new compensation techniques for integrated analog device issues · 2010. 4. 2. · 2007.09.20 ssdm...

26
2007.09.20 SSDM A. Matsuzawa 1 Matsuzawa & Okada Lab. Matsuzawa & Okada Lab. Compensation techniques for integrated analog device issues Akira Matsuzawa Department of Physical Electronics Tokyo Institute of Technology

Upload: others

Post on 24-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 2007.09.20 SSDM A. Matsuzawa

    1

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Compensation techniques for integrated analog device issues

    Akira Matsuzawa

    Department of Physical ElectronicsTokyo Institute of Technology

  • 2007.09.20 SSDM A. Matsuzawa

    2

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Contents• Integrated analog devices• VT mismatch compensations

    – DAC– Comparator

    • Capacitor mismatch compensation– Pipelined ADC

    • 1/f noise– Chopper amplifier

    • Mismatch and absolute value compensations in circuits– I/Q imbalance and image rejection– CT filter tuning– Calibrations in mixed signal SoC

    • Conclusion

  • 2007.09.20 SSDM A. Matsuzawa

    3

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Integrated analog devices

    Analog circuits need many passive devices, as well as transistors

    MOSTransistor Resistor Capacitor Inductor

  • 2007.09.20 SSDM A. Matsuzawa

    4

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Characteristics of passive devices

    Passive components has some imperfections

    Good Q (RF)Cost up

    High VCLow VCCost up

    Low VCLow leak

    Large VCLeak

    Comment

    0.0010.010.0050.01-0.050.05-0.2Voltage Coefficient(%/V)

    0.0010.0020.0020.1-0.20.05-0.2Temperature Coefficient(%/deg C)

    0.05-0.20.05-0.20.05-0.20.2-20.2-2Relative accuracy(3sigma; %)

    5-102-55-101010Absolute accuracy (3sigma; %)

    0.5-2fF/um2

    2-5fF/um2

    0.5-2 fF/um220-100 ohm20-100 ohmSheet R or C

    MIMCapacitance

    GateCapacitance

    Poly to PolyCapacitanc

    e

    PolyResistance

    DiffusionResistance

    Good Q (RF)Cost up

    High VCLow VCCost up

    Low VCLow leak

    Large VCLeak

    Comment

    0.0010.010.0050.01-0.050.05-0.2Voltage Coefficient(%/V)

    0.0010.0020.0020.1-0.20.05-0.2Temperature Coefficient(%/deg C)

    0.05-0.20.05-0.20.05-0.20.2-20.2-2Relative accuracy(3sigma; %)

    5-102-55-101010Absolute accuracy (3sigma; %)

    0.5-2fF/um2

    2-5fF/um2

    0.5-2 fF/um220-100 ohm20-100 ohmSheet R or C

    MIMCapacitance

    GateCapacitance

    Poly to PolyCapacitanc

    e

    PolyResistance

    DiffusionResistance

  • 2007.09.20 SSDM A. Matsuzawa

    5

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    VT mismatch

    VT mismatch causes offset voltage of an amplifier and a comparator.Larger gate area is needed to reduce offset voltage, however results in decrease of performances, such as BW and PD.

    LWTV oxT ∝∆

    ( )LWTV OXT

    22 ∝∆

    0.13um: Morifuji, et al., IEDM 20000.4um : My data

    1 10 100 1 .1030.1

    1

    10

    100

    δVT LW( )0

    δVT LW( )1

    δVT LW( )2

    LW

    0.1

    1

    10

    100

    )mV(VT∆

    )m(LW 2µ1 10 100 1000

    0.4um Nch

    0.13um Nch In w/o Halo*

    0.13um Nch Boron, w. Halo

  • 2007.09.20 SSDM A. Matsuzawa

    6

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    VT fluctuations in a waferVT fluctuation for small device looks random in a wafer.VT fluctuation for large device have some gradients in a wafer.

    23

    45

    67

    89

    10

    3

    4

    5

    6

    7

    8

    9

    10

    0.54

    0.55

    0.56

    0.57

    0.58

    0.59

    0.60

    VtnW/L=3.8/0.38

    23

    45

    67

    89

    10

    3

    4

    5

    6

    7

    8

    9

    10

    0.66

    0.67

    0.68

    0.69

    0.70

    0.71

    0.72

    VtW/L=40/4

    Vt =686±7mVVt =575±18mV

  • 2007.09.20 SSDM A. Matsuzawa

    7

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Influence of VT mismatch in current staring DAC

    Higher resolution DAC requires smaller current mismatchwhich is mainly caused by VT mismatch.

    0iI ∆+ 1iI ∆+ 2iI ∆+ 1N2iI −+ ∆

    N2C2

    1I

    )I(≈

    σ

    N: resolution

    C: Constant determined by INL yield

    NII

    21)( 2

    ∝⎟⎠⎞

    ⎜⎝⎛ σ

    6 8 10 12 141 .10 3

    0.01

    0.1

    sigma 3.0 N,( )

    sigma 2 N,( )

    sigma 1.3 N,( )

    sigma 0.8 N,( )

    N

    90%50%

    10%

    99.7%

    Van den Bosch,.. Kluwer 2004

    INL yield

    6 8 10 14

    10

    1

    0.112

    Cur

    rent

    mis

    mat

    ch (%

    )

    Resolution (bit)

  • 2007.09.20 SSDM A. Matsuzawa

    8

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Issue in high precision analog design

    LargePower

    dissipation

    LargePower

    dissipation

    High precision analog circuit design conventionally results in increase of power dissipation and IP cost, decrease of frequency performance

    Large capacitance

    Expensivecost

    Expensivecost

    Highprecisioncircuits

    Highprecisioncircuits

    SmallmismatchSmall

    mismatchLarge

    Gate sizeLarge

    Gate size

    Large area

    Lowcutoff

    frequency

    Lowcutoff

    frequency

    Large capacitance

  • 2007.09.20 SSDM A. Matsuzawa

    9

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Dynamic current compensation

    Each current source can be set equal by current memory method.Shit register and one extra current source can realize calibration on the job.

    VDD H.J. Schouwenaas, et al.,IEEE, JSC, vol.23, pp.1290-1297, Dec, 1988.

    Shift register0 0 0 0 0 0 01

    16bit DAC

    Iref

    Switch circuit

    To D/A converter Current source under calibration

    Iref

    CAL: ONJOB: OFF

    CAL JOB

    Current memory

  • 2007.09.20 SSDM A. Matsuzawa

    10

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Self-Calibrated DACCAL-ADC measures non-linearity of DAC and compensates it’s non-linearity by CAL-DAC with logic

    14bit 100MHz DAC

    External ADC

    Compensation circuitsY. Cong and R. L. Geiger, Iowa state university, ISSCC 2003

  • 2007.09.20 SSDM A. Matsuzawa

    11

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Effectiveness and issues of CAL-DACDigital calibration can reduce non-linearity dramatically.We can realize high precision DAC in small area and power dissipation.

    However, unrealistic, because it needs high precision ADC!!INL DNL14bit DAC

    +/- 9 LSB

    +/- 0.4 LSB

    +/- 5 LSB

    +/- 0.35 LSB

    Before

    After

    14b 100MS/s DAC 1.5V, 17mW, 0.1mm2, 0.13umSFDR=82dB at 0.9MHz, 62dB at 42.5MHz

    Area: 1/50 Pd: 1/20

  • 2007.09.20 SSDM A. Matsuzawa

    12

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Self-Calibrated Binary DACWe have developed self-calibrated Binary DAC without CAL-ADC.Comparator can calibrate non-linearity. No high precision ADC is needed.

    MSBARRAY

    LSBARRAY

    CALARRAY

    SUBARRAY

    6bit+1bit 8bit 3bit+1bit 6bit+1bit

    CurrentMirrorARRAY

    6bit+1bit

    MSBSWITCH

    LSBSWITCH

    CALSWITCH

    SUBSWITCH

    ΔI CALLOGICMEMORY

    Output

    IMSB028ICMSB028

    ILSB727

    ILSB020

    IMSB5213

    VDD

    6+1 8 3+1 6+1

    MSBDAC LSBDAC CALDAC SUBDAC

    MAINDAC

    ~ ~ICAL02-3ICCAL02-3

    ICAL22-1

    ~ISUB02-3

    ICSUB02-3

    ISUB222

    ~ Y. Ikeda, A. Matsuzawa, "Digital Calibration Method for Binary-Weighted Current-Steering D/A-Converters without Calibration ADC", IEICE TRANS. ELECTRON, vol. E90-C, No.6, pp.1172-1180, June. 2007

    0 5000 10000 15000-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    code

    INL(

    LSB

    )

    0 5000 10000 15000-8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    code

    INL(

    LSB

    )

    0 5000 10000 15000-4

    -2

    0

    2

    4

    6

    8

    code

    DN

    L(LS

    B)

    0 5000 10000 15000-0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    code

    DN

    L(LS

    B)

    +/- 6 LSB +/- 0.5 LSB

    +/- 0.25 LSB

    INL

    DNL +/- 6 LSB

    Comparator 14b DACBefore After

  • 2007.09.20 SSDM A. Matsuzawa

    13

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Error compensation by comparator

    887654 21

    21

    21

    21

    21

    21

    ++++=imi

    nnmm +

    =+ += ∑ 2

    12

    121

    1

    Nature of binary weighted values

    NoI

    21) Measure LSB value by CAL DAC with certain accuracy.

    2) Measure the error of each current source by comparator with binary search .

    RL

    Vout

    Main DAC

    Cal DAC

    2oI±

    4oI± 12 −

    ± NoI

    NoI

    2± 12 +−

    ± jNoI

    ijNoI+−± 222 +−

    ± jNoI

    ijNoI+−± 2

    Comparator

    Logic

    Data in

    1414131212

    14141313

    1

    2222'

    222'

    222'

    oooo

    ooo

    No

    mN

    nnm

    omo

    m

    IIIII

    IIII

    IIII

    −−−=δ

    −−=δ

    −−=δ ∑−

    =+

    Example

    3) Compensate the errors by digitally

  • 2007.09.20 SSDM A. Matsuzawa

    14

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Comparator and offset suppressionStore the offset voltage in capacitor and subtract it from the signal

    Offset suppressionVoff at sigma reaches 30mVin CMOS comparator S1

    -

    +G

    S2S3

    Co

    S1-

    +G

    S2

    Ci

    S3

    vovin

    vin

    (a)

    (b)

    +

    -

    High gain type (feedback method)

    Low gain type (feed forward method)

    Va Vo

    ( )

    osao

    aoosa

    VA

    AVV

    VV)A(VV

    +=

    ==−−

    =∴1

    Basic CMOS comparator

  • 2007.09.20 SSDM A. Matsuzawa

    15

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Digital Comparator offset compensation

    Offset voltage of latched comparator can’t be compensated by previous method.Because it has no bias point. In this case, digital method should be applied. Input terminals are shorted and the output signal controlsapplied voltage to the differential pair in CAL circuits so that the frequency of occurrence in differential output signals become equal.

    Vin+ Vin-Vcom Vcom

    Latched CMPLogic

    Comp_out

    CCAL Cs

    CCAL Cs

    Vmax

    Vmin

    Vmax

    Vmin

    CCAL=10 CsCAL circuits

    I∆

    I∆− I∆−

    V∆

    “A 90nm CMOS 1.2V 6b 1GS/s Two-Step Subranging ADC”Pedro M. Figueiredo, et al., ISSCC 2006

  • 2007.09.20 SSDM A. Matsuzawa

    16

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Capacitor mismatch in pipelined ADC

    Cf

    CompDAC

    G

    Cs

    VinVo

    VDAC

    S1f

    S1s

    S2f

    S2s

    DACf

    s

    f

    sino VC

    CCCVV −⎟

    ⎟⎠

    ⎞⎜⎜⎝

    ⎛+≅ 1

    NCC

    21

    <∆

    )(

    4102)(pFCC

    C −×=σ

    ∆( )DACinf

    f

    s

    so VVC

    CCCV −⎟

    ⎟⎠

    ⎞⎜⎜⎝

    ⎛ ∆−

    ∆=∆

    Capacitor mismatch in pipelined ADC determines the conversion accuracy. For the higher resolution, the larger capacitance is needed.

    12 bit

    10 bit

    14 bit

    12 bit

    10 bit

    14 bit

    1

    0.1

    0.01

    0.0010.1 1 10 100

    Capacitance (pF)M

    ism

    atch

    (%)

    DACino VVV −≅ 2

  • 2007.09.20 SSDM A. Matsuzawa

    17

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Capacitor mismatch compensation

    Capacitor mismatch causes the large conversion value differencesat the input voltage where the comparator changes the DAC voltage.

    Compensation method:

    1) Select input signal to +/- Vref/4

    Vref

    DOUT

    -Vref -Vref/4

    Vref/4

    IDEAL

    ACTUAL

    CAL

    0 0

    0 1

    1 0

    VINδ1

    δ2Vref

    DOUT

    -Vref -Vref/4

    Vref/4

    IDEAL

    ACTUAL

    CAL

    0 0

    0 1

    1 0

    VIN

    Vref

    DOUT

    -Vref -Vref/4

    Vref/4

    IDEAL

    ACTUAL

    CAL

    0 0

    0 1

    1 0

    VINδ1

    δ2

    Cf

    CompDAC

    G

    Cs

    Vin

    Vo

    VDAC

    S1f

    S1s

    S2f

    S2s

    +/- Vref/4

    Logic

    Scal

    2) Convert this value with VDAC=0 and +/- Vref and obtain and .3) Add or subtract this to or from the output values

    1δ 2δ

    21,δδ

    S. Y. Chung and T. L. Sculley,” A Digitally Self-Calibrating 14-bit 10MHz CMOS Pipelined A/D Converter.” IEEE, JSC, Vol. 37, No.6, pp. 674-683, June 2002.

  • 2007.09.20 SSDM A. Matsuzawa

    18

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    1/fノイズ

    fWLCKS

    oxVG

    1⋅=∆

    Gate Oxide Gate Oxide

    Si SiTrap Trap

    1/f noise degrades SNR of base-band signal seriously.The 1/f noise from MOS is one or two order of magnitude higher than bipolar.The larger gate area is needed to reduction this noise.

    Dra

    in c

    urre

    nttime

  • 2007.09.20 SSDM A. Matsuzawa

    19

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Chopper amplifierChopper technique is often to be used to reduce the effect of 1/f noise.

    -

    + +

    -

    +Vn

    -Vn

    GVin

    Φs Φs

    Vout

    ( )sNinsoddn

    nNout nffSnffGn

    fS −−⎟⎠⎞

    ⎜⎝⎛π

    = ∑∞

    −∞=

    2

    :

    2

    2

    )(12)(

    Signal Signal + Noise Signal is reconstructedNoise is filtered out

    Signal

    1/f noise

    1/f noise

    Signal

    Chopped noise

    Signal Chopper freq.LPF

    C. C. Enz, E. A. Vittoz, and F. Krummenacher, IEEE Journal of Solid-State Circuits, Vol. 22, No. 3, pp. 335-342, June 1987 Chopper freq.=1KHz

    W/ chopper

    W/O chopper

  • 2007.09.20 SSDM A. Matsuzawa

    20

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Image-rejection mixersImage can be rejected theoretically. However, the image still remains due to gain and phase mismatch.

    ( )tLOωcos

    LPF

    +

    LPF

    Vin (t) Vout(t)( )tLOωsin

    °90

    LOω ωimωdesω

    Image rejection mixerω

    IFω IFω

    0

    IFω

    IFω

    Input

    Output

    Desired ImageV1 V3

    V2

    ( ) ( )

    ( ) ( )tVtVtV

    tVtVtV

    imLOim

    LOdesdes

    imLOim

    LOdesdes

    ω−ω+ω−ω=

    ω−ω+ω−ω−=

    cos2

    cos2

    )(

    sin2

    sin2

    )(

    2

    1

    ( ) ( )

    ( )tVtV

    tVtVtVshifttV

    LOdesdesout

    imLOim

    LOdesdes

    ω−ω=

    ω−ω−ω−ω==°→

    cos)(

    cos2

    cos2

    )(90)( 31

    Image is rejected, however,…

  • 2007.09.20 SSDM A. Matsuzawa

    21

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Gain mismatch and phase error

    It is very difficult to realize high image rejection rationbeing higher than 40 dB by analog techniques.

    A. Rofougaran, et al., IEEE J.S.C. Vol.33, No.4, April 1998. PP. 515-534.

    ( )

    4

    22

    θ∆+⎟⎠⎞

    ⎜⎝⎛ ∆

    ≈ GG

    IRR

    0.1 deg and 0.01% are needed for IRR of 60dBConventional IRR: 35dB IRR: Image rejection ratio

  • 2007.09.20 SSDM A. Matsuzawa

    22

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Digital image rejection technique

    ADCVGA+FilterMIXERLNA

    FMI

    The dummy image signal is generated by IMO and the controller controls signal delay and amplitude on Q path to minimize the I/Q imbalance. IRR of 60dB can be realized.

    Q

    Deci.LPF

    Vari.Delay

    Vari.Gain BPF

    IMO Controller

    Deci.LPF

    Fixed.Delay BPF

    DSP

    to DSP

    Image Rejection Ratio >60dB

    Image frequency oscillator

    From ADCsIM detect

  • 2007.09.20 SSDM A. Matsuzawa

    23

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    CT filter tuningRC or gmC circuits can realize active filter circuits,However, frequency characteristics and Q of the filter are strongly affected byAbsolute value of R, C, gm and PVT fluctuation.Then, the filter tuning circuit is vital.Filter circuit can be used as oscillator, if the Q become infinity.

    DummyOscillator

    Filter

    Peak DetectorPLL

    go go

    gm cont. go cont.

    gm

    gm

    Q tuningfrequency tuning

    Ref clock

  • 2007.09.20 SSDM A. Matsuzawa

    24

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Digital calibration in mixed signal SoCTo keep high production yield and stable operation against PVT fluctuation,mixed signal SoC has many digital self calibration circuits.MCU controls many analog parameters.

    PRML circuit for DVD recorder

    Ana

    log

    Buf

    fers

    OffsetAdjustVGA

    5th orderGm-C Filter

    DAC

    DAC

    7bitADC

    OffsetControl

    Defect

    WobbleFilter

    Frequency&

    PhaseComparator

    FIRFilter

    LMS

    ViterbiDetector

    LoopFilters

    DACs

    VCO

    ClockControlSystem

    Clocks

    1/N

    LevelDetector

    ExtractedData

    WobbleDetect

    Pick upOutputs

    ExtractedClock

    ServoPre-Processor

    Servo Error Signals

    GainControlDefectDetect

    [RF input] [Analog Filter output]

    [FIR output]digitalcontrol

    ...

    DigitalCalibration

  • 2007.09.20 SSDM A. Matsuzawa

    25

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Issues of analog compensation techniques

    • Basically use discrete-time technology– Difficult to apply Continuous-Time circuits.– Needed clock causes another noise.

    • Some need calibration period– At power on

    • Needs not short time to wait the system becomes stable.• Some different situation at the power on.

    – Idling time on the job• Can get sufficient time for calibration?• Too much system depended.

    • Calibration on the job– Conventionally needs extra circuits.

    Cost and power consumption increase.– Needs many calibration time, if statistical methods are used.

  • 2007.09.20 SSDM A. Matsuzawa

    26

    Matsuzawa& Okada Lab.Matsuzawa& Okada Lab.

    Conclusion

    • Analog circuits require compensation technique– Mismatch is inversely proportional to the square root of area.

    – Control of absolute vale of device parameters is difficult.– Also, device parameters are affected PVT fluctuation easily.– If not use of compensation techniques

    • Large area, large power consumption, poor frequency performance.

    • Compensation techniques are very effective to improve precision of circuits, production yield, and durability to PVT fluctuations

    • However, they have many issues– Basically DT method are used and difficult to apply CT circuits.– Need calibration periods

    SRR

    CCVV fnT

    1,,, /1_ ∝⎟⎠⎞

    ⎜⎝⎛ ∆

    ⎟⎠⎞

    ⎜⎝⎛ ∆∆

    Compensation techniques for integrated analog device issuesContentsIntegrated analog devicesCharacteristics of passive devicesVT mismatchVT fluctuations in a waferInfluence of VT mismatch in current staring DACIssue in high precision analog designDynamic current compensationSelf-Calibrated DACEffectiveness and issues of CAL-DACSelf-Calibrated Binary DACError compensation by comparatorComparator and offset suppressionDigital Comparator offset compensationCapacitor mismatch in pipelined ADCCapacitor mismatch compensation1/fノイズChopper amplifierImage-rejection mixersGain mismatch and phase errorDigital image rejection techniqueCT filter tuningDigital calibration in mixed signal SoCIssues of analog compensation techniquesConclusion