mimojaderné genetické elementy

43
Mimojaderné genetické elementy Genom plastidů a mitochondrií

Upload: jenny

Post on 12-Jan-2016

60 views

Category:

Documents


0 download

DESCRIPTION

Mimojaderné genetické elementy. Genom plastidů a mitochondrií. Vlastnosti semiautonomních organel. ohraničení dvouvrstevnou membránou množení dělením vlastní DNA a ribozomy (70S) syntéza malé části vlastních proteinů přesun genů do jaderného genomu endosymbiotického původu - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Mimojaderné genetické elementy

Mimojaderné genetické elementy

Genom plastidů a mitochondrií

Page 2: Mimojaderné genetické elementy

Vlastnosti semiautonomních organel

• ohraničení dvouvrstevnou membránou

• množení dělením

• vlastní DNA a ribozomy (70S)– syntéza malé části vlastních proteinů– přesun genů do jaderného genomu

• endosymbiotického původu

• úloha v energetickém metabolismu

Page 3: Mimojaderné genetické elementy

Původ plastidů a mitochondrií

Gillham 1994 *Pozn.: strom eukaryot byl modernizován

Page 4: Mimojaderné genetické elementy

Funkce plastidů fotosyntéza

– konverze světelné energie– asimilace uhlíku

redukce sulfátu a nitritu syntéza škrobu syntéza mastných kyselinsyntéza aminokyselinsyntéza nukleotidůsyntéza pigmentů

+ syntéza nukleových kyselin, proteinů

Page 5: Mimojaderné genetické elementy

Mitochondrie

Vnitřní membrána: - dýchací řetězec- ATP syntáza

Matrix:- Krebsův cyklus

- tvorba ATP a uhlíkových skeletů pro anabolické dráhy- disipace přebytku redukovaných koenzymů- další role v indukci PCD, skladování Ca2+

Page 6: Mimojaderné genetické elementy

Primární, sekundární a terciární endosymbióza– různé počty membrán (příp. nukleomorf)

Primární (1,6 mld let): - Glaucophyta- Rhodophyta - Chlorofyta

Sekundární:- Euglenophyta- Chlorarachniophyta- Chromalveolata

Glaucophyta

Page 7: Mimojaderné genetické elementy

Endosymbiózy

(Keeling 2010)

Proč vznikla primární endosymbióza se sinicí jen jednou?- na vzniku se mohl podílet další partner (nitrobuněčný parazit Chlamydie)

- vyšší výskyt původem Chlamydiových proteinů (např.plastid nukleoid asociované proteiny)

- potenciální problémy s využitím sacharidů produkovaných sinicí po jejím pohlcení

(Ball et al. 2013)

Page 8: Mimojaderné genetické elementy

Transientní endosymbióza(plž Elysia chlorotica)

- aktivní chloroplasty řasy Vaucheria

chloroplasty zůstávají aktivní po dobu 8 měsíců(jak fungují???)

gen kódující protein MSP (PsbO) přítomen v genomu plže !!!

(Rumpho et al. 2008 PNAS)

ale zřejmě extrachromozomálně!(pokud vůbec)

(Bhattacharya et al. 2013) Rumpho M. et al., 2000

Page 9: Mimojaderné genetické elementy

Reprodukce organel - dělením

Lopez-Juez E., 2007

PLASTIDY:Kombinace prokaryotickéhoFtsZ a eukaryotického dynaminového kroužku

Vnitřní:1. FtsZ 2. FtsZ + dynamin3. Dynamin

Vnější: Dynamin (role ER?)

MITOCHONDRIE: u vyšších rostlin asi FtsZ chybí, další faktory, role ER

Page 10: Mimojaderné genetické elementy

Stromuly chloroplastů (tubulární útvary) - komunikace s jinými organelami (ER, mitochondrie?)

Schattat M et al. Plant Cell 2012;24:1465-1477

Hanson M, Sattarzadeh A. Plant Cell 2013;25:2774-2782: … a přece se přenášejí (?)

- výměna genetického materiálu a proteinů?

Page 11: Mimojaderné genetické elementy

Plastom a chondriomversus jaderný genom

---- 87

Page 12: Mimojaderné genetické elementy

Funkce genů v plastomu (a chondriomu)

+ geny pro rRNA a tRNA (u mitochondrií řada chybí – z plastidu, jádra)

Page 13: Mimojaderné genetické elementy

Lokalizace proteinů kódovaných jádrem (predikce Target P u Arabidopsis – Emanuelsson et al., J Mol Biol)

Mitochondrie ~ 10% (cca 2500 genů)

Plastidy ~ 14% (cca 3500 genů)

Celkem cca 1/4 genů nutná pro fungování organel

- mnoho z těchto genů ale primárně nepochází z daného endosymbionta (tj. původem jsou jaderné či z druhého endosymbionta)

- mnoho genů (proteinových produktů) využito pro jiné funkce v buňce- duální targetování (GS2, Fd-GOGAT)

Page 14: Mimojaderné genetické elementy

Leister D., TRENDS in Genetics 19: 47, 2003.

Osudy genů endosymbionta

Arabidopsis

nukleom: cca 26 tis.plastom: 87

bílkovin v plastidu: ~ 3500

Předpokládaný endosymbiont cca 4500 genů(analogie dnešní sinice:

cca 3000 – 7000 genů)

Page 15: Mimojaderné genetické elementy

- možnost komplexnější regulace exprese genů a buněčných aktivit - možnost využití genů pro druhotné funkce- vyšší mutační rychlost v organelách (x jádru – pohlavní množení)

- nemožnost rekombinace (opravy mutací) ALE zachované geny jsou vysoce konzervované (možnost rekombinace mezi molekulami)

- nemožnost „bezpečného testování nových mutací“

Předpokládané příčiny přenosu organelových genů do jádra

Produkty přenesených genů musí být importovány zpět do příslušné organely (jsou-li tam potřeba)!

Page 16: Mimojaderné genetické elementy

Inaba and Schnell; Biochem J (2008)

majoritně:TOC-TIC translokony = kanály + chaperony!(mitochondrie: TOM-TIM)

Transitní peptid: 30-100 amk(2-4 tis. proteinů),

Transport proteinů do plastidu

OM – outer membraneER-CP – glykoproteinyUncleaved TP

Page 17: Mimojaderné genetické elementy

Transport do tylakoidů

Lumen: prokaryotické transportní systémy Tylakoidní membrána – spontánní inkorporace (společně s plastidově

kódovanými proteiny)

Page 18: Mimojaderné genetické elementy

Recentní funkční přesuny genů do jádra

(získá-li protein transitní peptid, může postupně vymizet z organelového

genomu)

• Fúze se signální sekvencí genu, jehož produkt je již importován

• Příklad: mitochondriální Rps11 paralogy rýže kódované jádrem využívají signální sekvence Cox,

a podjednotky mitochondriální ATPázy

(zbytky mt genu jsou stále transkribovány)

Kadowaki et al., EMBO J. 1996

Page 19: Mimojaderné genetické elementy

Recentní funkční přesuny

• Inzerce do genu, jehož produkt je importován, a alternativní sestřih zachovávající též původní produkt

• Příklad: mitochondriální Rps14 kódovaný jádrem u rýže v genu pro sdhB sukcinátdehydrogenázu B

Kubo et al., PNAS 96:9207, 1999

Page 20: Mimojaderné genetické elementy

Proč si organely některé geny udržely?

Většinou transmembránové proteiny – problém s transportem či

balením

Page 21: Mimojaderné genetické elementy

Přenos DNA z organel do jaderného genomu je stále aktivní proces!!!

- rostlinné jaderné genomy obsahují velké množství organelové (plastidové) DNA- i z recentních integrací (kopie celých plastidových genomů)- u rýže a kukuřice velké množství (rýže přes 800 kbp)

Page 22: Mimojaderné genetické elementy

Přenosy genů z organel

v experimentálních podmínkách u tabáku pozorována velmi vysoká frekvence přenosu

transgenu z plastidu do jádra

- v somatických buňkách 1 z 18.000- v pylu (degradace plastidů!) 1 z 11.000- ve vaječných buňkách 1 z 250.000

Page 23: Mimojaderné genetické elementy

Dědičnost organelové DNA

Dědičnost zpravidla uniparentální (většinou z mateřské buňky) několik mechanismů, nejasné:

• Chlamydomonas, otcovská organelová DNA eliminována pravděpodobně vlivem metylace na replikační schopnost organelového genomu (jinak metylace DNA ani RNAi v organelách neprobíhá)

• některé vyšší rostliny – otcovské plastidy eliminovány při oplodnění

• nahosemenné rostliny – paternální přenos plastidů

Page 24: Mimojaderné genetické elementy

Plastidová DNA (cpDNA)

• dsDNA, cirkulární (základní forma)• obsah G-C zpravidla nižší než v jádře• bez histonů, navázána řada (druhotně)

strukturních proteinů (ptNAP – plastid nucleoid associated proteins), organizace do nukleoidů

• 20-40 plastidů/jaderný genom• velké množství kopií (~30-100) na plastid• tvoří 10-20% celkové DNA v listech

- v průběhu ontogeneze listů se snižuje - nemizí!

Page 25: Mimojaderné genetické elementy

Typický cp genom – základní uspořádání

kruhová molekula DNA rozdělena na „long“ a „short“ oblasti (LSC a SSC) jedinečné oblasti,odděleny IR

rRNA (rrn) a tRNA (trn) geny (uspořádání v clusterech připomíná uspořádání v E. coli)

rekombinace mezi repeticemi (oddělují LSC a SSC) vede k převrácení SSC

Page 26: Mimojaderné genetické elementy

Strukturní komplexita plastidové DNA

Table 1. Frequency of Different cpDNA Structures across All Experiments in Three Species

No. of Observations

Structurea Arabidopsis Tobacco Pea

Circular 126 (42%) 524 (45%) 59 (25%) Linear 68 (23%) 250 (22%) 85 (36%) Bubble/D-loop 25 (8%) 67 (6%) 5 (2%) Lassolike 34 (11%) 115 (10%) 21 (9%) Unclassifiedb 44 (16%) 203 (17%) 66 (28%) a Each classification represents all molecules of that type regardless of size. b DNA fibers that were coiled or folded and could not be classified

[Lilly et al. Plant Cell. 13:245]

Page 27: Mimojaderné genetické elementy

Velikost plastidového genomu

• 70 - 300kb

• vyšší rostliny 120 – 200 kb

• nezelené – redukovaný

(rafflesia – zřejmě zcela chybí)

Page 28: Mimojaderné genetické elementy

Velikost genomu mitochondrií

• S. cerevisiae 84 kb• savci 16 kb

(produkty podobné)

• vyšší rostliny stovky tisíc kb (x řasy – malý chondriom 16 kb) mechanismus evoluce:

ekonomizace u řas či nárůst u vyšších rostlin

Page 29: Mimojaderné genetické elementy

Genom mitochondrií

Page 30: Mimojaderné genetické elementy

Genom mitochondrií

kukuřice (Zea mays):několik kruhových molekul:

„master“ molekula (570 kb): - subgenomické kruhové molekuly odvozené od „master“

subgenomické vznikají rekombinací mezi stejnými repeticemi (šipky)

Page 31: Mimojaderné genetické elementy

Komplexita mt DNA- důvod?

Backert et al. Trends Plant Sci 2:478

Lineární a lasovité (sigmoidální) molekuly vznikají replikací valivou kružnicí

Page 32: Mimojaderné genetické elementy

Exprese chloroplastového genomu většinou uspořádání do operonů – kotranskripce

- další zpracování na dílčí úseky(stabilní ribonukleoproteinové jednotky)

plastidy vyšších rostlin asi 30 transkripčních jednotek (vymezeny promotorem a terminátorem)

- dvě polymerázy PEP, NEP (plastid, nucleus-encoded pol.)

- promotory pro PEP podobné bakteriálním (sekvence –10 a –35)

- většinou promotory pro obě polymerázy

transkript není až na výjimky modifikován čepičkou ani polyadenylován, u některých dochází k editaci (velmi zřídka)

psbB

psbT psbH

petB

Intron

Intron

petD

psbN

Polycistronní RNA

Monocistronní RNA

Page 33: Mimojaderné genetické elementy

transkripční jednotkyplastidového genomu

Page 34: Mimojaderné genetické elementy

Model exprese psbB operonu

Barkan A. Plantphysiol 2011;155:1520-1532

- významná role pentatricopeptide-repeat proteinů (i v editování)

Page 35: Mimojaderné genetické elementy

Transkripční regulace exprese u chloroplastů

1. celková (NEP→PEP)– exprese většiny genů se zvyšuje / snižuje ve

stejném okamžiku

2. genově specifická regulacesigma faktory pro PEP

př.psbD/psbC promotor reaguje na světlo

Page 36: Mimojaderné genetické elementy

Kontrola exprese chloroplastové DNA- PEP a NEP - vzájemná regulace, překryvné, (ne)zastupitelné

- jaderně kódované sigma faktory PEP komplexu (transkripci většinou spouští více ; AtSIG5 např. při různých stresech )

σ

Page 37: Mimojaderné genetické elementy

Exprese mitochondriálního genomu

- jen NEP, regulace velmi komplexní (i počty kopií)- transkript není modifikován čepičkou ani polyadenylován

- transkripty velmi často „editovány“

RNA Editing– objeven právě u mitochondrií rostlin (>600 pozic)– i u některých chloroplastových genů vyšších rostlin (>40 pozic)

Definice: jakýkoli proces (kromě sestřihu), který způsobí změnu v RNA sekvenci, tak že je odlišná od komplementární sekvence DNA

Page 38: Mimojaderné genetické elementy

Editace transkriptů v organelách

• mnoho mitochondriálních transkriptů editováno (tRNA, i protein kódující)

• „editozóm“ (klíčová role PPR proteinů) – sekvenčně specifická vazba na RNA!, guide RNA u rostlin nepotvrzena!

• Význam: nástroj zvyšování flexibility genomu, regulace exprese či evoluční past?

přeměna C na U

-pravděpodobně cytosin deamináza (možná C-terminální DYW doména PPRs)

Page 39: Mimojaderné genetické elementy

Introny organel

• Stejný gen v různých druzích může mít různé introny ve stejné pozici

• Stejné nebo podobné introny nacházeny v nepříbuzných genech a druzích (introny I. a II. typu)

• Neobvyklá distribuce a fylogenetická analýza potvrzují, že byly získávány a ztráceny v celém průběhu evoluce

Page 40: Mimojaderné genetické elementy
Page 41: Mimojaderné genetické elementy

Jaderný a organelové genomy se doplňují (procházejí koevolučními změnami)

omezená kompatibilita genomu a plastomu u mezidruhových hybridů pupalky Oenothera sp. (biparentální přenos plastidů)

- regulace exprese, - editace, …

Page 42: Mimojaderné genetické elementy

Genes Encoded in the Chloroplast Genomes in Higher Plants

Gene Designation Gene Product I. Genetic System Chloroplast RNA genes

rDNA Ribosomal RNAs (16S, 23S, 4.5S, 5S)trn Transfer RNAs (30 species)

Gene transcriptionrpoA, B, C RNA polymerase , , ’ subunitsssb ssDNA-binding protein

Protein synthesisrps2,3,4,7,8,11 30S ribosomal proteins (CS) 2, 3, 4, 7, 8, 11rps12, 14, 15, 16, 18, 19 CS12, 14, 16, 18, 19rpl2, 14, 16, 20, 22 50S ribosomal proteins (CL) 2, 14, 16, 20, 22infA Initiation factor I

II. Photosynthesis Photosynthetic proteins

rbcL RUBISCO large subunitatpA, B, E ATP synthetase CF1, , subunitsatpF, H, I ATP synthetase CF0I, III, IV subunitspsaA, B, C Photosystem I A1, A2, 9-kDa proteinpsbA, B, C, D, E Photosystem II D1, 51 kDa, 44 kDa, D2, Cytb559-9kDapsbF, G, H, I Photosystem II Cytb559-4kDa, G, 10Pi, I proteinspetA, B, D Electron transport Cytf, Cytb6, IV subunits

Respiratory proteinsndhA, B, C, D NADH dehydrogenase (ND) subunits 1, 2, 3, 4ndhE, F NDL4L, 5

III. Others Maturase matK

Protease clpPEnvelope membrane protein cemA

Page 43: Mimojaderné genetické elementy

Regulace jaderných genů, jejichž produkty se uplatňují v plastidech

signály od plastidu směrem k jádru „zasahují“ promotorové oblasti genů, které se účastní odpovědi na světlo

- reakce na měnící se (a často stresové) podmínky- plná exprese podmíněna přítomností funkčních plastidů

(při špatném vývoji nebo poškození plastidů jsou jaderné geny pro proteiny fotosyntézy exprimovány velmi slabě)

Signály:- prekurzor biosyntézy chlorofylu - funkční plastidová genová exprese (při přechodu

z heterotrofie na autotrofii) - komponenty elektronového transportu fotosyntézy - redox signalizace (Trx, GSH, askorbát, …) - metabolity - ROS