metallic nanoparticles

Upload: mireladragomir

Post on 29-Oct-2015

66 views

Category:

Documents


0 download

DESCRIPTION

Metallic nanoparticles, synthesis, silver nanoparticles

TRANSCRIPT

  • METALLIC NANOPARTICLES

    DRAGOMIRMIRELAUNIVERSITYOFNOVAGORICA

    DOCTORALSTUDY,PROGRAMMEPHYSICS1

  • INTRODUCTIONTOTHENANOWORLD

    WHATISNANO?

    Theprefixnano isvariouslysaidtoderivefromtheGreekwordo ortheLatinwordnannus,bothmeaningdwarf.ItwasadoptedasanofficialSIprefix,meaning109 ofanSIbaseunit,atthe11th

    ConfrenceGnraledesPoidsetMesures(CGPM)in1960(althoughithadinformalstatusbeforethat).

    2

  • Nanoscience thestudyofthephenomenaat1100nmNanomaterials thosewhichhavestructuredcomponentswithatleastonedimensionlessthan100nm

    ZeroDimensionalNanostructuresNanoparticlesOneDimensionalNanostructuresNanowiresandNanorodsTwoDimensionalNanostructuresThinFilms

    Nanoparticles arenanosized structuresinwhichatleastoneofitsphaseshasoneormoredimensions(length,widthorthickness)inthenanometersizerange(1to100nm)asdepictedinfigure1.

    3

  • Figure1.Depictionofthesizeregimeofnanoparticles relatedtocommonnano scaleobjects;Aprokaryoticcell,Bultravioletwave,Cvirus,Denzyme.Bluespheresrepresenta50nmmetal

    nanoparticle [RobinJ.WhiteChem.Soc.Rev,2009,38].

    4

  • 2.METALLICNANOPARTICLES Thetermmetalnanoparticle isusedtodescribednanosized metalswith

    dimensions(length,widthorthickness)withinthesizerange1100nm.

    Theexistenceofmetallicnanoparticles insolutionwasfirstrecognizedbyFaradayin1857andaquantitativeexplanationoftheircolour wasgivenbyMiein1908.

    Figure2. Thegrowthofnumberofpublicationsdealingwithmetal nanoparticles [JuanM.CampeloChemSusChem2009,2]

    Figure3.Interestinspecificelementsinthepreparationofnanoparticles overthepast17years[J RobinJ.WhiteChem.Soc.Rev,2009,38]

    5

  • ThemaincharacteristicsofMNPslargesurfaceareatovolumeratioascomparedtothebulkequivalents;

    largesurfaceenergies

    thetransitionbetweenmolecularandmetallicstatesprovidingspecificelectronicstructure(localdensityofstatesLDOS);

    plasmonexcitation;

    quantumconfinement;

    shortrangeordering;

    increasednumberofkinks;

    alargenumberoflowcoordinationsitessuchascornersandedges,havingalargenumberofdangling bondsandconsequentlyspecificandchemicalpropertiesandtheabilitytostoreexcesselectrons. 6

  • DensityofStatesFigure4.Relationshipbetweennanoparticle size,energyandtheprincipleofenergy

    ofstates[RobinJ.WhiteChem.Soc.Rev,2009,38].

    7

  • SurfacePlasmonResonance

    Figure5.Oscillationofametallicnanoparticles electroncloud(red)relativetothemetalcore(blue)inresponsetotheelectromagneticfield;thebasisforthesurfaceplasmon resonanceeffectobservedinnanoparticles [RobinJ.WhiteChem.Soc.Rev,2009,38].

    8

  • Localfield factor TheSPRcan be simply formalized,inafirstapproach,bysolving Laplaces

    equation inthecaseofasingleconducting sphere surrounded byahomogeneous transparentmedium,with theappropiate continuity relationsatthemetaldielectric interfaceandassuming that thesphere radiusis muchlower than thewavelength (quasistatic approximation).Thehomogeneouslocalelectric field inside theparticle,El :

    Eq.1:

    where: E0 is theapplied field m =dielectric function ofmetal d =dielectric function ofthehostmedium

    Thelocalfield factoris defined astheratioofthelocalfield totheapplied one:

    Eq.2: f =El/E0

    9

  • SYNTHESISMETHODS

    A. CHEMICALMETHODS

    A.1.ChemicalreductionofmetalsaltsA.1.1.Thealcoholreductionprocess

    A.1.2.Thepolyolprocess

    A.2.Microemulsions

    A.3.Thermaldecompositionofmetalsalts

    A.4.Electrochemicalsynthesis

    10

  • B.PHYSICALMETHODS

    B.1.ExplodingwiretechniqueB.2.PlasmaB.3.ChemicalvapourdepositionB.4.MicrowaveirradiationB.5.PulsedlaserablationB.6.SupercriticalfluidsB.6.SonochemicalreductionB.7.Gammaradiation

    11

  • Goals and Problems inMetallicNanoparticlesSynthesis

    Ideally, metallicnanoparticlesshouldbepreparedbyamethodwhich:

    isreproducible

    maycontroltheshapeoftheparticles

    yieldsmonodispersemetallicnanoparticles

    iseasy,cheap

    uselesstoxisprecursors:inwaterormoreenvironmentallybenignsolvents(e.g.ethanol)

    use theleastnumberofreagents

    usea reactiontemperatureclosetoroomtemperature

    withasfewsyntheticstepsaspossible(onepotreaction)

    minimizingthequantitiesofgeneratedbyproductsandwaste.

    12

  • A.1. Chemical reduction of metal salts

    In1857MichaelFaradayreportedasystematicstudyofthesynthesisandcolorsofcolloidalgold.

    In1951,J.Turkevichreproducedstandardprotocolsforthepreparationofmetalcolloids(wasrefinedin1970byG.Frens)

    Figure 6.The formation ofmetalcolloidsbythesaltreductionmethod [Helmut Boennemann Eur.J.Inorg.Chem, 2001].

    13

  • 1. Nucleation takesplacebecausethesupersaturatedsolutionisthermodynamicallyunstable.Forthenucleationprocesstooccur,thesolutionmustbesupersaturatedinordertogenerateanextremelysmallsizesolparticle.

    NucleationandGrowth(LaMer)

    Figure 7. The concept of monodisperse colloid growth of la Merr model (A) and typically synthetic apparatus (B) [JohnA.Blackman Metallicnanoparticles,Elsevier,2009].

    14

  • NucleationandGrowth(LaMer)

    2.Growth Afterthenucleiareformedfromthesolution,theygrowviadepositionofthesolublespeciesontothesolidsurface(molecularaddition).

    Therelativeratesofgrowthofsmallandlargeparticlesaredifferentwhenthereactantsaredepletedduetoparticlegrowth.

    Secondary growth thegrowthofparticlesbyaggregation

    isfasterthanthatbymolecularaddition

    itoccursbystableparticlescombiningwithsmallerunstablenuclei

    15

  • StabilizingMetallicNanoparticles

    by placing them in an inert environment an inorganic matrix or

    inorganic capping materials figure 8

    polymer

    Figure 9 . Steric stabilization of nanostructured metal colloids

    [Helmut Boennemann Eur.J.Inorg.Chem.2001]

    Figure 8. Electrostatic stabilization of metal colloid particles. Attractive van der Waals forces are outweighed by repulsive electrostatic forces between adsorbed ions and associated counterions at moderate interparticle separation[GunterSchmid ClustersandColloids,VCH,1994]

    by adding surface-protecting reagents organic ligands figure 9

    16

  • A.1.Chemicalreductionofmetalsalts

    Table1.Summaryofprecursors,reductionagentsandpolymeratabilizers[GuozongChaoNANOSTRUCTURESANDNANOMATERIALS,ImperialCollegePress,2004]

    17

  • Influencesofreducingreagents

    Table2.ComparisonofaveragesizesofAunanoparticles synthesizedusingvarious reduction[GuozongChaoNANOSTRUCTURESANDNANOMATERIALS,ImperialCollegePress,2004]

    Aunanoparticles

    18

  • Figure10.SEMmicrographsofgoldnanoparticles preparedwithsodiumcitrate(a)and citricacid(b)asreductionreagents,respectively,underotherwisesimilarsynthesisconditions.[W.O.Miligan andR.H.Morriss,J.Am.Chem.SOC.86,3461(1964).]

    Influencesofreducingreagents

    Aunanoparticles

    19

  • Influencesofreducingreagents

    InthecaseofPd

    Figure 11.TheparticlesizeofPdcolloidsasafunctionofpeakpotentialsof reduction reagent,carboxylates,inwhichsmallerpeakpotentialsmean strongerreductionreagents.[M.T.Reetz andM.Maase,Adv.Muter.11,773(1999)]

    20

  • Figure 12.Transmissionelectronmicrographsofgoldnanoparticles obtainedbycitratereductionatthefollowingpHvalues:(a)4.0,(b)4.5,(c)5.0,(d)5.5,(e)6.0,and (f)6.5

    [W.Patungwasa,J.H.Hodak ,MaterialsChemistryandPhysics108(2008)]

    InfluencesofpHAunanoparticles

    21

  • lnfluencesofpolymerstabilizerPt nanoparticles

    Figure13.Ptnanoparticles synthesizedincolloidalsolutionandhavingdifferentshapes (11nmcubesontheleftand~7nmtetrahedronsontheright)[T.S.Ahmadi,Z.L.Wang,T.C.Green,A.Henglein,M.A.ElSayed,Science272,1924(1996).]

    InfluenceofsodiumpolyacrylateontheshapeofPtNPs

    22

  • A.1.1.Thealcoholreductionprocess

    Figure 14. Preparation of polymer-capped metal nanoparticle by alcohol reduction [Marcel Dekker, DekkerEncyclopediaofNanoscience andNanotechnology,NewYork,2004]

    23

  • A.2.Microemulsions

    Figure15.Reversemicelleandnormalmicellestructures[Burdaetal.,Chem.Rev, 2005,105].

    Theformationofreversemicelleswasconfirmedtobeaninterestingandenvironmentallyfriendlyalternativetothepreparationofmetalnanoparticles.

    NormalmicellesReversemicelles

    Also,byturningthereactionparameters,differentnanoparticleshapescanbeproduced

    24

  • A.2.Microemulsions

    Figure 16.TEMmicrographsoftheAgpowderssynthesizedbyareversemicelleprocess withdifferentwater/surfactantratio: (a)R=4,(b)R=6,and(c)R=8

    [DongSikBaeetal.,MetalsandMaterialsInt.,11,4,2005]

    Nanosized Agparticleswithauniformsizedistribution havebeenpreparedusinga reversemicelleprocess

    25

  • A.3.Thermaldecompositionofmetalsalts

    Figure 17. Apparatus used to make metal nanoparticles by thermally decomposing solidsconsisting of metal cations and molecular anions, or metal organic solids

    [Charles P. Poole, Jr. Frank J. Owens, Introduction to nanotechnology, John Wiley & Sons, Inc., 2003].

    26

  • A.4.ElectrochemicalsynthesisTheoverallprocessofelectrochemicalsynthesis(equation)canbedividedintosixelementarysteps:

    1.OxidativedissolutionofthesacrificialMbulkanode.2.MigrationofMn+ ionstothecathode.3.Reductiveformationofzerovalentmetalatoms

    atthecathode.4.Formationofmetalparticlesbynucleationand

    growth.5.Arrestofthegrowthprocessandstabilizationof

    theparticlesbycolloidalprotectiveagents(e.g.tetraalkylammoniumions).6.Precipitationofthenanostructuredmetal

    colloids.

    Figure 18. Electrochemical formation of NR4+Cl- stabilized nanometal[Helmut Boennemann Eur.J.Inorg.Chem.2001] 27

  • B.PHYSICALMETHODSB.2.Plasma

    Thistechniqueisaverypromisingandstraightforwardwaytopreparemetalnanoparticlesasitis:anenvironmentallyfriendly,fastandsimplemethodologyandalsoapromisingalternativetohydrogen

    reductionathightemperatures.

    However,thespecialisedequipmentneededmakesdifficultitswidespreaduse.

    Anovelplasmareductionmethodatroomtemperaturehasbeenusedtopreparesupportedmetalnanoparticles.

    Legrandetal.employedadihydrogenmicrowaveplasmatoreducevariousmetalsolutions(Au,PtandPtAu)onzeolites.

    28

  • B.5.PulsedlaserablationThelaserapproachinvolves:

    thevaporisationofmetalsemployingapulsedlaser(e.g.NdYAG)and subsequentcontrolleddepositiononthesurfaceofthesupportunderwelldefinedconditionsoftemperatureandpressureorpulsedlaserablationoftargetsinliquidenvironment(insolution)

    AdvantagesofPLAinsolution:

    alesserneedtoaddsurfactantforcappingofcolloidalparticlessomorepureparticlescanbeachieved

    nanoparticlescanbeproducedinarbitrarysolution changingthenatureoftheliquidenvironmentcancontrolthesizedistributionandstabilityofmetallicNPs

    Someparametersthatinfluenceablation,nucleation,growthandaggregationmechanismsare:

    Laserwavelength:thediameterofNPsdecreasedwithanincreaseofphotonenergyorlaserlight

    Pulseenergy:thediameterofNPsdecreasedwithanincreaseofpulsenumber

    Pulseduration,

    Repetitionrate

    Liquidenvironment 29

  • Figure19.TypicalTEMimageofsilvernanoparticles inethanolanditssizedistribution[Tilaki etal.Appl.Phys.A,84,2006]

    30

  • Figure 20. TypicalTEMimageofsilvernanoparticles inwateranditssizedistribution [Tilaki etal.Appl.Phys.A,84,2006]

    31

  • Characterization

    Figure21.CommonmethodsavailableforthecharacterizationofmatallicNPs[J.D.AikenIII,JournalofMolecularCatalysisA:Chemical145(1999)]

    32

  • PROPERTIES

    Physicalproperties

    Effectofsizeonmeltingtemperature

    Figure 22. Size dependence of the melting temperature of gold [J.C.Bertolini,NanomaterialsandNanochemistry,Springer,Berlin,2008]

    Themanysurfaceatoms,beinglessrestrictedintheirthermalmotions,willfluctuatemoreeasilyspatially,therebyloweringthemeltingtemperature

    ThemeltingtemperaturedecreaseswiththedimensionsofmetallicNPs

    33

  • Opticalproperties

    Figure 23.Schematicdrawingoftheinteractionofanelectromagneticradiationwithametalnanosphere.Adipoleisinduced,whichoscillatesinphasewiththeelectricfieldoftheincominglight.[LuisM.LizMarzn Nanometals:formationandcolor,Elsevier,2004]

    Figure24.Left:TransmissionelectronmicrographsofAunanospheresandnanorods (a,b)andAgnanoprisms (c,mostlytruncatedtriangles)formedusingcitratereduction,seededgrowth,and DMFreduction,respectively.Right:PhotographsofcolloidaldispersionsofAuAg alloynanoparticleswithincreasingAuconcentration(d),Aunanorods ofincreasingaspectratio(e),andAgnanoprisms withincreasinglateralsize(f)[LuisM.LizMarzn Nanometals:formationandcolor,Elsevier,2004]

    34

  • ApplicationsInCatalysis:

    CatalystsbasedonmetalNPsare:

    9 Highlyactive9 Selective9 Exhibitlonglifetimeforseveralkindofreactions

    Figure25.Schematicillustrationofthestructuresof(a)conventionalmetalcatalystand(b)metalnanoparticlescappedbypolymers[Marcel Dekker, DekkerEncyclopediaofNanoscience andNanotechnology,NewYork,2004]

    conventionalmetalcatalyst

    metalnanoparticlescappedbypolymers

    heterogenouscatalysts immobilizedoninnorganicsupports(figure25 a)

    homogenouscatalysts metalNPssurroundedwithstabilizers(figure25 b)

    35

  • Table3. ApplicationsofvarioussupportedAumetalnanoparticlesincatalysis[JuanM.Campelo,ChemSusChem2009,2]

    36

  • Applicationsofhomogenouscatalysts: Olefinhydrogenation Nitrilehydrogenation Photoinducedelectrontransfer

    Applicationsofheterogeneouscatalysts: Oxidationreactions Hydrogenation Hydrodechlorination SynthesisofH2O2 Water gasshift

    37

  • ApplicationinFuelCellCatalysts Thefuellcelltechnology allowsthedirectconversionof

    chemicalenergyintoelectricity

    HydrogenfuelcellcatalystsrelyonpurePt Ptalloyelectrocatalystsareemployedfortheconversionofreformergas

    intoelectricity

    Examples ColloidalPt/Rucatalystsareusedin

    directmethanolfuelcells DMFCs InPEMFCs

    PotentialApplicationsinMaterialsScience Planararraysofuniformmetalnanoparticleswouldalowthedesignofnewsupercomputershavingasuperiordatastoragecapacity NickelNPsareusedasmagneticrecordingmedium,electricalconductivepastes,batterymaterials,etc. 38

  • BiologicalApplications AuNPs1.4nmwerefoundtoarrangethemselvesintoalinearrowwhenattachedtosinglestrandedDNAolinucleotides

    Magneticnanoparticles(withinorganicshells)havebeenstudiedforbilogicalapplicationsuchas:

    ForbindingBSAFordrugdeliveryForbiosensingForbioseparations

    39

  • Sensors

    1.Electrochemicalsensors theintroductionofmetalNPs(mostlysupported)ontheelectrodecan:

    decreasetheoverpotentialsofmanyelectrochemicalreactions

    turnintoreversiblesomeredoxreactionsthatarenormallyirreversibleinconventionalunmodifiedelectrodes

    Examples:sensitiveNO,H2O2 andsugarandaminosacidsensors

    2.Biosensors: canenhancetheelectrontransferbetweenbiomolecules AgNPssupportedonglass usedasselectivebiosensorsfor

    thebiotinstreptavidinsystem

    40

  • Silvernanoparticles

    AgNPs exhibitsthehighestefficiencyofplasmon excitation

    isbecominganincreasinglyimportantmaterialinmanytechnologies

    is the only material whose plasmon resonance can be tuned to any wavelength in the visible spectrum

    41

  • SYNTHESISMETHODS

    1.Traditional methods

    2.Nontraditional methods

    AgNPs

    Aqueous solutionreduction

    Laser ablationofametaltargetintoasuspendingliquid

    Hightemperaturereductioninporoussolidmatrices

    Vaporphasecondensationofametaltargetontoasolidsupport

    Microemulsion techniques

    Gamma radiationinducedmethods Photoreduction ofAgions

    42

  • Goals andproblems regardingthesynthesisofAgNPs

    Withthetraditionalmethods,themajorproblemisoftenalimitedflexibilityinthesizeofparticlesthatcanbeproducedandsuchmethodsareusuallysoldontheirabilitytomake

  • OpticalpropertiesofAgNPs

    AgNPsshowremarkablephysicalandchemicalpropertieszhataresizeandshapedependent.

    ThemainfactorsthatcancontroletheopticalpropertiesofAgNpsare:

    nanoparticlemorphology sizeandshape

    therefractiveindexofthesurroundingmedium

    adsorptionphenomenaatthesolidsolutioninterface

    thedistancebetweentheparticles

    44

  • InfluenceoftheparticlemorphologyontheSPRofAgNPS

    inthecaseofasphere,asinglepeakintheopticalabsorptionspectrawasfound for20and100nmnanospheres,SPRpeaksareatabout370and600nm,respectively whenananoparticlebecomestruncated,themainresonanceisblueshifted theresonancesvanishasthenumberoffacesincreases,orwhenthesymmetryofthe

    nanoparticleislarger

    Figure26.DeviationsfromsphericalgeometrystronglyaffecttheopticalpropertiesofAg NPs[JuanM.Campelo ChemSusChem2009,2]

    45

  • InfluenceofthesurroundingmediumThelocationofthesurfaceplasmonresonancesissensitivetothedielectricenvironment,andastherefractionindexincreases,theSPABisshiftedtolongerwavelengths

    Figure27.(A)ResonantRayleighscatteringspectraofanindividualAgNPinvariousdielectricenvironments(N2,methanol,1propanol,chloroform,andbenzene).(B)AplotdepictingthelinearrelationshipbetweenthesolventrefactiveindexandtheNPsmax.[ChristyL.Haynes,NanoparticleswithtunablelocalizedSPR,TopicsinFluorescenceSpectroscopy,Volume8:Radiative DecayEngineering,NewYork,2005] 46

  • ApplicationsofAgNPs1.Catalysis

    SupportedAgareimportantin: theselectiveoxidationofalcohols,alkanesandalkenes forthesynthesisofindustriallyinterestingproductsincludingepoxides andaldehydes

    2.Photocatalysis: watersplitting degradationoforganicpollutants

    3.BiologyandMedicine: Agisahighlyantimicrobialmaterialusedin: waterpurification woundcare medicaldevices drogdelivery

    4.Optics:Optoelectronicdevices activewaveguidesinopticaldevices(amplifiers)

    5.Electronics:electronicallyconductiveadhesives(ECAs)

    47

  • CONCLUSIONSThe21stcenturyhasbroughtagreatinterestand

    expansionofthenanomaterialsduetouniquespropertiesthatexistatthenanometricscales.

    RecentadvancesinthedesignandpreparationofmetallicNPshaveprovedthatanumerousvarietyofMNPscannowadaysbesynthesisedthroughdifferentpreparationroutes.

    SynthesisofMNPsisimportantbecauseoftheirnovelelectrical,optical,magneticalandchemicalproperties.

    AgNPsareofstrongresearchfocusbecauseoftheiruniquefunctionalpropertieswhichleadtovariedapplications.

    48

  • REFERENCES1. RobinJ.White Chem.Soc.Rev,38,2009,

    2. JuanM.Campelo ChemSusChem,2,2009

    3. JohnA.Blackman Metallicnanoparticles,Elsevier,2009

    4. GunterSchmid ClustersandColloids,VCH,1994

    5. HelmutBoennemann Eur.J.Inorg.Chem.,2001

    6. GuozongChaoNANOSTRUCTURESANDNANOMATERIALS,ImperialCollegePress,2004

    7. M.T.Reetz andM.Maase,Adv.Muter.11,773,1999

    8. LuisM.LizMarzn Nanometals:formationandcolor,Elsevier,2004

    9. Burdaetal.,Chem.Rev,2005,105

    10. Tilaki etal.Appl.Phys.A,84,2006

    11. MarcelDekker,DekkerEncyclopediaofNanoscience andNanotechnology,NewYork,2004

    12. J.D.AikenIII,JournalofMolecularCatalysisA:Chemical145,1999

    13. G.Chumanov,ChemPhysChem.,6,2005

    14. C.Noguez,J.Phys.Chem.C2007,111,3806

    15. M.K.Temgire,RadiationPhysicsandChemistry71,2004

    16. A.L.Gonzalez,Phys.Stat.Sol,4,11,2007

    17. DapengChen,JMaterSci44,2009

    18. W.H.Qi,MaterialsChemistryandPhysics88,2004

    19. P.A.Chernavskii,RussianJournalofPhysicalChemistryB,1,4,2007

    20. Tabrizi,J.Nanopart.Res.,Springer,2009

    21. V.N.Pustovit,Eur.Phys.JB69,2009

    22. W.Wangetal.,Journal ofColloidandInterfaceScience,323,200849

  • THANK YOU FOR YOUR TIME!

    METALLIC NANOPARTICLESINTRODUCTION TO THE NANOWORLDSlide Number 3Figure 1. Depiction of the size regime of nanoparticles related to common nano scale objects; A-prokaryotic cell, B-ultraviolet wave, C-virus, D-enzyme. Blue spheres represent a 50 nm metal nanoparticle [Robin J. White-Chem. Soc. Rev, 2009, 38].2. METALLIC NANOPARTICLESThe main characteristics of MNPsDensity of States Surface Plasmon ResonanceLocal field factorSYNTHESIS METHODSB. PHYSICAL METHODSGoals and Problems inMetallic Nanoparticles SynthesisA.1. Chemical reduction of metal saltsNucleation takes place because the supersaturated solution is thermodynamically unstable. For the nucleation process to occur, the solution must be supersaturated in order to generate an extremely small size sol particle. Nucleation and Growth (La Mer)Stabilizing Metallic NanoparticlesA.1. Chemical reduction of metal saltsInfluences of reducing reagentsInfluences of reducing reagentsInfluences of reducing reagentsSlide Number 21lnfluences of polymer stabilizerA.1.1. The alcohol reduction processA.2. MicroemulsionsA.2. MicroemulsionsA.3. Thermal decomposition of metal saltsA.4. Electrochemical synthesisB. PHYSICAL METHODSB.5. Pulsed laser ablationSlide Number 30Slide Number 31CharacterizationPROPERTIESOptical propertiesApplicationsSlide Number 36Slide Number 37 Application in Fuel Cell Catalysts Biological Applications SensorsSilver nanoparticlesSYNTHESIS METHODSGoals and problems regarding the synthesis of Ag NPsOptical properties of Ag NPsInfluence of the particle morphology on the SPR of Ag NPSInfluence of the surrounding mediumApplications of Ag NPsCONCLUSIONS REFERENCESSlide Number 50