative and P&IDs

    •  Additional scenario where a SIF is recommended for evaluation (e.g.

    identified during HAZID, HAZOP or other project/facility review)

    • High impact severity scenarios (i.e. category 7 and 8 in TTC)

    Logic Solver 

    (PLC)

    Temperature

    transmitter 

    Temperature

    transmitter 

    Level Switch

     

    Flow transmitter 

    On/off valveSolenoide

    On/off valveSolenoide

    Pump

    2012-03-0720

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    21/47

    Step2 – Identification of scenario

    Consequence DInitiating

    Event 1

         C     A     U     S     E     S

         C     O     N

         S     E     Q     U     E     N     C     E     S

    PREVENTION MITIGATION &

    RECOVERY

    Terminate the

    chain of events,

    reduce frequency

    Initiating

    Event 1

    Initiating

    Event 2

    Initiating

    Event 3

    BPCSOperator

    response to Alarm

    from monitoring

    system SIS PSV

    Consequence D

    Ignition

    control

    TOP EVENTE.g. Loss of Containment

    ESD

    Fire Water 

    Consequence B

    Consequence A

    Reduce

    consequence

    severity

    Consequence C

    No consequence

    LOPA scenario : single cause – consequence pair

    2012-03-0721

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    22/47

    Step3 – Evaluate Impact severity

    • Define “worst reasonably credible” consequences that result if the

    chain of events continues without interruption.

    • Select Impact severity from TTC for all categories (People‟s safety,

    Environment, Economic).

    Category

    Target

    Tolerance

    Criteria

    8 /

    Catastrophic1 x E-6 pr year

    7 /

    Major1 x E-5 pr year

    6 /

    Severe

    1 x E-4 pr year

    5 /

    Serious

    1 x E-3 pr year

    4 /

    Moderate

    1 x E-2 pr year

    2012-03-0722

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    23/47

    • Identify all possible initiating events, i.e. causes

    • Mechanical, Instrument or Human failures

    Step4  – Determine Initiating Event Frequency

    Mechanical Initiating Event failure/year 

    Canned/Magnetic Drive Pump Failure 1,00E-02

    Compressors, Pumps and Crane fail 1,00E+00

    Control valve failure 1,00E-01

    Cooling Water Failure 1,00E-01

    Double Mechanical Seal Pump Failure 1,00E-02

    Expansion Joint Fails 1,00E-02

    General Utility Failure 1,00E-01

    Heat Exch. tube leak 100 tubes 1,00E-01

    Heat Exch. tube rupture 100 tubes 1,00E-02

    Loss Cooling 1,00E-01

    Loss Power 1,00E-01

    Manual valve failure 1,00E+00

    Pressure safety valve failure 2,00E-01

    Pressure Vessel Failure Significant Release 1,00E-05

    Pump Failure Loss of Flow 1,00E-01

    Single Mechanical Seal Pump Failure 1,00E-01Unloading/Loading Hose Failure 1,00E-01

    Instrument Initiating Event failure/year 

    BPCS Instrument Loop Failure 1,00E-01

    BPCS Sensor failure 1,00E-01

    Control loop failure 1,00E-01Loss of instrument air 1,00E-01

    Human Initiating Event failure/year 

    3rd Party Intervention 1,00E-02

    Human error in a no-routine, low stress 1,00E-01

    Human error in a routine, once per day opportunity 1,00E+00

    Human error in a routine, once per month opportunity 1,00E-01Operator Failure Action more than once per quarter 1,00E-01

     

    ie f  

    Complexity Simplest Routine & SimpleRoutine but RequiresCare

    Complicated non-Routine

    No Stress 1  10-4  1  10

    -3  1  10

    -2  0.1

    Moderate Stress 1  10-3  1  10

    -2  5  10

    -2  0.3

    High stress 1  10-2  1  10

    -1 - 1.0 0.25 – 1.0 1.0

    Human Error probability for not correctly performing a task for various situations per demand

    2012-03-0723

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    24/47

    • Enabling event, e.g. adjust to the “time at risk”,

    i.e. multiply by fraction of time during which the risk is present

    Step4  – Determine Initiating Event Frequency

    ie f  

    • SIF operating in continuous mode of operation

    ie f       

     PFD*2=

    2012-03-0724

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    25/47

      Essential Requirements

    • Specific. Detect Decide and Deflect

    • Effective. big Enough, fast Enough, strong Enough, smart Enough 

    • Independent. Its performance must not be affected by other protection

    layers and must be Independent of the events causing the accident

    • Reliable: The protection given by the IPL reduce the risk in a knownand specific quantity.

    •  Auditable: It must allow periodic checks and tests of the protection

    function.

    Step5  – Identify IPLs and select probability of failures

     All IPL are protection Layers, but all protection layers are not IPLs

    2012-03-0725

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    26/47

    • Process design – Inherent safety in design

    − Initial risk, not an IPL.

    − Minimize, Substitute, Moderate, Simplify 

    • Process control system

    −  Actions to return the process in within normal operating envelope (e.g.minimum flow control)

    − Process shutdown (shadowing the SIS in the PCS)

    −  Alarms (+operator response)

    Step5  – Identify IPLs and select probability of failures

    2012-03-0726

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    27/47

    • Process control system

    − Maximum PFD claimed 0,1 if independent of initiating events and other IPLs

    − It the initiating event is caused by PCS control loop failure, PCS can be

    considered an IPL if:

    • Sensors, I/O cards and final elements are independents

    • Logic controller designed with high level of reliability by reference to

    recognized industry standards (e.g. redundant CPUs).

    − PFD lower than 0,1 requires that the PCS is designed according to IEC61511

    − PCS cannot be catered twice as IPL. 

    Step5  – Identify IPLs and select probability of failures

    Sensor 1

    Sensor 2

    Input 1

    Input 2

    Logic

    Controler 

    Output 1

    Output 2

    Final

    Element 1

    Final

    Element 2

    IE

    IPL

    2012-03-0727

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    28/47

    • PCS supervision & Alarms – Human intervention

    − direct connection between the alarm, which indicates the event, and the

    measures to be taken by staff to avoid the event

    − Safety Alarms requiring intervention should be prioritized, configuration

    access restricted

    − Time needed vs time available due to process dynamics:

    alarm processing

    limited troubleshooting

    decide action

    trigger action and get action to be effective

    Min 15-20 min if automatic; min 30-1h if manual local action

    Written procedure in use, training

    Step5  – Identify IPLs and select probability of failures

    Time

    Final Consequences

    Top event (e.g. Loss of integrity)

    SIS trip point

    PCS pre-alarm set point

    Time available for the

    operator to take action

    Process Safety time

    2012-03-0728

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    29/47

    • Preventive SIS (PSD)

    • Mitigation SIS

    − ESD, F&G, Emergency Depressurization or Dumping system, Fire water,

    etc.

    − Have a role in risk reduction but should not be considered IPL for

    evaluation of preventive SIF (PSD) with LOPA. Objective is to prevent

    scenario without relying on mitigation SIS (residual consequences even ifsuccessful). May be given credit in QRA.

    − Design against scenario shall be demonstrated, claimed reliability shall

    be demonstrated, appropriate maintenance and testing.

    Step5  – Identify IPLs and select probability of failures

    2012-03-0729

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    30/47

    • Mechanical mitigation system

    − PSV and rupture disk

    Depends on SIF design intent, i.e. in lieu of PSV or in addition e.g. to limit release todisposal system.

    PSV fulfils the 3E? release damageable? Fouling service?

    − Check valve

    IPL, with restriction on service and technology, frequent testing required

    − Flame arrestor (in line)

    Can be IPL. Design against deflagration will not prevent detonation, testing

    − Explosion doors

    Not an IPL. can be considered for selection of lower impact severity. Design must be

    checked against explosion load

    − Excess flow valves

    Mitigation, generally not an IPL

    Step5  – Identify IPLs and select probability of failures

    2012-03-0730

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    31/47

    • Post release physical protection (Passive)

    − Dike, Fire wall, Passive fire protection, Collision protection

    − Should not considered IPL for evaluation of preventive SIF with LOPA.

    May be given credit in QRA. Design against scenario shall be

    demonstrated, appropriate maintenance

    • Emergency response (Evacuation and rescue)

    − Relying on Evacuation and rescue is the last resort. No credit for risk

    reduction shall be granted as IPL. Considered in the selection of

    conditional modifier (Probability of personnel present)

    Step5  – Identify IPLs and select probability of failures

    2012-03-0731

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    32/47

    Step5  – Identify IPLs and select probability of failures

     IPL PFDIndependent protection layer PFDSingle check valve in clean liquid service 2,00E-01

    Single check valve in gas service 1,00E+00

    Two check valves in series in clean gas or liquid service 2,00E-02

    Process Safety Valve fail to open. Clean service. 1,00E-02

    Control loop /PCS 1,00E-01

    Explosion doors 1,00E+00Flame arrestor 1,00E-01

    Operator response to alarm (15-20 minutes) 1,00E-01

    2012-03-0732

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    33/47

    •   Probability of Ignition for flammable release

    • Probability that personnel are present at the time of the hazardous event

    = Occupancy X Probability to avoid the hazardous event once the SIS has failed

    • Probability of death (vulnerability)

    Not taken into account (conservative but simpler)

    Step6  – Conditional modifiers

    ignition P 

      present  person P 

    Ignition Probability Modifier  Probability

    Gas Major (1-50kg/s) EXPLOSION 8,40E-03

    Gas Major (1-50kg/s) FIRE 7,00E-02

    Gas Massive (>50kg/s) EXPLOSION 9,00E-02

    Gas Massive (>50kg/s) FIRE 3,00E-01

    Gas Minor (50kg/s) FIRE 8,00E-02

    Liquid Minor (

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    34/47

    − Occupancy

    Step6  – Conditional modifiers

    0,1: Rare to occasional exposure in the hazardous zone:

      Exposure time inferior to 10%  Most continuous process plants will have only occasional exposure. This would be the default

    choice for normal operation and when something goes spontaneously wrong

    1 : Frequent to permanent exposure in the hazardous zone (more than 10% of the time).  Exposure time superior to 10%

      Most continuous process plants will have troubleshooting, testing and maintenance activities

    upon certain alarms. This can mean that several people are exposed to a hazard when it

    happens.

      The correct action for hazardous work and when something goes wrong is to evacuate the

    premises as much as possible; (ARCO 1989 tank explosion).

      Consider specific scenarios during shut-down or start-up with almost permanent exposure

    (e.g. lightning of fired heaters).

      Batch plants and semi-batch plants that often require semi-continuous human supervision.

    2012-03-0734

    St 6 C diti l difi

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    35/47

    − Probability to avoid the hazardous event once the SIS has failed

    Step6  – Conditional modifiers

    1 : Almost impossible to avoid the hazard: this is the default probability. 

    Credit for using personal protective equipment to avert a hazard should not be taken, unless it is

    certain that the personal protective equipment will actually be worn. Usually, systems are

    designed on the assumption that the use of such equipment is not absolutely required to achieve

    a sufficient degree of safety, although it is recognized that it can further improve safety.

    0,1: Possible to avoid the hazard under certain conditions: needs strong justification. 

    Should be only selected if all the following conditions are true:

    • Facilities are provided to alert the operator that the SIS has failed

    • Independent facilities are provided to shut down such that the hazard can be avoided or which

    enable all persons to escape to a safe area (e.g. escape route is obvious and immediate, with

    no vertical or spiral staircase, no rescue required, etc.)

    • The time between the operator being alerted and a hazardous event occurring exceeds 1 hour

    or is definitely sufficient for the necessary actions

    Caution: Don‟t cater twice for the same “operator  intervention” (e.g. Alarm+operator intervention)

    2012-03-0735

    St 7 C i f ith TTC

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    36/47

    Step7  – Compare scenario frequency with TTC

     present  personignition

     IPLn

     IPLn IPL IPLie scenario LOPA   P  P  PFD PFD PFD f   f   ****** 21           

    Consequence DInitiating

    Event 1

    Step8  – Identify SIF and Allocate SIL

    Step9  – Evaluate needfor other non-SIS IPLor redesign

    TTC 

     f  

     RRF 

      scenario LOPA

    < 1Scenario «passes» LOPA

    TTC 

     f   RRF 

      scenario LOPA > 1 Risk reduction needed

    2012-03-0736

    St 8 Id tif SIF d All t SIL

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    37/47

    Step8 - Identify SIF and Allocate SIL

    Increasing risk

    Risk Reduction by

    BPCS

    Risk Reduction by

    Operator response to alarms

    Risk Reduction bySafety Instrumented System

    Risk Reduction by

    Mechanical devide

    Risk Reduction by

    Other means

    Initial Process Risk (Without IPL)

    Target Tolerance Criteria

    Residual Risk (With IPL)

       R   i  s   k  r  e   d  u  c   t   i  o  n  r  e   d  u  c   t   i  o  n   N  e  e   d  e   d

       i .  e .

       S  a

       f  e   t  y   G  a  p   (   S   G   )

       R   i  s   k  r  e   d  u  c   t   i  o  n   f  a  c   t  o  r

       (   R   R   F   )

      r  e  q  u   i  r  e   d   f  o  r   t   h  e   S   I   S

       R   i  s   k  r  e   d  u  c   t   i  o  n   R  e   d  u  c   t   i  o  n   A  c   h   i  e  v  e   d

    Closing the safety gap by SIS

    2012-03-0737

    St 9 E l t d f th SIS IPL

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    38/47

    Step9  – Evaluate need for other non-SIS IPL

    • LOPA is focused on identification of SIF to close the safety gap, it does not

    necessarily mean that a SIS is needed

    • By order of preference:

    • Design the problem out of the process using inherently safe principles

    • Protection by non-SIS protective measure

    • Passive rather than active

    •  A SIF should be the solution of last resort when other solutions are notpracticle

    Step10  – Evaluate consequences of spurious trip failure

    • Spurious failure: failure trigging action in an untimely manner

    • Consider need for „robust to spurious trip‟ design (e.g. 2oo3 instead of 1oo2) 

    • Set minimum mean time to fail safe requirement (MTTFS=1/ STR)

    2012-03-0738

    St 10 R ti SIL All ti R t

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    39/47

    Step10  – Reporting. SIL Allocation Report

    • Methodology

    • Identified IPL listing that is regarded part of the PCS, e.g. alarm function

    requiring operator action

    • Identified SIF list and SIL allocation result, corresponding SIS

    • SIF/SIL Allocation worksheet

     All assumption, uncertainties and sensitivities should be recorded

    Level of detail sufficient to enable 3rd party to follow/reproduce the evaluation

    • Starting point for the Safety Requirement Specification (SRS)

    2012-03-0739

    St 10 R ti SIL All ti R t

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    40/47

    Step10  – Reporting. SIL Allocation Report

    • SIF/SIL Allocation worksheet

    2012-03-0740

    Target Tolerance Criteria = 10-5/yr

    SIL Allocation & SIL Verification

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    41/47

    SIL Allocation & SIL Verification Assessment of hazardsand risks

    Specification of the safetyrequirements for the safetyinstrumented system

    system

    Installation,receptionandvalidation

    Modification

    Decommissioning

    Managementof functionalsafety andassessmentand audit offunctionalsafety

    andplanning ofthe safety

    3

    4

    5

    6

    7

    ,

    and

    SIL 1

    SIL 2

    SIL3

    SIL Allocation

    Minimum SIL requirementsLOPA, Risk graphs,

     Assessment of hazardsand risks

    Specification of the safetyrequirements for the safetyinstrumented system

    system

    Installation,receptionandvalidation

    ModificationDecommissioning

    Managementof functionalsafety andassessmentand audit offunctionalsafety

    andplanning ofthe safety 1

    3

    5

    67

    ,

    and

    Design & EngineeringSIL Verification calculations (PFD)

    FMECA, CDD, SAR, SafetyManuals, etc.

    Set targetDemonstrate

    target is met

    determine if additional

    SIS are required and ifyes then allocate the

    target SIL

    Address target SIL (Fault

    Tolerance, PFD, software req.)

    • Select system technology• Configuration / vooting

    • Test interval

    • Diagnostic

    2012-03-0741

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    42/47

    SIL Allocation  – Layer of protection analysis

    Presenters name: Mathilde Cot

    Presenters title: Principal Consultant, Safety Technology, CFSE 

    [email protected], tel: +47 95785095

    www.statoil.com

    Thank you

    2012-03-0742

    Special cases handling

    http://www.cfse.org/http://www.cfse.org/

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    43/47

    Special cases handling

    • Global Safety Instrumented Systems for consequence Mitigation

    ESD, F&G, Emergency Depressurization or Dumping system, Fire water, etc.

    Release and other events cannot be interrupted by mitigation SIS.

    Severity reduction, but residual consequences even if the mitigation SIS is

    successfull (e.g. large uncontrolled fire vs controlled fire, avoid escalation)

    Consequence DInitiating

    Event 1

         C     A     U     S     E     S

         C     O     N     S     E     Q     U     E     N     C     E     S

    PREVENTION MITIGATION &

    RECOVERY

    Terminate the

    chain of events,

    reduce frequency

    Initiating

    Event 1

    Initiating

    Event 2

    Initiating

    Event 3

    BPCSOperator

    response to Alarm

    from monitoring

    system SIS PSV

    Consequence D

    Ignition

    control

    TOP EVENTE.g. Loss of Containment

    ESD

    Fire Water 

    Consequence B

    Consequence A

    Reduce

    consequence

    severity

    Consequence C

    No consequence 

    PFD*TTC (large uncontroled fire)

    1*TTC (controlled fire)

    Same protection GAP?

    2012-03-0743

    Special cases handling

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    44/47

    Special cases handling

    • Global Safety Instrumented Systems for consequence Mitigation

    Preferred approach: Deterministic

    Divide Global SIS

    • Detection SIS

    •  Action SIS

    S1

    S2

    S3 V2

    V1

    Detection SIS:

    incomplete safety

    instrumented system: Action SIS:

    Incomplete safety

    instrumented systemoutput

    signal

    Inputsignal

    PLC

    Safety

    logigram

    S1

    S2

    S3 V2

    V1

    Detection SIS:

    incomplete safety

    instrumented system: Action SIS:

    Incomplete safety

    instrumented systemoutput

    signal

    Inputsignal

    PLC

    Safety

    logigram

    2012-03-0744

    Special cases handling

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    45/47

    Special cases handling

    • Safety-related parts of control systems for machinery

    • SIS in process under patented license

    • Permissive safety function

    • Staggered safety functions

    • Overpressure protection via SIS

    2012-03-0745

    LOPA Limitations

    Plant – Facilities & SafetyConceptual strategies / philosophies

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    46/47

    LOPA - Limitations

    • Simplified risk assessment.

    SIL 3 with no TES and SIL4

    (implemented by independent SIS)

    shall be further assessed by

    quantitative method

    • Components shared between the IE

    and candidate IPLs. No

    independence.• Several independent SIS with same

    functionality and possibility for

    common cause failures

    • Complex scenarios sequences

    Risk Assessment / Process Hazard Analysis (PHA) / IPL definition(e.g. HAZOP)

    For each scenario, SIF determination & SIL allocation with

    simplified risk analysis technique(e.g. LOPA, risk graph)

       E  v  a   l  u  a   t  e  o   t   h  e  r  n  o  n

      -   S   I   S

       I   P   L  o  r   d  e  s   i  g  n  c   h  a  n  g  e

    SIL1, SIL2

    or SIL3 with TESwhere further

    assessment is

    needed?

    Quantitative risk assessment for dedicated scenario

    SRS, CDD, etc.

    YES

    NO

    Complete SIL allocation for each SIF & Reporting

    Design & Operating principles / Performance Standards / Acceptance criteriaPlant Design development input (e.g., process conditions, P&ID, C&E, FDS, etc.)

    NO

    NO

    SIL4 Required

    by a singleSIS?

     Apply fordispensation to

    TR2041

    YES

    SIF determination & SIL Allocation

    SIL4?

    OR

    SIL3 with no TES?Design change or

    other non-SIS IPLpossible?

    YES

    SIL1, SIL2, SIL3or SIL4 by

    multiple SIS?

    YES

    NO

    2012-03-0746

    Step2 Identification of SIF

  • 8/20/2019 MECot Fastsetting Av SIL Krav2

    47/47

    • Design Intent

    • Safe State

    • Demand mode vs Continuous mode of operation (IEC61511-1 definitions)

    Demand mode:

    where a specified action (e.g. closing of a valve) is taken in response to process

    conditions or other demands. In the event of a dangerous failure of the SIF a

    potential hazard only occurs in the event of a failure in the process or the PCS

    Continuous mode:

    where in the event of a dangerous failure of the safety instrumented function a

    potential hazard will occur without further failure unless action is taken to prevent it

     A SIF operates in continuous mode when the frequency of demands for operationon the SIF is more than once per year or more than twice the SIF proof test

    frequency.

    Step2  – Identification of SIF

    PFD

    PFH