no. c vol. no. - actinoactino.jp/journal/actinomycetologica_31-1_nonmember.pdfsaj news vol. 31, no....

89
C T I N O M Y C E T O L O G I C 2017 VOL. 31 NO. 1 ACTINOMYCETOLOGICA VOL. 31 NO. 1 1990年12月18日 第4種郵便物認可 ISSN 0914-5818 http://www. actino.jp/ Published by The Society for Actinomycetes Japan ( 2017 公開

Upload: others

Post on 28-Dec-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

CTIN

OM

YC

ET

OL

OG

IC

2017

V

OL

. 31

N

O. 1

ACTIN

OMYC

ETOLO

GIC

A

VOL. 31 NO. 1

1990年12月18日 第4種郵便物認可 ISSN 0914-5818

http://www. actino.jp/Published byThe Society for Actinomycetes Japan

日本放線菌学会誌 第28 巻1 号ACTINOMYCETOLOGICA VOL.28 NO.1, 2014

誌会学菌線放本日

A B C D

(

2017

公開

Page 2: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

SAJ NEWS

Vol. 31, No. 1, 2017

Contents

• Outline of SAJ: Activities and Membership S 2

• List of new scientific names and nomenclatural changes in the phylum Actinobacteria validly published in 2016

S 3

• Award Lecture (Dr. Shumpei Asamizu) S 30

• Publication of Award Lecture (Dr. Shumpei Asamizu) S 41

• Award Lecture (Dr. Takashi Kawasaki) S 42

• Publication of Award Lecture (Dr. Takashi Kawasaki) S 47

• 60th Regular Colloquim S 48

• The 2017 Annual Meeting of the Society for Actinomycetes Japan S 49

• Online access to The Journal of Antibiotics for SAJ members S 50

S1

Page 3: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Outline of SAJ: Activities and Membership

The Society for Actinomycetes Japan (SAJ) was established in 1955 and authorized as a scientific organization by Science Council of Japan in 1985. The Society for Applied Genetics of Actinomycetes, which was established in 1972, merged in SAJ in 1990. SAJ aims at promoting actinomycete researches as well as social and scientific exchanges between members domestically and internationally. The Activities of SAJ have included annual and regular scientific meetings, workshops and publications of The Journal of Antibiotics (the official journal, joint publication with Japan Antibiotics Research Association), Actinomycetologica (Newsletter) and laboratory manuals. Contributions to International Streptomyces Project (ISP) and International Symposium on Biology of Actinomycetes (ISBA) have also been SAJ's activities. In addition, SAJ have occasional special projects such as the publication of books related to actinomycetes: “Atlas of Actinomycetes, 1997”, “Identification Manual of Actinomycetes, 2001” and “Digital Atlas of Actinomycetes, 2002” (http://atlas.actino.jp/). These activities have been planned and organized by the board of directors with association of executive committees consisting of active members who belong to academic and nonacademic organizations. The SAJ Memberships comprise active members, student members, supporting members and honorary members. Currently (as of Dec. 31, 2016), SAJ has about 423 active members including student members, 22 oversea members, 11 honorary members, 3 oversea honorary members, 1 special member and 13 supporting members. The SAJ members are allowed to join the scientific and social meetings or projects (regular and specific) of SAJ on a membership basis and to browse The Journal of Antibiotics from a link on the SAJ website and will receive each issue of Actinomycetologica, currently published in June and December. Actinomycete researchers in foreign countries are welcome to join SAJ. For application of SAJ

membership, please contact the SAJ secretariat (see below). Annual membership fees are currently 5,000 yen for active members, 3,000 yen for student members and 20,000 yen or more for supporting members (mainly companies), provided that the fees may be changed without advance announcement.

The current members (April 2016 - March 2018) of the Board of Directors are: Masayuki Hayakawa (Chairperson; Univ. of Yamanashi), Tohru Dairi (Vice Chairperson; Hokkaido Univ.), Tomohiko Tamura (Secretary General; NITE), Takayuki Kajiura (Ajinomoto Co., Inc.), Jun Ishikawa (NIID), Hiroyasu Onaka (Tokyo Univ.), Yojiro Anzai (Toho Univ.), Yoshimitsu Hamano (Fukui Pref. Univ.), Masayuki Igarashi (Institute of Microbial Chemistry), Akira Arisawa (MicroBiopharm Japan Co., Ltd.), Takuji Nakashima (Kitasato Univ.), Masaaki Kizuka (Daiichi Sankyo Co., Ltd.), Hisashi Kawasaki (Tokyo Denki Univ.), Takuji Kudo (RIKEN)Atsuko Matsumoto (Kitasato Univ.), Hideki Yamamura (Univ. of Yamanashi), and Hideyuki Muramatsu (Institute of Microbial Chemistry). The members of the Advisory Board are: Yuzuru Mikami, Akira Yokota, Hiroyuki Osada, and Keiko Ochiai.

Copyright: The copyright of the articles published in Actinomycetologica is transferred from the authors to the publisher, The Society for Actinomycetes Japan, upon acceptance of the manuscript.

The SAJ Secretariat c/o Culture Collection Division, Biological Resource Center, National Institute of Technology and Evaluation (NBRC) 2-5-8, Kazusakamatari, Kisarazu,Chiba 292-0818, JapanPhone: +81-438-20-5763Fax: +81-438-52-2329E-mail: [email protected]

S2

Page 4: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

List of new scientific names and nomenclatural changes in the phylum Actinobacteria validly published in 2016

NEW ORDER

Egibacterales Zhang et al. 2016, ord. nov. Type genus: Egibacter Zhang et al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 283-289. A member of the class Nitriliruptoria.

Egicoccales Zhang et al. 2016, ord. nov. Type genus: Egicoccus Zhang et al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 530-535. A member of the class Nitriliruptoria.

NEW FAMILY

Egibacteraceae Zhang et al. 2016, fam. nov. Type genus: Egibacter Zhang et al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 283-289. A member of the order Egibacterales.

Egicoccaceae Zhang et al. 2016, fam. nov. Type genus: Egicoccus Zhang et al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 530-535.

A member of the order Egicoccales.

Parviterribacteraceae Foesel et al. 2016, fam. nov.

Type genus: Parviterribacter Foesel et al. 2016.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 652-665.

A member of the order Solirubrobacterales.

NEW GENUS

Acidipropionibacterium Scholz and Kilian 2016, gen. nov.

Type species: Acidipropionibacterium jensenii (van Niel 1928) Scholz and Kilian 2016.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

A member of the family Propionibacteriaceae.

Actinocrispum Hatano et al. 2016, gen. nov. Type species: Actinocrispum wychmicini

Hatano et al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 4779-4784. A member of the family Pseudonocardiaceae.

Actinorectispora Quadri et al. 2016, gen. nov. Type species: Actinorectispora indica Quadri et

al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 939-945. A member of the family Pseudonocardiaceae.

Actinorhabdospora Mingma et al. 2016, gen. nov.

Type species: Actinorhabdospora filicis Mingma et al. 2016.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3071-3077.

A member of the family Micromonosporaceae.

Allohumibacter Kim et al. 2016, gen. nov. Type species: Allohumibacter endophyticus

Kim et al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 1823-1827. A member of the family Microbacteriaceae.

Cnuibacter Zhou et al. 2016, gen. nov. Type species: Cnuibacter physcomitrellae Zhou

et al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 680-688. A member of the family Microbacteriaceae.

S3

Page 5: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Cutibacterium Scholz and Kilian 2016, gen. nov.

Type species: Cutibacterium acnes (Gilchrist 1900) Scholz and Kilian 2016.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

A member of the family Propionibacteriaceae.

Egibacter Zhang et al. 2016, gen. nov. Type species: Egibacter rhizosphaerae Zhang

et al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 283-289. A member of the family Egibacteraceae.

Egicoccus Zhang et al. 2016, gen. nov. Type species: Egicoccus halophilus Zhang et al.

2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 530-535. A member of the family Egicoccaceae.

Enorma Mishra et al. 2016, gen. nov. Type species: Enorma massiliensis Mishra et al.

2016. Reference: Stand. Genomic Sci., 2013, 8:

290-305; Validation List no. 168 [Int. J. Syst.Evol. Microbiol., 2016, 66: 1603-1606].

A member of the family Coriobacteriaceae.

Glutamicibacter Busse 2016, gen. nov. Type species: Glutamicibacter protophormiae

(Lysenko 1959) Busse 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 9-37. A member of the family Micrococcaceae.

Herbihabitans Zhang et al. 2016, gen. nov. Type species: Herbihabitans rhizosphaerae

Zhang et al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 4156-4161. A member of the family Pseudonocardiaceae.

Huakuichenia Zhang et al. 2016, gen. nov. Type species: Huakuichenia soli Zhang et al.

2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 5399-5405. A member of the family Microbacteriaceae.

Lawsonella Bell et al. 2016, gen. nov. Type species: Lawsonella clevelandensis Bell

et al. 2016.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2929-2935.

A member of the suborder Corynebacterineae.

Lipingzhangella Zhang et al. 2016, gen. nov. Type species: Lipingzhangella halophila Zhang

et al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 4071-4076. A member of the family Nocardiopsaceae.

Monashia Azman et al. 2016, gen. nov. Type species: Monashia flava Azman et al.

2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 554-561. A member of the family Intrasporangiaceae.

Paenarthrobacter Busse 2016, gen. nov. Type species: Paenarthrobacter aurescens

(Phillips 1953) Busse 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 9-37. A member of the family Micrococcaceae.

Paeniglutamicibacter Busse 2016, gen. nov. Type species: Paeniglutamicibacter sulfureus

(Stackebrandt et al. 1984) Busse 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 9-37. A member of the family Micrococcaceae.

Parafrigoribacterium Kong et al. 2016, gen. nov.

Type species: Parafrigoribacterium mesophilum (Dastager et al. 2008) Kong et al. 2016.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5252-5259.

A member of the family Microbacteriaceae.

Parviterribacter Foesel et al. 2016, gen. nov. Type species: Parviterribacter kavangonensis

Foesel et al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 652-665. A member of the family Parviterribacteraceae.

Populibacterium Li et al. 2016, gen. nov. Type species: Populibacterium corticicola Li et

al. 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 3743-3748. A member of the family Jonesiaceae.

S4

Page 6: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Pseudarthrobacter Busse 2016, gen. nov. Type species: Pseudarthrobacter

polychromogenes (Schippers-Lammertse et al. 1963) Busse 2016.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

A member of the family Micrococcaceae.

Pseudoglutamicibacter Busse 2016, gen. nov. Type species: Pseudoglutamicibacter

cumminsii (Funke et al. 1997) Busse 2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 9-37. A member of the family Micrococcaceae.

Pseudopropionibacterium Scholz and Kilian 2016, gen. nov.

Type species: Pseudopropionibacterium propionicum (Buchanan and Pine 1962) Scholz and Kilian 2016.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

A member of the family Propionibacteriaceae.

Raineyella Pikuta et al. 2016, gen. nov. Type species: Raineyella antarctica Pikuta et al.

2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 5529-5536. A member of the family Propionibacteriaceae.

Salilacibacter Li et al. 2016, gen. nov. Type species: Salilacibacter albus Li et al.

2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 2558-2565. A member of the family Glycomycetaceae.

Sediminivirga Zhang et al. 2016, gen. nov. Type species: Sediminivirga luteola Zhang et al.

2016. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 1494-1498. A member of the family Brevibacteriaceae.

Sphaerimonospora Mingma et al. 2016, gen. nov.

Type species: Sphaerimonospora cavernae Mingma et al. 2016.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1735-1744.

A member of the family Streptosporangiaceae.

Timonella Mishra et al. 2016, gen. nov. Type species: Timonella senegalensis Mishra et

al. 2016. Reference: Stand. Genomic Sci. 8: 318-335;

Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: 2463-2466].

A member of the order Micrococcales.

NEW SPECIES

Actinocorallia lasiicapitis Liu et al. 2016, sp. nov.

Type strain: strain 3H-GS17 = CGMCC 4.7282 = DSM 100595 = JCM 31763.

Reference: Int. J. Syst. Evol. Micro-biol., 2016, 66: 2172-2177.

Actinocrispum wychmicini Hatano et al. 2016, sp. nov.

Type strain: strain MI503-A4 = DSM 45934 = NBRC 109632.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4779-4784.

Actinomadura adrarensis Lahoum et al. 2016, sp. nov.

Type strain: strain ACD12 = CECT 8842 = DSM 46745 = JCM 31696.

Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 2724-2729.

Actinomadura gamaensis Abagana et al. 2016, sp. nov.

Type strain: strain NEAU-Gz5 = CGMCC 4.7301 = DSM 100815.

Reference: Antonie van Leeuwenhoek, 2016, 109: 833-839; Validation List no. 171 [Int. J. Syst. Evol. Microbiol., 2016, 66: 3761-3764].

Actinomadura jiaoheensis Zhao et al. 2016, sp. nov.

Type strain: strain NEAU-Jh1-3 = CGMCC 4.7197 = DSM 102127 = JCM 30341.

Reference: Antonie van Leeuwenhoek, 2015, 108: 1331-1339; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66:1603-1606].

S5

Page 7: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Actinomadura montaniterrae Songsumanus et al. 2016, sp. nov.

Type strain: strain CYP1-1B = JCM 16995 = KCTC 39784 = PCU 349 = TISTR 2400.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3310-3316.

Actinomadura sporangiiformans Zhao et al. 2016, sp. nov.

Type strain: strain NEAU-Jh2-5 = CGMCC 4.7211 = JCM 30342.

Reference: Antonie van Leeuwenhoek, 2015, 108: 1331-1339; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66:1603-1606].

Actinophytocola algeriensis Bouznada et al. 2016, sp. nov.

Type strain: strain MB20 = CECT 8960 = DSM 46746. Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2760-2765.

Actinoplanes bogorensis Nurkanto et al. 2016, sp. nov.

Type strain: strain LIPI11-2-Ac043 = InaCC A522 = NBRC 110975.

Reference: J. Antibiot., 2016, 69: 26-30; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66: 4299-4305].

Actinoplanes lichenis Phongsopitanun et al. 2016, sp. nov.

Type strain: strain LDG1-22 = JCM 30485 = PCU 344 = TISTR 2343.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 468-473.

Actinoplanes subglobosus Ngaemthao et al. 2016, sp. nov.

Type strain: strain A-T 5400 = BCC 42734 = NBRC 109645 = TBRC 5832.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4850-4855.

Actinopolyspora salinaria Duangmal et al. 2016, sp. nov.

Type strain: strain HS05-03 = BCC 51286 = NBRC 109078.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1660-1665.

Actinorectispora indica Quadri et al. 2016, sp.

nov. Type strain: strain YIM 75728 = CCTCC AA

209065 = DSM 45410. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 939-945.

Actinorhabdospora filicis Mingma et al. 2016, sp. nov.

Type strain: strain K12-0408 = NBRC 111897 = TBRC 5327.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3071-3077.

Agromyces aureus Corretto et al. 2016, sp. nov.

Type strain: strain AR33 = DSM 101731 = LMG 29235.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3749-3754.

Agromyces binzhouensis et al. 2016, sp. nov. Type strain: strain OAct353 = CGMCC 4.7180

= DSM 28305 = NRRL B-59115. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 2278-2283.

Agromyces insulae Huang et al. 2016, sp. nov. Type strain: strain CFH S0483 = CCTCC AB

2014301 = JCM 31741 = KCTC 39117. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 2002-2007.

Allohumibacter endophyticus Kim et al. 2016, sp. nov.

Type strain: strain MWE-A11 = JCM 19371 = KCTC 29232.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1823-1827.

Amycolatopsis albispora Zhang et al. 2016, sp. nov.

Type strain: strain WP1 = KCTC 39642 = MCCC 1A10745.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3860-3864.

Arthrobacter deserti Hu et al. 2016, sp. nov. Type strain: strain YIM CS25 = CGMCC

1.15091 = DSM 29935 = KCTC 39544. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 2035-2040.

Arthrobacter echini Lee et al. 2016, sp. nov. Type strain: strain AM23 = KACC 18260 =

S6

Page 8: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

DSM 29493. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 1887-1893.

Asanoa endophytica Niemhom et al. 2016, sp. nov.

Type strain: strain BR3-1 = BCC 66355 = NBRC 110002.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1377-1382.

Bifidobacterium aquikefiri Laureys et al. 2016, sp. nov.

Type strain: strain R 54638 = CCUG 67145 = LMG 28769.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1281-1286.

Bifidobacterium eulemuris Michelini et al. 2016, sp. nov.

Type strain: strain LMM_E3 = DSM 100216 = JCM 30801.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1567-1576.

Bifidobacterium hapali Michelini et al. 2016, sp. nov.

Type strain: strain MRM_8.14 = DSM 100202 = JCM 30799.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 255-265.

Bifidobacterium myosotis Michelini et al. 2016, sp. nov.

Type strain: strain MRM_5.9 = DSM 100196 = JCM 30796.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 255-265.

Bifidobacterium tissieri Michelini et al. 2016, sp. nov.

Type strain: strain MRM_5.18 = DSM 100201 = JCM 30798.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 255-265.

Blastococcus capsensis Hezbri et al. 2016, sp. nov.

Type strain: strain BMG 804 = CECT 8876 = DSM 46835.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4864-4872.

Brachybacterium aquaticum Kaur et al. 2016,

sp. nov. Type strain: strain KWS-1 = DSM 28796 =

JCM 30059 = MTCC 11836. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 4705-4710.

Brachybacterium horti Singh et al. 2016, sp. nov.

Type strain: strain THG-S15-4 = CCTCC AB 2015116 = KCTC 39563 = JCM 31742.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 189-195.

Brevibacterium sediminis Chen et al. 2016, sp. nov.

Type strain: strain FXJ8.269 = CGMCC 1.15472 = DSM 102229.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5268-5274.

Catellatospora paridis Jia et al. 2016, sp. nov. Type strain: strain NEAU-CL2 = CGMCC

4.7236 = DSM 100519. Reference: Antonie van Leeuwenhoek, 2016,

109: 43-50; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1913-1915].

Catellatospora vulcania Jia et al. 2016, sp. nov.

Type strain: strain NEAU-JM1 = CGMCC 4.7174 = JCM 30054.

Reference: Antonie van Leeuwenhoek, 2016, 109: 43-50; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1913-1915].

Catenulispora fulva Lee and Whang 2016, sp. nov.

Type strain: strain SA-246 = KACC 17878 = NBRC 110074.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 271-275.

Cellulosimicrobium aquatile Sultanpuram et al. 2016, sp. nov.

Type strain: strain 3bp = KCTC 39527 = LMG 28646 = MCC 2761.

Reference: Antonie van Leeuwenhoek, 2015, 108: 1357-1364; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66:1603-1606].

Cellulosimicrobium marinum Hamada et al.

S7

Page 9: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

2016, sp. nov. Type strain: strain RS-7-4 = InaCC A726 =

NBRC 110994. Reference: Arch. Microbiol., 2016, 198:

439-444; Validation List no. 171 [Int. J. Syst.Evol. Microbiol., 2016, 66: 3761-3764].

Cnuibacter physcomitrellae Zhou et al. 2016, sp. nov.

Type strain: strain XA = CGMCC 1.15041 = DSM 29843.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 680-688.

Collinsella massiliensis Padmanabhan et al. 2016, sp. nov.

Type strain: strain GD3 = CSUR P902 = DSM 26110.

Reference: Stand. Genomic Sci., 2014, 9: 1144-1158; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: 2463-2466].

Corynebacterium crudilactis Zimmermann et al. 2016, sp. nov.

Type strain: strain JZ16 = CCUG 69192 = DSM 100882 = LMG 29813.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5288-5293.

Corynebacterium faecale Chen et al. 2016, sp. nov.

Type strain: strain YIM 101505 = CCTCC AB 2013226 = DSM 45971 = JCM 31743.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2478-2483.

Corynebacterium guangdongense Li et al. 2016, sp. nov.

Type strain: strain S01 = CCTCC AB 2015423 = GDMCC 1.1022 = KCTC 39608.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3201-3206.

Corynebacterium lowii Bernard et al. 2016, sp. nov.

Type strain: strain R-50085 = CCUG 65815 = LMG 28276.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2803-2812.

Corynebacterium oculi Bernard et al. 2016, sp. nov.

Type strain: strain R-50187 = CCUG 65816 =

LMG 28277. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 2803-2812.

Corynebacterium pollutisoli Negi et al. 2016, sp. nov.

Type strain: strain VDS11 = DSM 100104 = KCTC 39687 = MCC 2722.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3531-3537.

Corynebacterium uropygiale Braun et al. 2016, sp. nov.

Type strain: strain Iso10 = DSM 46817 = LMG 28616.

Reference: Syst. Appl. Microbiol., 2016, 39: 88-92; Validation List no. 170 [Int. J. Syst.Evol. Microbiol., 2016, 66: 2463-2466].

Dactylosporangium solaniradicis Fan et al. 2016, sp. nov.

Type strain: strain NEAU-FJL2 = CGMCC 4.7302 = DSM 100814.

Reference: Antonie van Leeuwenhoek, 2016, 109: 971-977; Validation List no. 171 [Int. J. Syst. Evol. Microbiol., 2016, 66: 3761-3764].

Dactylosporangium sucinum Phongsopitanun et al. 2016, sp. nov.

Type strain: strain RY35-23 = JCM 19831 = PCU 333 = TISTR 2212.

Reference: J. Antibiot., 2015, 68: 379-384; Validation List no. 167 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1-3].

Demequina litorisediminis Park et al. 2016, sp. nov.

Type strain: strain GHD-1 = KCTC 52260 = NBRC 112299.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4197-4203.

Dermabacter jinjuensis Park et al. 2016, sp. nov.

Type strain: strain 32 = DSM 101003 = NCCP 16133.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2573-2577.

Dermabacter vaginalis Chang et al. 2016, sp. nov.

Type strain: strain AD1-86 = DSM 100050 = KCTC 39585.

S8

Page 10: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1881-1886.

Egibacter rhizosphaerae Zhang et al. 2016, sp. nov.

Type strain: strain EGI 80759 = CGMCC 1.14997 = KCTC 39588.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 283-289.

Egicoccus halophilus Zhang et al. 2016, sp. nov.

Type strain: strain EGI 80432 = CGMCC 1.14988 = KCTC 33612.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 530-535.

Enorma massiliensis Mishra et al. 2016, sp. nov.

Type strain: strain phI = CSUR P183 = DSM 25476.

Reference: Stand. Genomic Sci., 2013, 8: 290-305; Validation List no. 168 [Int. J. Syst.Evol. Microbiol., 2016, 66: 1603-1606].

Enorma timonensis Ramasamy et al. 2016, sp. nov.

Type strain: strain GD5 = CSUR P900 = DSM 26111.

Reference: Stand. Genomic Sci., 2014, 9: 970-986; Validation List no. 170 [Int. J. Syst.Evol. Microbiol., 2016, 66: 2463-2466].

Enterorhabdus muris Lagkouvardos et al. 2016, sp. nov.

Type strain: strain WCA-131-CoC-2 = DSM 29508 = KCTC 15543.

Reference: Nat. Microbiol., 2016, 1: 16131; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66: 4299-4305].

Flexivirga endophytica Gao et al. 2016, sp. nov.

Type strain: strain YIM 7505 = CGMCC 1.15085 = JCM 30628 = KCTC 39536.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3388-3392.

Flexivirga lutea Kang et al. 2016, sp. nov. Type strain: strain TBS-100 = JCM 31200 =

KCTC 39625. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 3594-3599.

Frankia casuarinae Nouioui et al. 2016, sp. nov.

Type strain: strain CcI3 = CECT 9043 = DSM 45818.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5201-5210.

Frankia elaeagni Nouioui et al. 2016, sp. nov. Type strain: strain BMG5.12 = CECT 9031 =

DSM 46783. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 5201-5210.

Friedmanniella aerolata Kim et al. 2016, sp. nov.

Type strain: strain 7515T-26 = DSM 27139 = KACC 17306.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1970-1975.

Friedmanniella endophytica Tuo et al. 2016, sp. nov.

Type strain: strain 4Q3S-3 = CGMCC 4.7307 = DSM 100723.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3057-3062.

Frigoribacterium salinisoli Kong et al. 2016, sp. nov.

Type strain: strain LAM9155 = ACCC 19902 = JCM 30848.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5252-5259.

Geodermatophilus pulveris Hezbri et al. 2016, sp. nov.

Type strain: strain BMG 825 = CECT 9003 = DSM 46839.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3828-3834.

Glycomyces lacisalsi Guan et al. 2016, sp. nov. Type strain: strain XHU 5089 = CCTCC AA

2015034 = JCM 31432 = KCTC 39688. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 5366-5370.

Gordonia didemni de Menezes et al. 2016, sp. nov.

Type strain: strain B204 = CBMAI 1069 = DSM 46679.

Reference: Antonie van Leeuwenhoek, 2016, 109: 297-303; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66:

S9

Page 11: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

1913-1915].

Gordonia hongkongensis Tsang et al. 2016, sp. nov.

Type strain: strain HKU50 = CCOS 955 = CIP 111027 = JCM 31934 = NBRC 111234 = NCCP 16210.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3942-3950.

Hamadaea flava Chu et al. 2016, sp. nov. Type strain: strain YIM C0533 = CGMCC

4.7289 = CPCC 204160 = DSM 100517 = KCTC 39591.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1818-1822.

Herbihabitans rhizosphaerae Zhang et al. 2016, sp. nov.

Type strain: strain CPCC 204279 = DSM 101727 = NBRC 111774.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4156-4161.

Hoyosella rhizosphaerae Li et al. 2016, sp. nov.

Type strain: strain J12GA03 = CGMCC 1.15478 = DSM 101985.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4716-4722.

Huakuichenia soli Zhang et al. 2016, sp. nov. Type strain: strain LIP-1 = CCTCC AB

2015422 = KCTC 39698. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 5399-5405.

Humibacter soli Park et al. 2016, sp. nov. Type strain: strain R1-20 = JCM 31015 =

KCTC 39614. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 2509-2514.

Isoptericola cucumis Kämpfer et al. 2016, sp. nov.

Type strain: strain AP-3 = CCM 86538 = DSM 101603 = JCM 31758 = LMG 29223.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2784-2788.

Jatrophihabitans huperziae Gong et al. 2016, sp. nov.

Type strain: strain CPCC 204076 = I13A-01604 = DSM 46866 = NBRC 110718.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3972-3977.

Kibdelosporangium banguiense Pascual et al. 2016, sp. nov.

Type strain: strain F-240,109 = DSM 46670 = LMG 28181.

Reference: Antonie van Leeuwenhoek, 2016, 109: 685-695; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: 2463-2466].

Kineococcus mangrovi Duangmal et al. 2016, sp. nov.

Type strain: strain L2-1-L1 = BCC 75409 = NBRC 110933.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1230-1235.

Kocuria arsenatis Román-Ponce et al. 2016, sp. nov.

Type strain: strain CM1E1 = CCBAU 101092 = HAMBI 3625 = LMG 28671.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1027-1033.

Kocuria pelophila Hamada et al. 2016, sp. nov. Type strain: strain RS-2-3 = InaCC A704 =

NBRC 110990. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 3276-3280.

Kocuria subflava Jiang et al. 2016, sp. nov. Type strain: strain YIM 13062 = CGMCC

4.7252 = JCM 31771 = KCTC 39547. Reference: Antonie van Leeuwenhoek, 2015,

108: 1349-1355; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66:2463-2466].

Kribbella pittospori Kaewkla et al. 2016, sp. nov.

Type strain: strain PIP 158 = DSM 23717 = NRRL B-24813.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2284-2290.

Lawsonella clevelandensis Bell et al. 2016, sp. nov.

Type strain: strain X1036 = CCUG 66657 = DSM 45743.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2929-2935.

S10

Page 12: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Lentzea guizhouensis Cao et al. 2016, sp. nov. Type strain: strain DHS C013 = CGMCC

4.7203 = DSM 102208 = KCTC 29677. Reference: Antonie van Leeuwenhoek, 2015,

108: 1365-1372; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66:1603-1606].

Leucobacter holotrichiae Zhu et al. 2016, sp. nov.

Type strain: strain T14 = DSM 28968 = JCM 30245.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1857-1861.

Leucobacter populi Fang et al. 2016, sp. nov. Type strain: strain 06C10-3-11 = CFCC 12199

= KCTC 39685. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 2254-2258.

Lipingzhangella halophila Zhang et al. 2016, sp. nov.

Type strain: strain EGI 80537 = CGMCC 4.7224 = DSM 102030.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4071-4076.

Mariniluteicoccus endophyticus Liu et al. 2016, sp. nov.

Type strain: strain YIM 2617 = KCTC 29482 = DSM 28728 = JCM 30097.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1306-1310.

Marmoricola ginsengisoli Lee et al. 2016, sp. nov.

Type strain: strain Gsoil 097 = DSM 22772 = KACC 14267.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1996-2001.

Marmoricola pocheonensis Lee et al. 2016, sp. nov.

Type strain: strain Gsoil 818 = DSM 22773 = KACC 14275.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1996-2001.

Microbacterium aureliae Kaur et al. 2016, sp. nov.

Type strain: strain JF-6 = JCM 30060 = KCTC 39828 = MTCC 11843.

Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 4665-4670.

Microbacterium diaminobutyricum Fidalgo et al. 2016, sp. nov.

Type strain: strain RZ63 = CECT 8355 = DSM 27101.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4492-4500.

Microbacterium faecale Chen et al. 2016, sp. nov.

Type strain: strain YIM 101168 = CGMCC 1.15152 = DSM 27232 = KCTC 39554.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4445-4450.

Microbacterium gilvum Chen et al. 2016, sp. nov.

Type strain: strain YIM 100951 = CCTCC AB 2012971 = DSM 26235 = JCM 18537.

Reference: Antonie van Leeuwenhoek, 2016, 109: 1177-1183; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66:4299-4305].

Microbacterium sorbitolivorans Meng et al. 2016, sp. nov.

Type strain: strain SZDIS-1-1 = CGMCC 1.15228 = DSM 103422.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5556-5561.

Microbispora camponoti Han et al. 2016, sp. nov.

Type strain: strain 2C-HV3 = CGMCC 4.7281 = DSM 100527 = JCM 31773.

Reference: Antonie van Leeuwenhoek, 2016, 109: 215-223; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1913-1915].

Microlunatus endophyticus Tuo et al. 2016, sp. nov.

Type strain: strain S3Af-1 = CGMCC 4.7306 = DSM 100019 = JCM 31774.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 481-486.

Microlunatus nigridraconis Zhang et al. 2016, sp. nov.

Type strain: strain CPCC 203993 = DSM 29529 = KCTC 29689 = NBRC 110715.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3614-3618.

S11

Page 13: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Micromonospora mangrovi Xie et al. 2016, sp. nov.

Type strain: strain 2803GPT1-18 = CCTCC AA 2012012 = DSM 45761.

Reference: Antonie van Leeuwenhoek, 2016, 109: 483-498; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: 2463-2466].

Micromonospora noduli Carro et al. 2016, sp. nov.

Type strain: strain GUI43 = CECT 9020 = DSM 101694.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3509-3514.

Micromonospora ovatispora Li and Hong 2016, sp. nov.

Type strain: strain 2701SIM06 = CCTCC AA 2012009 = DSM 45759.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 889-893.

Micromonospora profundi Veyisoglu et al. 2016, sp. nov.

Type strain: strain DS3010 = DSM 45981 = KCTC 29243.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4735-4743.

Micromonospora sediminis Phongsopitanun et al. 2016, sp. nov.

Type strain: strain CH3-3 = JCM 18523 = PCU 350 = TISTR 2396.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3235-3240.

Micromonospora soli Thawai et al. 2016, sp. nov.

Type strain: strain SL3-70 = BCC 67268 = NBRC 110009.

Reference: Antonie van Leeuwenhoek, 2016, 109: 449-456; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: 2463-2466].

Micromonospora ureilytica Carro et al. 2016, sp. nov.

Type strain: strain GUI23 = CECT 9022 = DSM 101692.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3509-3514.

Micromonospora vinacea Carro et al. 2016, sp. nov.

Type strain: strain GUI63 = CECT 9019 = DSM 101695.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3509-3514.

Micromonospora vulcania Jia et al. 2016, sp. nov.

Type strain: strain NEAU-JM2 = CGMCC 4.7144 = DSM 46711 = JCM 31777.

Reference: Antonie van Leeuwenhoek, 2015, 108: 1383-1390; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66:1603-1606].

Monashia flava Azman et al. 2016, sp. nov. Type strain: strain MUSC 78 = DSM 29621 =

MCCC 1K00454 = NBRC 110749. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 554-561.

Mumia xiangluensis Zhou et al. 2016, sp. nov. Type strain: strain NEAU-KD1 = CGMCC

4.7305 = DSM 101040. Reference: Antonie van Leeuwenhoek, 2016,

109: 827-832; Validation List no. 171 [Int. J. Syst. Evol. Microbiol., 2016, 66: 3761-3764].

Mycobacterium alsense Tortoli et al. 2016, sp. nov.

Type strain: strain TB 1906 = CCUG 56586 = DSM 45230.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 450-456.

Mycobacterium arcueilense Konjek et al. 2016, sp. nov.

Type strain: strain 269 = ParisRGMnew_3 = CIP 110654 = DSM 46715.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3694-3702.

Mycobacterium helvum Tran and Dahl 2016, sp. nov.

Type strain: strain DL739 = JCM 30396 = NCCB 100520.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4480-4485.

Mycobacterium lutetiense Konjek et al. 2016, sp. nov.

Type strain: strain 071 = ParisRGMnew_1 =

S12

Page 14: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

CIP 110656 = DSM 46713. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 3694-3702.

Mycobacterium montmartrense Konjek et al. 2016, sp. nov.

Type strain: strain 196 = ParisRGMnew_2 = CIP 110655 = DSM 46714.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3694-3702.

Mycobacterium oryzae Ramaprasad et al. 2016, sp. nov.

Type strain: strain JC290 = KCTC 39560 = LMG 28809.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4530-4536.

Mycobacterium paraintracellulare Lee et al. 2016, sp. nov.

Type strain: strain MOTT64 = KCTC 29084 = JCM 30622.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3132-3141.

Mycobacterium paraterrae Lee et al. 2016, sp. nov.

Type strain: strain 05-2522 = DSM 45127 = KCTC 19556.

Reference: Microbiol. Immunol. 2010, 54: 46-53; Validation List no. 172 [Int. J. Syst.Evol. Microbiol., 2016, 66: 4299-4305].

Mycobacterium sarraceniae Tran and Dahl 2016, sp. nov.

Type strain: strain DL734 = JCM 30395 = NCCB 100519.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4480-4485.

Nakamurella endophytica Tuo et al. 2016, sp. nov.

Type strain: strain 2Q3S-4-2 = CGMCC 4.7308 = DSM 100722.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1577-1582.

Nakamurella silvestris França et al. 2016, sp. nov.

Type strain: strain S20-107 = DSM 102309 = LMG 29427.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5460-5464.

Nesterenkonia aurantiaca Finore et al. 2016, sp. nov.

Type strain: strain CK5 = DSM 27373 = JCM 19723.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1554-1560.

Nesterenkonia massiliensis Edouard et al. 2016, sp. nov.

Type strain: strain NP1 = CSUR P244 = DSM 26221.

Reference: Stand. Genomic Sci., 2014, 9: 866-882; Validation List no. 170 [Int. J. Syst.Evol. Microbiol., 2016, 66: 2463-2466].

Nocardia camponoti Liu et al. 2016, sp. nov. Type strain: strain 1H-HV4 = CGMCC 4.7278

= DSM 100526. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 1900-1905.

Nocardia jiangsuensis Bai et al. 2016, sp. nov. Type strain: strain KLBMP S0027 = CGMCC

4.7330 = DSM 101725 = KCTC 39691. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 4633-4638.

Nocardia rayongensis Tanasupawat et al. 2016, sp. nov.

Type strain: strain RY45-3 = JCM 19832 = PCU 334 = TISTR 2213.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1950-1955.

Nocardia shinanonensis Matsumoto et al. 2016, sp. nov.

Type strain: strain IFM 11456 = NBRC 109590 = TBRC 5149.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3324-3328.

Nocardia zapadnayensis Ozdemir-Kocak et al. 2016, sp. nov.

Type strain: strain FMN18 = DSM 45872 = KCTC 29234.

Reference: Antonie van Leeuwenhoek, 2016, 109: 95-103; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1913-1915].

Nocardioides albidus Singh et al. 2016, sp. nov.

Type strain: strain THG-S11.7 = CCTCC AB 2015297 = JCM 31749 = KCTC 39607.

S13

Page 15: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 371-378.

Nocardioides baekrokdamisoli Lee et al. 2016, sp. nov.

Type strain: strain B2-12 = DSM 100725 = KCTC 39748 = NRRL B-65313.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4231-4235.

Nocardioides flavus Wang et al. 2016, sp. nov. Type strain: strain Y4 = CGMCC 1.12791 =

JCM 19770 = LMG 28100 = MCCC 1A09944.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5275-5280.

Nocardioides ginkgobilobae Xu et al. 2016, sp. nov.

Type strain: strain SYP-A7303 = DSM 100492 = JCM 30556 = KCTC 39594.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2013-2018.

Nocardioides intraradicalis Huang et al. 2016, sp. nov.

Type strain: strain YIM DR1091 = CGMCC 4.7251 = JCM 30632.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3841-3847.

Nocardioides massiliensis Dubourg et al. 2016, sp. nov.

Type strain: strain GD13 = CSUR P894 = DSM 28216.

Reference: New Microbes New Infect., 2016, 10: 47-57; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66: 4299-4305].

Nocardioides pakistanensis Amin et al. 2016, sp. nov.

Type strain: strain NCCP-1340 = DSM 29942 = JCM 30630.

Reference: Antonie van Leeuwenhoek, 2016, 109: 1101-1109; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66:4299-4305].

Nocardioides rotundus Wang et al. 2016, sp. nov.

Type strain: strain GY0594 = MCCC 1A10561 = KCTC 39638.

Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 1932-1936.

Nocardioides zeicaulis Kämpfer et al. 2016, sp. nov.

Type strain: strain JM-601 = CCM 8654 = CIP 110980 = DSM 101604.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1869-1874.

Nocardiopsis akesuensis Gao et al. 2016, sp. nov.

Type strain: strain TRM 46250 = CCTCC AA 2015027 = KCTC 39725.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5005-5009.

Nocardiopsis ansamitocini Zhang et al. 2016, sp. nov.

Type strain: strain EGI 80425 = CGMCC 9969 = DSM 103990 = KCTC 39605.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 230-235.

Nocardiopsis mwathae Akhwale et al. 2016, sp. nov.

Type strain: strain No.156 = CECT 8552 = DSM 46659.

Reference: Antonie van Leeuwenhoek, 2016, 109: 421-430; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: 2463-2466].

Nocardiopsis rhizosphaerae Zhang et al. 2016, sp. nov.

Type strain: strain EGI 80674 = CGMCC 4.7228 = DSM 101528 = KCTC 39673.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5129-5133.

Nocardiopsis sediminis Muangham et al. 2016, sp. nov. Type strain: strain 1SS5-02 = BCC 75410 = NBRC 110934. Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3835-3840.

Nonomuraea gerenzanensis Dalmastri et al. 2016, sp. nov.

Type strain: strain ATCC 39727 = DSM 100948.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 912-921.

Nonomuraea indica Quadri et al. 2016, sp.

S14

Page 16: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

nov. Type strain: strain DRQ-2 = CCTCC AA

209050 = DSM 103467 = JCM 31750 = NCIM 5480.

Reference: J. Antibiot., 2015, 68: 491-495; Validation List no. 167 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1-3].

Nonomuraea purpurea Suksaard et al. 2016, sp. nov.

Type strain: strain 1SM4-01 = BCC 60397 = NBRC 109647.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4987-4992.

Nonomuraea thermotolerans Wu and Liu 2016, sp. nov.

Type strain: strain 3-33-9B = ATCC BAA-2629 = CGMCC 4.7161.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 894-900.

Nonomuraea zeae Shen et al. 2016, sp. nov. Type strain: strain NEAU-ND5 = CGMCC

4.7280 = DSM 100528. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 2259-2264.

Ornithinicoccus halotolerans Zhang et al. 2016, sp. nov.

Type strain: strain EGI 80423 = CGMCC 1.14989 = JCM 31779 = KCTC 39700.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1894-1899.

Parviterribacter kavangonensis Foesel et al. 2016, sp. nov.

Type strain: strain D16/0/H6 = DSM 25205 = LMG 26950.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 652-665.

Parviterribacter multiflagellatus Foesel et al. 2016, sp. nov.

Type strain: strain A22/0/F9_1 = DSM 25204 = LMG 26949.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 652-665.

Patulibacter brassicae Jin et al. 2016, sp. nov. Type strain: strain SD = CICC 24108 = KCTC

39817. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 5056-5060.

Phycicoccus endophyticus Liu et al. 2016, sp. nov.

Type strain: strain IP6SC6 = CGMCC 4.7300 = DSM 100020 = JCM 31784.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1105-1111.

Phycicoccus ginsengisoli Kang et al. 2016, sp. nov.

Type strain: strain DCY87 = JCM 31016 = KCTC 39635.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5320-5327.

Phytoactinopolyspora alkaliphila Zhang et al. 2016, sp. nov.

Type strain: strain EGI 80629 = CGMCC 4.7225 = DSM 101529 = KCTC 39701.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2058-2063.

Phytohabitans kaempferiae Niemhom et al. 2016, sp. nov.

Type strain: strain KK1-3 = BCC 66360 = NBRC 110005.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2917-2922.

Phytomonospora cypria Sahin et al. 2016, sp. nov.

Type strain: strain KT1403 = DSM 46767 = KCTC 29479.

Reference: Antonie van Leeuwenhoek, 2015, 108: 1425-1432; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66:1913-1915].

Planomonospora corallina Suriyachadkun et al. 2016, sp. nov.

Type strain: strain A-T 11038 = BCC 67829 = NBRC 110609 = TBRC 4489.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3224-3229.

Plantactinospora soyae Guo et al. 2016, sp. nov.

Type strain: strain NEAU-gxj3 = CGMCC 4.7221 = DSM 46832.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2578-2584.

Populibacterium corticicola Li et al. 2016, sp. nov.

S15

Page 17: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Type strain: strain 2D-4 = CFCC 11886 = KCTC 33576.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3743-3748.

Promicromonospora alba Guo et al. 2016, sp. nov.

Type strain: strain 1C-HV12 = CGMCC 4.7283 = DSM 100490 = JCM 31782.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1340-1345.

Propionibacterium namnetense Aubin et al. 2016, sp. nov.

Type strain: strain NTS 31307302 = CCUG 66358 = DSM 29427.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3393-3399.

Pseudoclavibacter endophyticus Li et al. 2016, sp. nov.

Type strain: strain EGI 60007 = CGMCC 1.15081 = DSM 29943 = KCTC 39112 = JCM 30633.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1287-1292.

Raineyella antarctica Pikuta et al. 2016, sp. nov.

Type strain: strain LZ-22 = ATCC TSD-18 = DSM 100494 = JCM 30886.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5529-5536.

Rhodococcus humicola Nguyen and Kim 2016, sp. nov.

Type strain: strain UC33 = KACC 18500 = NBRC 111581.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2362-2369.

Rhodococcus pedocola Nguyen and Kim 2016, sp. nov.

Type strain: strain UC12 = KACC 18499 = NBRC 111580.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2362-2369.

Rothia aerolata Kämpfer et al. 2016, sp. nov. Type strain: strain 140917-MRSA-09 = CCM

8669 = DSM 102816 = JCM 31759 = LMG 29446.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3102-3107.

Saccharomonospora xiaoerkulensis Li et al. 2016, sp. nov.

Type strain: strain TRM 41495 = CCTCC AA 2015038 = KCTC 39727.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5145-5149.

Saccharopolyspora subtropica Wu et al. 2016, sp. nov.

Type strain: strain T3 = CGMCC 4.7206 = DSM 46801.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1990-1995.

Saccharothrix isguenensis Bouznada et al. 2016, sp. nov.

Type strain: strain MB27 = CECT 9045 = DSM 46885.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4785-4790.

Saccharothrix lopnurensis Li et al. 2016, sp. nov.

Type strain: strain YIM LPA2h = CGMCC 4.7246 = DSM 46881 = JCM 30635 = KCTC 39545.

Reference: Antonie van Leeuwenhoek, 2015, 108: 975-981; Validation List no. 167 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1-3].

Saccharothrix stipae Lin et al. 2016, sp. nov. Type strain: strain D34 = ACCC 19714 = JCM

30560. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 1017-1021.

Salilacibacter albus Li et al. 2016, sp. nov. Type strain: strain J11Y309 = CGMCC 4.7242

= DSM 46875 = LMG 29297. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 2558-2565.

Sediminivirga luteola Zhang et al. 2016, sp. nov.

Type strain: strain F23 = CGMCC 1.12785 = JCM 19771 = MCCC 1A09945.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1494-1498.

Sinomonas halotolerans Guo et al. 2016, sp. nov.

Type strain: strain CFH S0499 = CCTCC AB2014300 = JCM 31751 = KCTC 39116.

S16

Page 18: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Reference: Antonie van Leeuwenhoek, 2015, 108: 887-895; Validation List no. 167 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1-3].

Sphaerimonospora cavernae Mingma et al. 2016, sp. nov.

Type strain: strain N74 = BCC 77604 = NBRC 111481.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1735-1744.

Stackebrandtia cavernae Zhang et al. 2016, sp. nov.

Type strain: strain YIM ART06 = CCTCC AA 2015021 = DSM 100594 = KCTC 39599.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1206-1211.

Streptomonospora tuzyakensis Tatar et al. 2016, sp. nov.

Type strain: strain BN506 = DSM 45930 = KCTC 29210.

Reference: Antonie van Leeuwenhoek, 2016, 109: 35-41; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1913-1915].

Streptomyces actinomycinicus Tanasupawat et al. 2016, sp. nov.

Type strain: strain RCU-197 = JCM 30864 = PCU 342 = TISTR 2208.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 290-295.

Streptomyces adustus Lee and Wang 2016, sp. nov.

Type strain: strain WH-9 = KACC 17197 = NBRC 109810.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3573-3578.

Streptomyces alfalfae She et al. 2016, sp. nov. Type strain: strain XY25 = KCTC 39571 =

CCTCC AA2015019 = DSM 103384. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 44-49.

Streptomyces andamanensis Sripreechasak et al. 2016, sp. nov.

Type strain: strain KC-112 = KCTC 29502 = NBRC 110085 = PCU 347 = TISTR 2401.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2030-2034.

Streptomyces arcticus Zhang et al. 2016, sp. nov.

Type strain: strain ZLN234 = CCTCC AA 2015005 = DSM 100713.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1482-1487.

Streptomyces bambusae Nguyen and Kim 2016, sp. nov.

Type strain: strain T110 = KACC 18225 = KEMB 9005-214 = NBRC 110903.

Reference: Curr. Microbiol., 2015, 71: 658-668; Validation List no. 168 [Int. J. Syst.Evol. Microbiol., 2016, 66: 1603-1606].

Streptomyces bryophytorum Li et al. 2016, sp. nov.

Type strain: strain NEAU-HZ10 = CGMCC 4.7151 = DSM 42138.

Reference: Antonie van Leeuwenhoek, 2016, 109: 1209-1215; Validation List no. 172 [Int. J. Syst. Evol. Microbiol., 2016, 66:4299-4305].

Streptomyces camponoticapitis Li et al. 2016, sp. nov.

Type strain: strain 2H-TWYE14 = CGMCC 4.7275 = DSM 100523.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3855-3859.

Streptomyces canalis Xie et al. 2016, sp. nov. Type strain: strain TRM 46794-61 = CCTCC

AA 2015006 = DSM 104041 = KCTC 39568. Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3219-3223.

Streptomyces chitinivorans Ray et al. 2016, sp. nov.

Type strain: strain RC1832 = JCM 30611 = KCTC 29696.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3241-3248.

Streptomyces daqingensis Pan et al. 2016, sp. nov.

Type strain: strain NEAU-ZJC8 = CGMCC 4.7178 = JCM 30057.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1358-1363.

Streptomyces formicae Bai et al. 2016, sp. nov. Type strain: strain 1H-GS9 = CGMCC 4.7277

= DSM 100524.

S17

Page 19: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Reference: Antonie van Leeuwenhoek, 2016, 109: 253-261; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1913-1915].

Streptomyces fractus Rohland and Meyers 2016, sp. nov.

Type strain: strain MV32 = DSM 42163 = NRRL B-59159.

Reference: Antonie van Leeuwenhoek, 2015, 107: 1127-1134; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66:1603-1606].

Streptomyces hyaluromycini Harunari et al. 2016, sp. nov.

Type strain: strain MB-PO13 = DSM 100105 = NBRC 110483.

Reference: J. Antibiot., 2016, 69: 159-163; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: 2463-2466].

Streptomyces indoligenes Luo et al. 2016, sp. nov.

Type strain: strain TRM 43006 = CCTCC AA 2015010 = DSM 104005 = KCTC 39611.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2424-2428.

Streptomyces kronopolitis Liu et al. 2016, sp. nov.

Type strain: strain NEAU-ML8 = CGMCC 4.7323 = DSM 101986.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5352-5357.

Streptomyces lacrimifluminis Zhang et al. 2016, sp. nov.

Type strain: strain Z1027 = CGMCC 4.7272 = JCM 31054.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4981-4986.

Streptomyces litoralis Ma et al. 2016, sp. nov. Type strain: strain TRM 46515 = CCTCC AA

2015040 = KCTC 39729. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 5051-5055.

Streptomyces lonarensis Sharma et al. 2016, sp. nov.

Type strain: strain NCL 716 = DSM 42084 = KCTC 39684 = MTCC 11708.

Reference: Antonie van Leeuwenhoek, 2016,

109: 225-235; Validation List no. 169 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1913-1915].

Streptomyces oryzae Mingma et al. 2016, sp. nov.

Type strain: strain S16-07 = BCC 60400 = NBRC 109761.

Reference: J. Antibiot., 2015, 68: 368-372; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1603-1606].

Streptomyces ovatisporus Veyisoglu et al. 2016, sp. nov.

Type strain: strain S4702 = CGMCC 4.7357 = DSM 42103 = KCTC 29206.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4856-4863.

Streptomyces palmae Sujarit et al. 2016, sp. nov.

Type strain: strain CMU-AB204 = JCM 31289 = TBRC 1999.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3983-3988.

Streptomyces phyllanthi Klykleung et al. 2016, sp. nov.

Type strain: strain PA1-07 = JCM 30865 = KCTC 39785 = TISTR 2346.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3923-3928.

Streptomyces pini Madhaiyan et al. 2016, sp. nov.

Type strain: strain PL19 = ICMP 17783 = NRRL B-24728.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4204-4210.

Streptomyces polygonati Guo et al. 2016, sp. nov.

Type strain: strain NEAU-G9 = CGMCC 4.7237 = DSM 100521.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1488-1493.

Streptomyces rhizosphaerihabitans Lee and Wang 2016, sp. nov.

Type strain: Stain JR-35 = KACC 17181 = NBRC 109807.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3573-3578.

S18

Page 20: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Streptomyces siamensis Sripreechasak et al. 2016, sp. nov.

Type strain: strain KC-038 = JCM 18409 = NBRC 108799 = PCU 328 = TISTR 2107.

Reference: J. Antibiot., 2013, 66: 633-640; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1603-1606].

Streptomyces similanensis Sripreechasak et al. 2016, sp. nov.

Type strain: strain KC-106 = JCM 18410 = NBRC 108798 = PCU 329 = TISTR 2104.

Reference: J. Antibiot., 2013, 66: 633-640; Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1603-1606].

Streptomyces tremellae Wen et al. 2016, sp. nov.

Type strain: strain Js-1 = CCTCC M 2011365 = JCM 30846.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5028-5033.

Streptomyces verrucosisporus Phongsopitanun et al. 2016, sp. nov.

Type strain: strain CPB1-1 = CM 18519 = PCU 343 = TISTR 2344.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3607-3613.

Streptomyces yangpuensis Tang et al. 2016, sp. nov.

Type strain: strain fd2-tb = CGMCC 4.7256 = DSM 100336.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1224-1229.

Streptomyes spongiicola Huang et al. 2016, sp. nov.

Type strain: strain HNM0071 = CCTCCAA2015018 = DSM 103383 = KCTC 39604.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 738-743.

Streptosporangium algeriense Boubetra et al. 2016, sp. nov.

Type strain: strain 169 = CCUG 62974 = DSM 45455 = MTCC 11561.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1034-1038.

Streptosporangium becharense Chaabane Chaouch et al. 2016, sp. nov.

Type strain: strain SG1 = CECT 8961 = DSM 46887.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2484-2490.

Streptosporangium corydalis Fang et al. 2016, sp. nov.

Type strain: strain NEAU-Y6 = CGMCC 4.7150 = DSM 46722.

Reference: Antonie van Leeuwenhoek, 2016, 109: 439-448; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: 2463-2466].

Streptosporangium fenghuangense Fang et al. 2016, sp. nov.

Type strain: strain NEAU-hd-3 = CGMCC 4.7212 = JCM 30058.

Reference: Antonie van Leeuwenhoek, 2016, 109: 439-448; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: 2463-2466].

Streptosporangium jiaoheense Zhao et al. 2016, sp. nov.

Type strain: strain NEAU-Jh1-4 = CGMCC 4.7213 = JCM 30348.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2370-2376.

Streptosporangium lutulentum Fang et al. 2016, sp. nov.

Type strain: strain NEAU-FHSN1 = CGMCC 4.7141 = DSM 46740.

Reference: Antonie van Leeuwenhoek, 2016, 109: 439-448; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: 2463-2466].

Streptosporangium saharense Chaouch et al. 2016, sp. nov.

Type strain: strain SG20 = CECT 8840 = DSM 46743.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1371-1376.

Streptosporangium shengliense Zhang et al. 2016, sp. nov.

Type strain: strain NEAU-GH7 = CGMCC 4.7105 = DSM 45881.

Reference: Antonie van Leeuwenhoek, 2014, 105: 237-243; Antonie van Leeuwenhoek, 2014, 105: 265 (erratum); Validation List no. 168 [Int. J. Syst. Evol. Microbiol., 2016, 66:

S19

Page 21: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

1603-1606].

Streptosporangium taraxaci Zhao et al. 2016, sp. nov.

Type strain: strain NEAU-Wp2-0 = CGMCC 4.7217 = JCM 30349.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2370-2376.

Tenggerimyces flavus Li et al. 2016, sp. nov. Type strain: strain S6R2A4-9 = CGMCC

4.7241 = DSM 28944. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 1499-1505.

Tersicoccus solisilvae Sultanpuram et al. 2016, sp. nov.

Type strain: strain 36A = CGMCC 1.15480 = KCTC 33776.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5061-5065.

Tessaracoccus flavus Kumari et al. 2016, sp. nov.

Type strain: strain RP1 = DSM 100159 = KCTC 39686 = MCC 2769.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1862-1868.

Tessaracoccus rhinocerotis Li et al. 2016, sp. nov.

Type strain: strain YIM 101269 = CCTCC AB 2013217 = DSM 27579.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 922-927.

Timonella senegalensis Mishra et al. 2016, sp. nov.

Type strain: strain JC301 = CSUR P167 = DSM 25696.

Reference: Stand. Genomic Sci. 8: 318-335; Validation List no. 170 [Int. J. Syst. Evol. Microbiol., 2016, 66: 2463-2466].

Tsukamurella hongkongensis Teng et al. 2016, sp. nov.

Type strain: strain HKU52 = DSM 100208 = JCM 30715.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 391-397.

Tsukamurella serpentis Tang et al. 2016, sp. nov.

Type strain: strain HKU54 = DSM 100915 = JCM 31017.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 3329-3336.

Tsukamurella sinensis Teng et al. 2016, sp. nov.

Type strain: strain HKU51 = DSM 100207 = JCM 30714.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 391-397.

Umezawaea endophytica Chu et al. 2016, sp. nov.

Type strain: strain YIM 2047X = CPCC 204132 = DSM 103496 = JCM 30637 = KCTC 39538.

Reference: Antonie van Leeuwenhoek, 2015, 108: 667-672; Validation List no. 167 [Int. J. Syst. Evol. Microbiol., 2016, 66: 1-3].

Verrucosispora sonchi Ma et al. 2016, sp. nov. Type strain: strain NEAU-QY3 = CGMCC

4.7312 = DSM 101530. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 5430-5436.

Williamsia herbipolensis Kämpfer et al. 2016, sp. nov.

Type strain: strain ARP1 = DSM 46872 = LMG 28679.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4609-4613.

Yimella radicis Yang et al. 2016, sp. nov. Type strain: strain py1292 = DSM 100721 =

KCTC 39612 = LMG 29070. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 4191-4196.

NEW SUBSPECIES

Clavibacter michiganensis subsp. capsici Oh et al. 2016, subsp. nov.

Type strain: strain PF008 = KACC 18448 = LMG 29047.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4065-4070.

Propionibacterium acnes subsp. acnes

S20

Page 22: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

(Gilchrist 1900) McDowell et al. 2016, subsp. nov.

Type strain: strain ATCC 6919 = BCRC 10723 = CCUG 1794 = CECT 5684 = CGMCC 1.5003 = CIP 53.117 = DSM 1897 = JCM 6425 = KCTC 3314 = LMG 16711 = NBRC 107605 = NCTC 737 = NRRL B-4224 = VKM Ac-1450.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5358-5365.

Note: Propionibacterium acnes subsp. acnes

(Gilchrist 1900) Dekio et al. 2015 (Int. J. Syst. Evol. Microbiol., 2015, 65: 4776-4787) has priority.

Propionibacterium acnes subsp. defendens McDowell et al. 2016, subsp. nov.

Type strain: strain ATCC 11828 = BCRC 16146 = CCUG 6369 = JCM 6473 = KCTC 3320.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5358-5365.

NEW COMBINATION

Acidipropionibacterium acidipropionici (Orla-Jensen 1909) Scholz and Kilian 2016, comb. nov.

Basonym: Propionibacterium acidipropionici Orla-Jensen 1909.

Type strain: strain ATCC 25562 = CGMCC 1.2230 = CIP 103025 = DSM 4900 = NBRC 11858.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

Acidipropionibacterium damnosum (Lucena-Padrós et al. 2014) Scholz and Kilian 2016, comb. nov.

Basonym: Propionibacterium damnosum Lucena-Padrós et al. 2014.

Type strain: strain IGBL13 = CECT 8062 = DSM 25450.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

Acidipropionibacterium jensenii (van Niel 1928) Scholz and Kilian 2016, comb. nov.

Basonym: Propionibacterium jensenii van Niel 1928.

Type strain: strain ATCC 4868 = CCUG 48883 = CGMCC 1.2229 = CIP 103028 = DSM 20535 = NCIMB 8071.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

Acidipropionibacterium microaerophilum (Koussémon et al. 2001) Scholz and Kilian 2016, comb. nov.

Basonym: Propionibacterium microaerophilum Koussémon et al. 2001.

Type strain: strain M5 = CIP 109962 = CNCM I-2360 = DSM 13435.

Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 4422-4432.

Acidipropionibacterium olivae (Lucena-Padrós et al. 2014) Scholz and Kilian 2016, comb. nov.

Basonym: Propionibacterium olivae Lucena-Padrós et al. 2014.

Type strain: strain IGBL1 = CECT 8061 = DSM 25436.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

Acidipropionibacterium thoenii (van Niel 1928) Scholz and Kilian 2016, comb. nov.

Basonym: Propionibacterium thoenii van Niel 1928.

Type strain: strain ATCC 4874 = CCM 1865 = CCUG 28149 = CGMCC 1.2228 = CIP 103029 = DSM 20276 = JCM 6437 = LMG 16731 = NCIMB 5966.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

Cutibacterium acnes (Gilchrist 1900) Scholz and Kilian 2016, comb. nov.

Basonym: Propionibacterium acnes (Gilchrist 1900) Douglas and Gunter 1946.

Type strain: strain ATCC 6919 = BCRC 10723 = CCUG 1794 = CECT 5684 = CGMCC 1.5003 = CIP 53.117 = DSM 1897 = JCM 6425 = KCTC 3314 = LMG 16711 = NBRC 107605 = NCTC 737 = NRRL B-4224 = VKM Ac-1450.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

Cutibacterium avidum (Eggerth 1935) Scholz and Kilian 2016, comb. nov.

Basonym: Propionibacterium avidum (Eggerth

S21

Page 23: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

1935) Moore and Holdeman 1969. Type strain: strain ATCC 25577 = CCUG

36754 = CIP 103261 = DSM 4901 = NBRC 15671 = NCIMB 702585 = NCTC 11864.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

Cutibacterium granulosum (Prévot 1938) Scholz and Kilian 2016, comb. nov.

Basonym: Propionibacterium granulosum (Prévot 1938) Moore and Holdeman 1970.

Type strain: strain ATCC 25564 = BCRC 17368 = CCUG 32987 = CIP 103262 = DSM 20700 = JCM 6498 = LMG 16726 = NBRC 15672 = NCIMB 702586 = NCTC 11865.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

Glutamicibacter ardleyensis (Chen et al. 2005) Busse 2016, comb. nov.

Basonym: Arthrobacter ardleyensis Chen et al. 2005.

Type strain: strain An25 = CGMCC 1.3685 = DSM 17432 = JCM 12921.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Glutamicibacter arilaitensis (Irlinger et al. 2005) Busse 2016, comb. nov.

Basonym: Arthrobacter arilaitensis Irlinger et al. 2005.

Type strain: strain Re117 = CIP 108037 = DSM 16368 = JCM 13566.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Glutamicibacter bergerei (Irlinger et al. 2005) Busse 2016, comb. nov.

Basonym: Arthrobacter bergerei Irlinger et al. 2005.

Type strain: strain Ca106 = CCUG 52342 = CIP 108036 = DSM 16367 = JCM 13567.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Glutamicibacter creatinolyticus (Hou et al. 1998) Busse 2016, comb. nov.

Basonym: Arthrobacter creatinolyticus Hou et al. 1998.

Type strain: strain CCM 4673 = CIP 105749 = DSM 15881 = JCM 10102 = KCTC 9903 = LMG 22054.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Glutamicibacter mysorens (Nand and Rao 1972) Busse 2016, comb. nov.

Basonym: Arthrobacter mysorens Nand and Rao 1972.

Type strain: strain ATCC 33408 = CIP 102716 = DSM 12798 = JCM 11565 = KCTC 3381 = LMG 16219 = NBRC 103060 = NCIMB 10583.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Glutamicibacter nicotianae (Giovannozzi-Sermanni 1959) Busse 2016, comb. nov.

Basonym: Arthrobacter nicotianae Giovannozzi-Sermanni 1959.

Type strain: strain ATCC 15236 = BCRC 11219 = CCM 1648 = CCUG 23842 = CGMCC 1.1895 = CIP 82.107 = DSM 20123 = JCM 1333 = KCTC 3382 = LMG 16305 = NBRC 14234 = NCIMB 9458.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Glutamicibacter protophormiae (Lysenko 1959) Busse 2016, comb. nov.

Basonym: Brevibacterium protophormiae Lysenko 1959; Arthrobacter protophormiae (Lysenko 1959) Stackebrandt et al. 1984.

Type strain: strain ATCC 19271 = BCRC 12118 = CCM 4749 = CGMCC 1.1921 = CIP 106987 = DSM 20168 = JCM 1973 = KCTC 3385 = LMG 16324 = NBRC 12128 = NCIMB 12765 = VKM Ac-2104.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Glutamicibacter soli (Roh et al. 2008) Busse 2016, comb. nov.

Basonym: Arthrobacter soli Roh et al. 2008. Type strain: strain SYB2 = KCTC 19291 =

DSM 19449. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 9-37.

Glutamicibacter uratoxydans (Stackebrandt et al. 1984) Busse 2016, comb. nov.

Basonym: Arthrobacter uratoxydans Stackebrandt et al. 1984.

Type strain: strain ATCC 21749 = BCRC 14857 = CGMCC 1.2821 = CIP 102367 = DSM 20647 = JCM 11944 = KCTC 3482 = LMG 16220 = NBRC 15515 = NCIMB 702282 =

S22

Page 24: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

VKM Ac-1979. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 9-37.

Hoyosella subflava (Wang et al. 2010) Hamada et al. 2016, comb. nov.

Basonym: Amycolicicoccus subflavus Wang et al. 2010.

Type strain: strain DQS3-9A1 = CGMCC 4.3532 = DSM 45089 = JCM 17490 = NBRC 109087.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4711-4715.

Mycobacterium abscessus subsp. massiliense (Adékambi et al. 2006) Tortoli et al. 2016, comb. nov.

Basonym: Mycobacterium massiliense Adékambi et al. 2006.

Type strain: strain CCUG 48898 = CIP 108297 = DSM 45103 = KCTC 19086 = JCM 15300.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4471-4479.

Paenarthrobacter aurescens (Phillips 1953) Busse 2016, comb. nov.

Basonym: Arthrobacter aurescens Phillips 1953.

Type strain: strain ATCC 13344 = BCRC 12110 = CCM 1649 = CCUG 23839 = CCUG 23885 = CGMCC 1.1892 = CIP 102364 = DSM 20116 = JCM 1330 = KCTC 3378 = LMG 3815 = NBRC 12136 = NCIMB 8912 = NRRL B-2879 = VKM Ac-1105.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Paenarthrobacter histidinolovorans (Adams 1954) Busse 2016, comb. nov.

Basonym: Arthrobacter histidinolovorans Adams 1954.

Type strain: strain ATCC 11442 = BCRC 12111 = CCUG 23888 = CGMCC 1.1924 = CIP 106988 = DSM 20115 = JCM 2520 = KCTC 3380 = LMG 3822 = NBRC 15510 = NCIMB 9541 = VKM Ac-1978.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Paenarthrobacter ilicis (Collins et al. 1982) Busse 2016, comb. nov.

Basonym: Arthrobacter ilicis Collins et al. 1982.

Type strain: strain ATCC 14264 = CCM 4967 = CCUG 23889 = CECT 4207 = CIP 107004 = DSM 20138 = JCM 12267 = LMG 3659 = LMG 7254 = NBRC 15514 = NCPPB 1228 = VKM Ac-1987.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Paenarthrobacter nicotinovorans (Kodama et al. 1992) Busse 2016, comb. nov.

Basonym: Arthrobacter nicotinovorans Kodama et al. 1992.

Type strain: strain SAM 1563 = ATCC 49919 = CGMCC 1.1933 = CIP 106990 = DSM 420 = JCM 3874 = KCTC 9902 = LMG 16253 = NBRC 15511 = VKM Ac-1988.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Paenarthrobacter nitroguajacolicus (Kotoučková et al. 2004) Busse 2016, comb. nov.

Basonym: Arthrobacter nitroguajacolicus Kotoučková et al. 2004.

Type strain: strain G2-1 = CCM 4924 = CIP 108435 = DSM 15232 = JCM 14115.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Paenarthrobacter ureafaciens (Krebs and Eggleston 1939) Busse 2016, comb. nov.

Basonym: Arthrobacter ureafaciens (Krebs and Eggleston 1939) Clark 1955.

Type strain: strain ATCC 7562 = BCRC 10368 = CCM 1644 = CGMCC 1.1897 = CIP 67.3 = DSM 20126 = JCM 1337 = KCTC 3387 = LMG 3812 = NBRC 12140 = NCIMB 7811 = NCTC 7811 = VKM Ac-1121.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Paeniglutamicibacter antarcticus (Pindi et al. 2010) Busse 2016, comb. nov.

Basonym: Arthrobacter antarcticus Pindi et al. 2010.

Type strain: strain SPC26 = DSM 29880 = JCM 18952 = LMG 24542 = NCCB 100228.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Paeniglutamicibacter cryotolerans (Ganzert et al. 2011) Busse 2016, comb. nov.

Basonym: Arthrobacter cryotolerans Ganzert et al. 2011.

S23

Page 25: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Type strain: strain LI3 = DSM 22826 = JCM 17806 = NCCB 100315.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Paeniglutamicibacter gangotriensis (Gupta et al. 2004) Busse 2016, comb. nov.

Basonym: Arthrobacter gangotriensis Gupta et al. 2004.

Type strain: strain Lz1y = CIP 108630 = DSM 15796 = JCM 12166.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Paeniglutamicibacter kerguelensis (Gupta et al. 2004) Busse 2016, comb. nov.

Basonym: Arthrobacter kerguelensis Gupta et al. 2004.

Type strain: strain KGN15 = CIP 108629 = DSM 15797 = JCM 12165.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Paeniglutamicibacter psychrophenolicus (Margesin et al. 2004) Busse 2016, comb. nov.

Basonym: Arthrobacter psychrophenolicus Margesin et al. 2004.

Type strain: strain AG31 = CIP 108593 = DSM 15454 = JCM 13568 = LMG 21914.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Paeniglutamicibacter sulfureus (Stackebrandt et al. 1984) Busse 2016, comb. nov.

Basonym: Arthrobacter sulfureus Stackebrandt et al. 1984.

Type strain: strain ATCC 19098 = CGMCC 1.1898 = CIP 106986 = DSM 20167 = JCM 1338 = KCTC 3196 = LMG 16694 = NBRC 12678 = NCIMB 10355 = NRRL B-14730.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Parafrigoribacterium mesophilum (Dastager et al. 2008) Kong et al. 2016, comb. nov.

Basonym: Frigoribacterium mesophilum Dastager et al. 2008.

Type strain: strain MSL-08 = DSM 19442 = JCM 19547 = KCTC 19311.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5252-5259.

Pseudarthrobacter chlorophenolicus

(Westerberg et al. 2000) Busse 2016, comb. nov.

Basonym: Arthrobacter chlorophenolicus Westerberg et al. 2000.

Type strain: strain A6 = ATCC 700700 = CIP 107037 = DSM 12829 = JCM 12360 = KCTC 9906 = NCIMB 13794.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Pseudarthrobacter defluvii (Kim et al. 2008) Busse 2016, comb. nov.

Basonym: Arthrobacter defluvii Kim et al. 2008.

Type strain: strain 4C1-a = DSM 18782 = KCTC 19209.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Pseudarthrobacter equi (Yassin et al. 2011) Busse 2016, comb. nov.

Basonym: Arthrobacter equi Yassin et al. 2011. Type strain: strain IMMIB L-1606 = CCUG

59597 = DSM 23395 = JCM 19107. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 9-37.

Pseudarthrobacter niigatensis (Ding et al. 2009) Busse 2016, comb. nov.

Basonym: Arthrobacter niigatensis Ding et al. 2009.

Type strain: strain LC4 = CCTCC AB 206012 = DSM 28855 = JCM 30147.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Pseudarthrobacter oxydans (Sguros 1954) Busse 2016, comb. nov.

Basonym: Arthrobacter oxydans Sguros 1954. Type strain: strain ATCC 14358 = BCRC 11573

= CCUG 17757 = CECT 386 = CGMCC 1.1925 = CIP 107005 = DSM 20119 = JCM 2521 = KCTC 3383 = LMG 3816 = NBRC 12138 = NCIMB 9333 = VKM Ac-1114.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Pseudarthrobacter phenanthrenivorans (Kallimanis et al. 2009) Busse 2016, comb. nov.

Basonym: Arthrobacter phenanthrenivorans Kallimanis et al. 2009.

Type strain: strain Sphe3 = DSM 18606 = JCM 16027 = LMG 23796.

S24

Page 26: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Pseudarthrobacter polychromogenes (Schippers-Lammertse et al. 1963) Busse 2016, comb. nov.

Basonym: Arthrobacter polychromogenes Schippers-Lammertse et al. 1963.

Type strain: strain ATCC 15216 = BCRC 12114 = CCUG 23891 = CGMCC 1.1927 = CIP 106989 = DSM 20136 = JCM 2523 = KCTC 3384 = LMG 16679 = LMG 3821 = NBRC 15512 = NCIMB 10267 = VKM Ac-1955.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Pseudarthrobacter scleromae (Huang et al. 2005) Busse 2016, comb. nov.

Basonym: Arthrobacter scleromae Huang et al. 2005.

Type strain: strain YH-2001 = CGMCC 1.3601 = CIP 108992 = DSM 17756 = JCM 12642.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Pseudarthrobacter siccitolerans (SantaCruz-Calvo et al. 2013) Busse 2016, comb. nov.

Basonym: Arthrobacter siccitolerans SantaCruz-Calvo et al. 2013.

Type strain: strain 4J27 = CECT 8257 = DSM 28024 = LMG 27359.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Pseudarthrobacter sulfonivorans (Borodina et al. 2002) Busse 2016, comb. nov.

Basonym: Arthrobacter sulfonivorans Borodina et al. 2002.

Type strain: strain ALL = ATCC BAA-112 = DSM 14002 = JCM 13520.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Pseudoglutamicibacter albus (Wauters et al. 2000) Busse 2016, comb. nov.

Basonym: Arthrobacter albus Wauters et al. 2000.

Type strain: strain CF43 = ATCC BAA-273 = CCM 4905 = CCUG 43812 = CIP 106791 =

DSM 13068 = JCM 11943 = KCTC 9908. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 9-37.

Pseudoglutamicibacter cumminsii (Funke et al. 1997) Busse 2016, comb. nov.

Basonym: Arthrobacter cumminsii Funke et al. 1998.

Type strain: strain DMMZ 445 = ATCC 700218 = CCM 4574 = CCUG 36788 = CIP 104907 = DSM 10493 = JCM 11675 = KCTC 9904.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Pseudopropionibacterium propionicum (Buchanan and Pine 1962) Scholz and Kilian 2016, comb. nov.

Basonym: Propionibacterium propionicum (Buchanan and Pine 1962) Charfreitag et al. 1988; Arachnia propionica (Buchanan and Pine 1962) Pine and Georg 1969.

Type strain: strain ATCC 14157 = CCUG 4939 = CIP 101941 = DSM 43307 = JCM 5830 = LMG 19873 = NBRC 14587 = NCTC 12967 = VKM Ac-1449.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

Sphaerimonospora mesophila (Nonomura and Ohara 1971) Mingma et al. 2016, comb. nov.

Basonym: Microbispora mesophila (Nonomura and Ohara 1971) Zhang et al. 1998; Thermomonospora mesophila Nonomura and Ohara 1971.

Type strain: strain T-1 = ATCC 27303 = BCRC 12464 = CIP 105593 = DSM 43048 = JCM 3151 = KCTC 9241 = NBRC 14179 = NCIMB 11544 = NRRL B-16986 = VKM Ac-1953.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1735-1744.

Sphaerimonospora thailandensis (Duangmal et al. 2014) Mingma et al. 2016, comb. nov.

Basonym: Microbispora thailandensis Duangmal et al. 2014.

Type strain: strain NN276 = BCC 41490 = NBRC 107569 = NRRL B-24806.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1735-1744.

EMENDATION OF CLASS

S25

Page 27: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Rubrobacteria Suzuki 2013 emend. Foesel et al. 2016

Type order: Rubrobacterales Rainey et al. 1997.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 652-665.

A member of the phylum Actinobacteria.

Thermoleophilia Suzuki and Whitman 2013 emend. Foesel et al. 2016

Type order: Thermoleophilales Reddy and Garcia-Pichel 2009.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 652-665.

A member of the phylum Actinobacteria.

EMENDATION OF ORDER

Gaiellales Albuquerque et al. 2012 emend. Foesel et al. 2016

Type genus: Gaiella Albuquerque et al. 2012. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 652-665. A member of the class Rubrobacteria.

Rubrobacterales Rainey et al. 1997 emend. Reddy and Garcia-Pichel 2009 emend. Zhi et al. 2009 emend. Foesel et al. 2016

Type genus: Rubrobacter Suzuki et al. 1989. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 652-665. A member of the class Rubrobacteria.

Solirubrobacterales Reddy and Garcia-Pichel 2009 emend. Foesel et al. 2016

Type genus: Solirubrobacter Singleton et al. 2003.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 652-665.

A member of the class Thermoleophilia.

Thermoleophilales Reddy and Garcia-Pichel 2009 emend. Foesel et al. 2016

Type genus: Thermoleophilum Zarilla and Perry 1986.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 652-665.

A member of the class Thermoleophilia.

EMENDATION OF FAMILY

Conexibacteraceae Stackebrandt 2005 emend. Zhi et al. 2009 emend. Foesel et al. 2016

Type genus: Conexibacter Monciardini et al. 2003.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 652-665.

A member of the order Solirubrobacterales.

Gaiellaceae Albuquerque et al. 2012 emend. Foesel et al. 2016

Type genus: Gaiella Albuquerque et al. 2012. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 652-665. A member of the order Gaiellales.

Patulibacteraceae Takahashi et al. 2006 emend. Zhi et al. 2009 emend. Foesel et al. 2016

Type genus: Patulibacter Takahashi et al. 2006. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 652-665. A member of the order Solirubrobacterales.

Rubrobacteraceae Rainey et al. 1997 emend.

Stackebrandt 2004 emend. Zhi et al. 2009 emend. Foesel et al. 2016

Type genus: Rubrobacter Suzuki et al. 1989. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 652-665. A member of the order Rubrobacterales.

Solirubrobacteraceae Stackebrandt 2005 emend. Zhi et al. 2009 emend. Foesel et al. 2016

Type genus: Solirubrobacter Singleton et al. 2003.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 652-665.

A member of the order Solirubrobacterales.

Thermoleophilaceae Stackebrandt 2005 emend. Zhi et al. 2009 emend. Foesel et al. 2016

Type genus: Thermoleophilum Zarilla and Perry 1986.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 652-665.

A member of the order Thermoleophilales.

S26

Page 28: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

EMENDATION OF GENUS

Actinomadura Lechevalier and Lechevalier 1968 emend. Zhao et al. 2016

Type species: Actinomadura madurae (Vincent 1894) Lechevalier and Lechevalier 1968.

Reference: Antonie van Leeuwenhoek, 2015, 108: 1331-1339; List of changes in taxonomic opinion no. 24 [Int. J. Syst. Evol. Microbiol., 2016, 66: 2469-2470].

A member of the family Thermomonosporaceae.

Arthrobacter Conn and Dimmick 1947 emend. Koch et al. 1995 emend. Busse 2016

Type species: Arthrobacter globiformis (Conn 1928) Conn and Dimmick 1947.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

A member of the family Micrococcaceae.

Blastococcus Ahrens and Moll 1970 emend. Urzì et al. 2004 emend. Lee 2006 emend. Hezbri et al. 2016

Type species: Blastococcus aggregatus Ahrens and Moll 1970.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4864-4872.

A member of the family Geodermatophilaceae.

Demequina Yi et al. 2007 emend. Ue et al. 2011 emend. Park et al. 2016

Type species: Demequina aestuarii Yi et al. 2007.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4197-4203.

A member of the family Demequinaceae.

Flexivirga Anzai et al. 2012 emend. Kang et al. 2016

Type species: Flexivirga alba Anzai et al. 2012. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 3594-3599. A member of the family Dermacoccaceae.

Hamadaea Ara et al. 2008 emend. Chu et al. 2016

Type species: Hamadaea tsunoensis (Asano et al. 1989) Ara et al. 2008.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1818-1822.

A member of the family Micromonosporaceae.

Hoyosella Jurado et al. 2009 emend. Hamada et al. 2016

Type species: Hoyosella altamirensis Jurado et al. 2009.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4711-4715.

A member of the family Mycobacteriaceae.

Hoyosella Jurado et al. 2009 emend. Li et al. 2016

Type species: Hoyosella altamirensis Jurado et al. 2009.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4716-4722.

A member of the family Mycobacteriaceae.

Microbacterium Orla-Jensen 1919 emend. Takeuchi and Hatano 1998 emend. Krishnamurthi et al. 2012 emend. Alves et al. 2015 emend. Fidalgo et al. 2016

Type species: Microbacterium lacticum Orla-Jensen 1919.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4492-4500.

A member of the family Microbacteriaceae.

Ornithinicoccus Groth et al. 1999 emend. Zhang et al. 2016

Type species: Ornithinicoccus hortensis Groth et al. 1999.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 1894-1899.

A member of the family Intrasporangiaceae.

Propionibacterium Orla-Jensen 1909 emend. Charfreitag et al. 1988. emend. Scholz and Kilian 2016

Type species: Propionibacterium freudenreichii van Niel 1928.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4422-4432.

A member of the family Propionibacteriaceae.

Salininema Nikou et al. 2015 emend. Li et al. 2016

Type species: Salininema proteolyticum Nikou et al. 2015.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2558-2565.

S27

Page 29: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

A member of the family Glycomycetaceae.

Tenggerimyces Sun et al. 2015 emend. Li et al. 2016

Type species: Tenggerimyces mesophilus Sun et

al. 2015. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 1499-1505. A member of the family Nocardioidaceae.

EMENDATION OF SPECIES

Arthrobacter roseus Reddy et al. 2002 emend. Busse 2016

Type strain: strain CMS 90r = CIP 107726 = DSM 14508 = JCM 11881 = MTCC 3712 = NCIMB 14039.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 9-37.

Blastococcus aggregatus Ahrens and Moll 1970 emend. Urzì et al. 2004 emend. Hezbri et al. 2016

Type strain: strain ATCC 25902 = DSM 4725 = JCM 12602 = NBRC 107747 = NCIMB 1849.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4864-4872.

Blastococcus endophyticus Zhu et al. 2013 emend. Hezbri et al. 2016

Type strain: strain YIM 68236 = CCTCC AA 209045 = DSM 45413 = JCM 17896 = KCTC 19998.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4864-4872.

Blastococcus jejuensis Lee 2006 emend. Hezbri et al. 2016

Type strain: strain KST3-10 = DSM 19597 = JCM 15614 = KCCM 42251 = NRRL B-24440.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4864-4872.

Blastococcus saxobsidens Urzì et al. 2004 emend. Hezbri et al. 2016

Type strain: strain BC444 = DSM 44509 = JCM 13239 = NRRL B-24246.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4864-4872.

Corynebacterium mastitidis Fernandez-Garayzabal et al. 1997 emend. Bernard et al. 2016

Type strain: strain S-8 = CCUG 38654 = CECT 4843 = CIP 105509 = DSM 44356 = LMG 19040 = NBRC 16160.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2803-2812.

Frankia alni (Woronin 1866) Von Tubeuf 1895 emend. Nouioui et al. 2016

Type strain: strain ACN14a = CECT 9034 = DSM 45986.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5201-5210.

Hoyosella altamirensis Jurado et al. 2009 emend. Hamada et al. 2016

Type strain: strain OFN S31 = CIP 109864 = DSM 45258 = JCM 18112 = NBRC 109631.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4711-4715.

Mycobacterium abscessus (Moore and Frerichs 1953) Kusunoki and Ezaki 1992 emend. Leao et al. 2011 emend. Tortoli et al. 2016

Type strain: strain ATCC 19977 = CCUG 20993 = CCUG 27982 = CIP 104536 = DSM 44196 = JCM 13569 = NCTC 13031 = TMC 1543.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4471-4479.

Salininema proteolyticum Nikou et al. 2015 emend. Li et al. 2016

Type strain: strain Miq-4 = IBRC-M 10908 = LMG 28391.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2558-2565.

EMENDATION OF SUBSPECIES

S28

Page 30: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Mycobacterium abscessus subsp. abscessus (Moore and Frerichs 1953) Leao et al. 2011 emend. Tortoli et al. 2016

Type strain: strain ATCC 19977 = CCUG 20993 = CCUG 27982 = CIP 104536 = DSM 44196 = JCM 13569 = NCTC 13031 = TMC 1543.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4471-4479.

Mycobacterium abscessus subsp. bolletii (Adékambi et al. 2006) Leao et al. 2011 emend. Tortoli et al. 2016

Type strain: strain BD = CCUG 50184 = CIP 108541 = DSM 45149 = JCM 15297.

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4471-4479.

SYNONYM

Brevibacterium massiliense Roux and Raoult 2009 pro synon. Brevibacterium ravenspurgense Mages et al. 2009

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 4440-4444.

Oceanitalea nanhaiensis Fu et al. 2012 pro synon. Georgenia satyanarayanai Srinivas et al. 2012

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 5519-5522.

Paraglycomyces xinjiangensis Luo et al. 2015 pro synon. Salininema proteolyticum Nikou et al. 2015

Reference: Int. J. Syst. Evol. Microbiol., 2016, 66: 2558-2565.

NEOTYPE STRAIN

Actinobaculum massiliense Greub and Raoult 2006

Neotype strain: strain FC3 = CSUR P1982 =

DSM 100580. Reference: Int. J. Syst. Evol. Microbiol., 2016,

66: 2702-2703.

S29

Page 31: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Hamada award 2016

Exploiting the potential of biosynthesis of natural products by actinomycetes: bacterial interaction-driven natural product discovery and biosynthetic machinery

Shumpei Asamizu

Graduate School of Agricultural and Life Sciences, The University of Tokyo

1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan

Actinomycetes are a major source of natural bioactive products with important chemical and biological properties. Recent genome analysis has revealed the previously unrecognized huge potential of biosynthesis of natural products by actinomycetes. It is now generally accepted that more microbial chemical and biosynthetic diversities remain undiscovered. Increased knowledge of microbial production of bioactive compounds would increase the repertoire of useful agents. Moreover, bioengineering involving genes and enzymes would generate new useful compounds. However, this potential remains challenging. Methods have been developed to activate biosynthetic gene clusters that are normally silent or poorly expressed under laboratory conditions. Section I highlights research aimed at the discovery of novel compounds by using co-culture, especially the interaction between intergeneric actinobacteria. Additionally, we discuss the importance of understanding the natural enzymatic assembly of complex small molecules in order to exploit new resources for biocatalysis, genes, and chemistry, which can lead to the creation of new antibiotics. This knowledge could enable the rational design of metabolic pathways to produce “artificial” natural products in engineered bacteria. Section II details current research on the biosynthetic mechanisms of C7N aminocyclitol natural products having a unique chemical structure and important biological activities.

Section I Bacterial interaction-driven natural product discovery

Actinomycetes are an important source of natural products with significant chemical and biological properties. Bioactive natural products isolated from actinomycetes have been used widely and include antibacterial, antifungal, and antiparasitic agents for treatment of infectious diseases; insecticides and herbicides for agricultural purposes; and anticancer and immunosuppressive drugs for clinical chemotherapy (Demain and Sanchez, 2009). However, the discovery rate of new antibiotics has been declining in recent decades, despite these successes and the more contemporary emerging/rising threats

to human health that include global expansion of multi-drug resistance bacteria (Martens and Demain, 2017) and neglected tropical diseases in developing countries (Buscaglia et al., 2015). New strategies and technologies are becoming indispensable for the effective discovery and/or generation of novel bioactive compounds (Katz and Baltz, 2016).

After the publication of genome sequences for the model actinomycetes Streptomyces coelicolor A3(2) (Bentley et al., 2002) and the avermectin-producer S. avermitilis MA-4680 (Ikeda et al., 2003) in the early 2000s, we quickly recognized that actinomycetes possess more potential to produce secondary metabolites than previously thought (Nett et al., 2009). The database maintained by the National Center for Biotechnology Information (NCBI) now contains several hundred actinomycete genome sequences (including draft genome sequences). Scrutiny of these sequences using bioinformatics tools like antiSMASH and PRISM has readily revealed putative secondary metabolite gene clusters (Blin et al., 2017; Skinnider et al., 2017). Twenty to forty putative secondary metabolite biosynthetic gene clusters have been identified in the genomes of individual strains. Most remain uncharacterized. The accepted view is that their remains vast chemical and biosynthetic diversities in the microbial world.

Understanding and exploiting the uncharacterized microbial chemistry would drive the discovery of new chemical agents to control bioactivity. Furthermore, the use of bioengineering tools including those directed at genes and enzymes would allow the creation of new useful compounds (Katz and Baltz, 2016). However, these goals remain challenged by the difficulty activating the relevant gene clusters and identifying their products. Methodologies to activate biosynthetic gene clusters that are silent or poorly expressed in laboratory conditions have been developed (Ochi, 2017). This review will focus on research that aims to achieve effective discovery of novel compounds by using a co-culture strategy, especially using an interaction of intergeneric actinobacteria involving Streptomyces species and mycolic acid-containing bacteria.

Bacterial co-culture as a means of discovering natural products

S30

Page 32: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Isolated actinomycetes are traditionally cultured alone as a mono-culture to search for new natural products. However, the natural environment where actinobacteria live involve complex interactions at the intra- and inter-species, -genetic, and -kingdom levels (van der Meij et al., 2017). Yet, little is known about how the specialized metabolites encoded by cryptic gene clusters is used for the actinomycete life cycle in the complex, real-world environment (Traxler and Kolter, 2015). Discovery of useful bioactive natural products based on mono-culture has been successful, although this strategy is laborious. With the increasing evidence that bacterial interaction can drive the activation of previously quiescent secondary metabolite gene clusters (Bertrand et al., 2014), development and understanding of the induction of specialized metabolites during co-culture has become recognized as a research priority.

Interaction between Streptomyces lividans and mycolic acid-containing bacteria

Using the pigment production by Streptomyces lividans TK23 as indication of specialized metabolites activation, Onaka et al. (2011) discovered Tsukamurella pulmonis TP-B0596 from a laboratory bacterial culture collection. T. pulmonis phylogenetically belongs to the order Actinomycetales, the same order as Streptomyces species. T. pulmonis phylogenetically diverges to the suborder Corynebacterineae. Most species in this suborder possess specific long chain fatty acids, mycolic acids, on the cell outer membrane (Jackson, 2014).

Examination of the interaction between S. lividans and T. pulmonis in a dual culture agar plate experiment revealed a response by S. lividans featuring production of the red pigmented compound undecylprodigiosin upon contact with T. pulmonis colonies (Asamizu et al., 2015; Onaka et al., 2011). (Fig. 1) The production of the red pigment required the physical contact between the strains, since when the strains were physically separated during liquid culture using a dialysis membrane, the red pigment was not produced (Onaka et al., 2011). The mycolic acids on the T. pulmonis outer membrane

was implicated, given the similar effects on production of pigments in liquid culture by Corynebacterineae, which also possess mycolic acids (Onaka et al., 2011). To test the idea that contact with the mycolic acid-containing cell membrane was necessary to induce production of undecylprodigiosin, dead cells of T. pulmonis, which were intact and still contained mycolic acids, were prepared by formaldehyde fixation and gamma-irradiation (Asamizu et al., 2015). The dead cells did not induce the pigment formation by S. lividans, suggesting the involvement of another factor (Asamizu et al., 2015). (Fig. 1) When co-cultures of S. lividans and T. pulmonis or Rhodococcus opacus B4 were closely observed by scanning electron microscopy, co-aggregation was evident (Asamizu et al., 2015). (Fig. 1) The presence of an intimate relationship between microbes to alter the specialized pattern of metabolites has been described in the co-culture of the fungi Aspergillus nidulans or A. fumigatus with Streptomyces rapamycinicus (Netzker et al., 2015). Although contact-mediated interaction in microbes has not been well characterized yet (Stubbendieck and Straight, 2016; Westhoff et al., 2017), close distance recognition may well be beneficial in ecosystems such as soil.

Physicochemical-based discovery of specialized metabolites from combined-culture

Comparison of high performance liquid chromatography (HPLC) patterns between culture extracts from mono-cultures and combined-cultures has shown that T. pulmonis can markedly change its production of secondary metabolites. Examination of 112 strains of actinomycetes isolated from soil samples collected in the Hokuriku district of Japan revealed new metabolite peaks in 41 strains, with increased production of metabolites in 61 strains. In total, 99 strains showed variation in the HPLC traces (Onaka et al., 2011). The same study documented that some of the soil-isolated actinomycetes showed the induced antibiotic activity in combined-culture. Among them, the antibiotic alchivemycin A was isolated from a co-culture of Streptomyces sp. S522 (NBRC109436) and T. pulmonis (Igarashi et al., 2010; Onaka et al., 2011). (Fig. 2)

Figure 1. Interaction between S. lividans TK23 and T. pulmonis TP-B0596 or R. opacus B4. Growing colony of T. pulmonis or R. opacus induced production of red pigments by S. lividans upon contact (A). R. opacus was observed to adhere on the mycelium of S. lividans during the liquid culture (B).

S31

Page 33: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

More recently, HPLC trace comparison-based screening of the new compounds from combined-cultures enabled the identification of new metabolites using Streptomyces species isolated from soil or obtained from culture collection that were co-cultured with T. pulmonis TP-B0596. These include indolocarbazole arcyriaflavin E production by S. cinnamoneus NBRC13823 (Hoshino et al., 2015c), cytotoxic butanolides chojalactone A–C from Streptomyces sp. CJ-5 (Hoshino et al., 2015b), and macrolactams niizalactam A–C from Streptomyces sp. NZ-6 (Hoshino et al., 2015a). (Fig. 2)

Similar co-culturing methods were reported by Bachmann and co-workers, in which comparative metabolomics enabled visualization of differentially expressed metabolites produced by S. coelicolor A3(2) with several known secondary metabolites inducing factors, such as rare earth elements, streptomycin/rifampicin resistance, and co-cultures (Goodwin

et al., 2015). Subtraction of a self-organizing heat map revealed differentially expressed metabolites; using several co-culture challengers, the authors found the mycolic acid-containing bacterial strain, Rhodococcus wratislaviensis, induced Nocardiopsis sp. FU40 ΔapoS strain to produce cytotoxic ciromicin A and B (Derewacz et al., 2015). (Fig. 2)

Traxler et al. (2013) used imaging mass spectrometry to visualize the secreted metabolome of S. coelicolor A3(2) and Amycolatopsis sp. AA4. They found that in consequence of amychelin production by Amycolatopsis sp. AA4, S. coelicolor A3(2) react to produce several new acyl-desferrioxamines, which are different from regular siderophores found to produce by S. coelicolor A3(2). The study highlight competition of bacteria using siderophores for Fe uptake (Traxler et al., 2013). (Fig. 2)

Figure 2. Structure of induced specialized metabolites found in combined-culture, and other co-culture between intergeneric actinobacteria. Undecylprodigiosins and actinorhodins from S. lividans and T. pulmonis, alchivemycin A from Streptomyces sp. S522 and T. pulmonis, 5aTHQs and streptoaminals from Streptomyces sp. HEK616 and T. pulmonis, arcyliaflavin E from S. cinnamoneus NRBC13823 and T. pulmonis, Cyojalactone A-C from Streptomyces sp. CJ-5 and T. pulmonis, Niizalactame A-C from Streptomyces sp. NZ-6 and T. pulmonis, Ciromicin A and B from Nocardiopsis sp. FU40ΔapoS and R. wratislaviensis (study by Derewacz DK, et al. 2015), acyl-desferrioxamines from S. coelicolor A3(2) and Amycolatopsis sp. AA4 (study by Traxler MF, et al. 2013)

S32

Page 34: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Combined-culture with S. lividans harboring exogenous gene cluster

As production of several endogenous secondary metabolites from S. lividans TK23 (RED and ACT) were effectively induced by T. pulmonis, effects for production of exogenous gene cluster coding metabolites were examined (Onaka et al., 2015). Interestingly, when S. lividans mutant strains harboring exogenous gene clusters were cultured with T. pulmonis, production of the exogenous secondary metabolites goadsporin (Onaka et al., 2001), staurosporine (Onaka et al., 2002), and rebeccamycin (Onaka et al., 2003) were significantly increased in mixed cultures compared to mono-culture (Onaka et al., 2015). The method was applied for gene disruptants; significantly improved accumulation of goadsporin C (a glutamylated-Ser4 variant of goadsporin B) was observed (Ozaki et al., 2016). This improved production of shunt intermediates contributed to the elucidation of important biosynthetic steps in the thiopeptide family of ribosomally synthesized peptide natural products (Ozaki et al., 2016).

Bioactivity-guided discovery of natural products from combined-cultures

Sugiyama et al. (2015) searched for the yeast membrane interacting small molecules from combined-culture induced bacterial metabolites. The extracts from combined-cultures of actinomycetes isolated from Hegura Island, Ishikawa, Japan, and T. pulmonis were tested against wild-type fission yeast and ergosterol premature mutants. This bioactivity-guided screening successfully led to the isolation of eight 5-alkyl-1,2,3,4-tetrahydroquinolines (5aTHQs) with diversity in the alkyl side chains (Sugiyama et al., 2015). (Fig. 2) 5aTHQ-7n was shown to be the most potent antifungal agent of the eight congeners. Moreover, 5aTHQ-9i showed selective antifungal activity to the wild-type, but not against ergosterol premature mutants (Sugiyama et al., 2015). The results suggested that 5aTHQs bioactivity may involve targeting of the yeast cell membrane. Sugiyama et al. (2016) also isolated broad-spectrum antibiotic streptoaminals from the combined-culture extracts containing a similar alkyl chain pattern to that of 5aTHQs (Sugiyama et al., 2016). (Fig. 2) Production of streptoaminals was enhanced by combined-culture. The structural similarity between 5aTHQs and streptoaminals implies that both compounds share their biosynthetic routes. Interestingly, 5aTHQs were only detected in the combined-culture of Streptomyces sp. HEK616 and T. pulmonis. However, 5aTHQs did not show antibacterial activities. Further biosynthesis studies may provide insight into the molecular mechanism of the specific production of 5aTHQs by Streptomyces sp. HEK616 during co-culture with T. pulmonis.

Future perspectives We have observed a variety of specialized metabolites

induced during co-culture. However, the link between the induced small molecules and the function within the co-cultured bacteria remains unclear. One bacterium can cause significant changes in the culture (living) environment during the growth process, which can incidentally trigger the production of irrelative compounds. Interestingly, some of the induced compounds have antibiotic activity, which could reflect the

competition for survival between the two bacteria. However, knowledge is limited and more studies are needed to address a number of questions. What are the stimuli? How do bacteria sense the stimuli? How do the stimuli lead to the production of specialized metabolites? Are the interactions observed in laboratory co-culture relevant to real-world ecosystems?

Section II: C7N aminocyclitol natural products

The C7N aminocyclitol family of natural products has clinically important biological activities; therefore, C7N aminocyclitol natural products and their derivatives have been used in agricultural and pharmaceutical fields (Mahmud, 2003). The antifungal agent validamycin A (Iwasa et al., 1970) and α-glucosidase inhibitor acarbose (Schmidt et al., 1977) are prominent examples of C7N aminocyclitols, and these bacterial secondary metabolites are associated with pseudo-oligosaccharides (or simply pseudosugars), which function as sugar hydrolase inhibitors (Gloster and Davies, 2010; Mahmud, 2003). One unique structural feature in this family is their C7N carbasugar scaffold, primarily valienamine moieties. In addition to validamycin A and acarbose, typical compounds that contain valienamine moieties also include the trehalase inhibitor salbostatin (Vertesy et al., 1994), α-amylase inhibitor trestatins (Yokose et al., 1983), and antibiotic pyralomicin (Kawamura et al., 1995) (Fig. 3). Along with the recent discovery of novel cyclitol natural products and an understanding of their origins, biosynthesis, biological activities, and ecological functions, the structurally more diverse family of C7N aminocyclitols, which includes the cytotoxic carbasugar cetoniacytone A (Schlorke et al., 2002), antibiotic epoxyquinomicin (Tsuchida et al., 1996), and kirkamide (Pinto-Carbo et al., 2016; Sieber et al., 2015), has been identified. Mycosporine-like amino acids (e.g., shinorine) are natural sunscreen compounds that have the same precursor and share homologous biosynthetic enzymes in the initial step (Asamizu et al., 2012; Balskus and Walsh, 2010; Mahmud, 2003; Miyamoto et al., 2014; Wu et al., 2007) (Fig. 3). In this review, we discuss the recently investigated biosynthetic steps of C7N aminocyclitol natural products. In particular, we discuss the pseudoglycosyltranferase-catalyzed C-N bond formation process during validamycin A biosynthesis and the catalytic divergence of sugar phosphate cyclases leading to the generation of various C7N cyclitol natural products.

Biosynthesis of the antifungal trehalase inhibitor validamycin A

Validamycin A was originally isolated from Streptomyces hygroscopicus subsp. limoneus by a group from Takeda Pharmaceutical Co. in the early 1970s (Iwasa et al., 1970). The compound inhibits the growth of the fungus Rhizoctonia solani, which causes sheath blight disease in rice (Iwasa et al., 1970) by inhibiting the activity of trehalase (Asano et al., 1987). Therefore, the antifungal agent validamycin A has been used as a crop protectant in East/Southeast Asia. Later, the α-glucosidase inhibitor voglibose (Fig. 3) was synthesized from validamycin A and used to treat type-II insulin-independent diabetes.

S33

Page 35: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

The biosynthetic gene cluster for validamycin A was first cloned from Streptomyces hygroscopicus subsp. jingangensis 5008 (val cluster) (Yu et al., 2005). The first step in the secondary metabolism of validamycin is catalyzed by 2-epi-5-epi-valiolone synthase (EEVS), which converts D-sedoheptulose 7-phosphate (SH7P), a pentose phosphate pathway intermediate, to 2-epi-5-epi-valiolone (EEV; Fig. 4A). The first EEVS (AcbC) was found and characterized in the acarbose biosynthetic pathway from Actinoplanes sp. SE 50/110 by precursor feeding studies (Mahmud et al., 1999) and biochemical studies (Stratmann et al., 1999). Later, ValA was found to be EEVS in the validamycin A biosynthetic pathway (Yu et al., 2005).

Interestingly, the biosynthesis of C7N aminocyclitols was suggested to diverge into several assembly lines, including those for validamycin A, acarbose (Rockser and Wehmeier, 2009), salbostatin (Choi et al., 2008), pyralomicin 1a (Flatt et al., 2013), and cetoniacytone A (Wu et al., 2009), after the formation of EEV. In this review, the validamycin A biosynthetic pathway will be described in detail. A summary of the biosynthetic pathways for other cyclitols can be found in previous reviews (Flatt and Mahmud, 2007; Mahmud, 2009).

The second step in validamycin A biosynthesis, epimerization of EEV to generate 5-epi-valiolone, was found to be catalyzed by cyclitol epimerase ValD in vitro (Xu et al., 2009b) (Fig. 4A). Next, dehydration of 5-epi-valiolone to produce valienone is thought to be catalyzed by ValK, a putative dehydratase (Cui et al., 2016). Then, ATP-dependent phosphorylation of valienone to produce valienone 7-phosphate is catalyzed by cyclitol kinase ValC in vitro (Minagawa et al., 2007). After the formation of valienone 7-phosphate, the pathway was predicted to branch into two pathways to generate two different C7 cyclitol units, GDP-valienol and validamine 7-

phosphate. To produce GDP-valienol, the first ketoreduction of

valienone 7-phosphate yields valienol 7-phosphate through the function of ValN, a putative bifunctional oxidoreductase (Fig. 4A). Next, phosphomutation of valienol 7-phosphate to give valienol 1-phosphate is thought to occur through the activity of ValO, a putative bifunctional phosphomutase/phosphatase. Then, using valienol 1-phosphate and GTP, the nucleotidylation reaction produces GDP-valienol through catalysis by ValB in vitro (Yang et al., 2011).

To produce validamine 7-phosphate, transamination of valienone 7-phosphate yields valienamine 7-phosphate through the activity of ValM, a putative pyridoxal 5′-phosphate (PLP)-dependent aminotransferase (Fig. 4A). Then, reduction of valienamine 7-phosphate to give validamine 7-phosphate occurs through catalysis by ValN (Xu et al., 2009a). The coupling reaction of the two cyclitol units (GDP-valienol and validamine 7-phosphate) will be described in the next section. After formation of validoxylamine A, ValG catalyzes the O-glucosyltransferase reaction to produce the final product validamycin A (Bai et al., 2006; Xu et al., 2008).

Several oxygenated validamycin derivatives have also been isolated from cultures of validamycin A-producing Streptomyces species (Mahmud, 2003). VldW, an α-ketoglutarate and Fe(II) dependent dioxygenase from Streptomyces hygroscopicus var. linoneus (vld cluster) (Singh et al., 2006), was characterized and found to catalyze the production of validamycin B from validamycin A by the regio-/stereo-selective oxygenation of the methylene carbon (Almabruk et al., 2012) (Fig. 4A).

Nonglycosidic C-N bond formation in validamycin A biosynthesis is catalyzed by pseudoglycosyltransferase

Figure 3. Structure of C7N aminocyclitol natural products.

S34

Page 36: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

ValL/VldE shares 29% identity (41% similarity) with trehalose 6-phosphate synthase (OtsA) from Streptomyces coelicolor A3(2). OtsA is a retaining-type glycosyltransferase that synthesizes trehalose 6-phosphate with an α,α-1,1′-glycosidic bond using nucleotide diphosphate (NDP)-glucose and glucose 6-phosphate, and OtsB dephosphorylates trehalose 6-phosphate to give trehalose (Giaever et al., 1988). Yang et al.showed that ValB catalyzes the formation of GDP-valienol from valienol 1-phosphate and GTP (Yang et al., 2011). Hence,researchers hypothesized that validoxylamine A 7′-phosphate(mimic of trehalose 6-phosphate) may be produced by thecoupling of GDP-valienol (mimic of NDP-glucose) andvalidamine 7-phosphate (mimic of glucose 6-phosphate; Fig.4A). However, for the retaining-type glycosyltransferasereaction, such as in OtsA, an internal return (SNi)-like reactionmechanism in which the donor sugar molecule is in theoxocarbenium transition state, may exist during the reaction(Errey et al., 2010; Lee et al., 2011). Since the cyclitolmolecules (valienol moiety) cannot form the “oxocarbenium

transition state”, it remains uncertain whether this prediction is true.

VldB (cyclitol nucleotidyltransferase) (Yang et al., 2011), VldE (trehalose 6-phosphate synthase homolog), and VldH (putative phosphatase) from Streptomyces hygroscopicus subsp. limoneus were expressed in Escherichia coli and purified as recombinant proteins to test the hypothesis (Asamizu et al., 2011). First, VldB was confirmed to be a nucleotidyltransferase that gave GDP-valienol from valienol 1-phosphate and GTP (Asamizu et al., 2011) (Fig 4A). Next, to examine the catalytic activity of VldE, the enzyme was incubated with the possible substrates validamine 7-phosphate and GDP-valienol. High-performance liquid chromatography (HPLC) and mass spectrometry (MS) analyses showed that VldE catalyzed the formation of validoxylamine 7′-phosphate with net retention of an anomeric-like configuration by accepting GDP-valienol and validamine 7-phosphate as substrates (Asamizu et al., 2011) (Fig. 4B). Interestingly, VldE did not accept GDP-glucose and glucose 6-phosphate as substrates to produce trehalose 6-

Figure 4. Proposed biosynthetic pathway of validamycin A from Streptomyces hygroscopicus (A), and proposed reaction mechanism of pseudoglycosyltransferase, VldE (B).

S35

Page 37: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

phosphate. This indicated the narrow substrate tolerance of the dedicated VldE enzyme in validamycin A biosynthesis (Abuelizz and Mahmud, 2015; Asamizu et al., 2011). Upon the addition of VldH, formation of validoxylamine A by consumption of validoxylamine A 7′-phosphate was observed by HPLC and MS analysis (Asamizu et al., 2011). These biochemical investigations could clearly demonstrate the interesting enzymatic conversion steps in validamycin A biosynthesis (Asamizu et al., 2011).

To investigate the reaction mechanism through which VldE catalyzes the coupling of the “nonsugar” donor molecule (GDP-valienol) and the acceptor molecule (validamine 7-phosphate) with the retention of stereochemistry, a series of VldE crystal structures cocrystallizing with different ligands were solved (Cavalier et al., 2012). The overall X-ray crystal structure of VldE showed a typical GT-B fold with two β/α/β Rossmann-like folding domains (Lairson et al., 2008). The products of VldE, i.e., GDP and validoxylamine A 7′-phosphate, were found to bind in the cleft formed by the two domains, indicating the position of the active center. Interestingly, the cocrystallized structure of VldE with GDP and validoxylamine A 7′-phosphate showed a ligand-binding conformation that was

similar to the cocrystallized X-ray structure of glycosyltransferase OtsA from E. coli with UDP and the mechanistic inhibitor validoxylamine 7′-phosphate (Cavalier et al., 2012; Errey et al., 2010; Lee et al., 2011). These structural comparisons indicated that OtsA, the true retaining-type glycosyltransferase OtsA, and the pseudoglycosyltransferase VldE exhibited similar reaction mechanisms. Thus, analogous to the proposed reaction mechanism for the retaining-type glycosyltransferase OtsA (Lee et al., 2011), hydrogen bonding interactions among the donor phosphate group and acceptor nucleophile were proposed to enable front side attack to promote the substitution reaction while retaining its configuration, and the double bond π-electron of the donor nonsugar was predicted to mimic the transition state in the PsGT reaction (Asamizu et al., 2011; Cavalier et al., 2012) (Fig. 4B).

Based on biochemical and structural studies, Abuelizz and Mahmud produced domain-swapped chimeric proteins between VldE and OtsA from Streptomyces coelicolor A3(2) and examined the catalytic activity of the “chimeras” to elucidate their substrate tolerances (Abuelizz and Mahmud, 2015). By swapping the substrates, they showed the potential for

Figure 5. Catalytic divergence in sugar phosphate cyclase family enzymes. SH7P cyclases (EEVS, EVS, and DDGS) involved in biosynthesis of C7N aminocyclitol natural products share homologies with DHQS, aDHQS, and DOIS. These enzymes represent the family of sugar phosphate cyclase involved in primary and secondary metabolism. (Abbreviation: DAHP; 3-Deoxy-D-arabinoheptulosonate 7-phosphate, DHQ; 3-dehydroquinic acid, aminoDAHP; 3,4-dideoxy-4-amino-D-arabinoheptulosonate 7-phosphate, 3,5-AHBA; 3-amino-5-hydroxybenzoic acid, SH7P; D-sedoheptulose 7-phosphate, EEV; 2-epi-5-epi-valiolone, 2EV; 2-epi-valiolone, DDG; desmethyl-4-deoxygadusol, MAA; mycosporine-like amino acid, G6P; glucose 6-phosphate, DOI; 2-deoxy-scyllo-inosose.)

S36

Page 38: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

biocatalysis of engineered proteins and demonstrated the importance of the amine group as a better nucleophile to promote the coupling reaction (Abuelizz and Mahmud, 2015).

Further characterization of other “PsGT” candidates found in acarbose, salbostatin, pyralomicins, and many other compounds in genome databases will expand our knowledge of the unique PsGT-catalyzed reaction. Since true glycosyltransferase enzymes are ubiquitous in both primary and secondary metabolism (Elshahawi et al., 2015), protein engineering of a glycosyltransferase to be a PsGT catalyst would allow the creation of useful tools to generate novel pseudoglycosylated conjugants.

A divergent pathway for production of C7N cyclitols from sedoheptulose 7-phosphate

During genome mining to search for structurally novel aminocyclitol natural products, PsGT-containing gene clusters with 3-dehydroquinate synthase (DHQS) homolog genes were unexpectedly found in the genomes of several bacteria (Asamizu et al., 2012). Previously characterized gene clusters for C7N aminocyclitol natural products were found to all contain EEVS genes (Bai et al., 2006; Choi et al., 2008; Flatt and Mahmud, 2007; Stratmann et al., 1999; Wu et al., 2007; Wu et al., 2009; Yu et al., 2005). Although EEVS genes share homology with 3-dehydroquinate synthase (Stratmann et al., 1999; Wu et al., 2007), the identified putative proteins (e.g., Amir_2000 from the actinomycete Actinosynnema mirum and Staur_3140 from the myxobacteria Stigmatella aurantiaca DW4/3-1) showed more similarity in their fingerprint amino acid residues to DHQS than to EEVS (Kean et al., 2014; Wu et al., 2007) and existed in different phylogenetic clades from known EEVSs (Asamizu et al., 2012; Osborn et al., 2015).

To characterize the catalytic function of the genes, Amir_2000 and Staur_3140 were examined for enzymatic activities using purified recombinant proteins expressed in E. coli. First, as annotated in the NCBI database, the proteins were tested for their DHQS activity by incubating them with 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP), a substrate of DHQS in the shikimate pathway; however, no consumption of DAHP was observed (Asamizu et al., 2012). Then, SH7P was tested as a substrate and incubated with the proteins. Consumption of SH7P was observed; however, surprisingly, the converted products showed different chemical properties from EEV, the most likely product to be generated (Asamizu et al., 2012). Comparative analysis with synthetic C7 cyclitols which exhibited different stereochemistries, by gas chromatography (GC)/MS and in situ nuclear magnetic resonance (NMR) revealed that the true product was 2-epi-valiolone (2EV), a diastereomer of EEV (Asamizu et al., 2012) (Fig. 5). Interestingly, in situ NMR gave a two sets of 1H NMR signals for the products, which were confirmed by a quantum mechanics/molecular mechanics (QM/MM) study to be derived from two stable conformations of 2EV (Asamizu et al., 2012). To further elucidate the metabolite(s) of the gene cluster that encodes the 2EV synthase (EVS) gene (amir_2000) and the PsGT homolog gene (amir_1997), both genes in A. mirum were disrupted individually, and the metabolites from culture of the wild-type gene, amir_1997 disruptant, and amir_2000 disruptant were analyzed by comparative metabolomics using

liquid chromatography-high-resolution MS (LC-HRMS) (Asamizu et al., 2013). The identified specific metabolite with m/z 314 was purified, and the chemical structure was determined to be validoxylamine A (Asamizu et al., 2013) (Fig. 4A). Thus, there are pathways with different steric courses in the assembly pathway for C7N aminocyclitol natural products.

Other sugar phosphate cyclase (SPC) members are also involved in the biosynthesis of mycosporine-like amino acids by several cyanobacteria (Wu et al., 2007). Balskus and Walsh identified a biosynthetic gene cluster for the mycosporine-like amino acid shinorine in cyanobacteria (Balskus and Walsh, 2010) (Fig. 5). They demonstrated the enzyme activities of Ava_3858 (desmethyl-4-deoxygadusol synthase [DDGS]) and Ava_3857 (S-adenosylmethionine [SAM]-dependent methyltransferase) from the cyanobacteria Anabaena variabilis ATCC 29413, which generated 4-deoxygadusol from SH7P (Balskus and Walsh, 2010) (Fig. 5). DDGS and EEVS share homology with each other (Wu et al., 2007); therefore, researchers tested whether there was a common intermediate during the DDGS reaction, in which additional dehydration was involved. The reaction of Ava_3858 and Npun_5600 (DDGSs from the cyanobacteria Nostoc punctiforme PCC 73102) (Balskus and Walsh, 2010) was traced by in situ NMR, and the 1H NMR signals showed only the chemical shifts for DDG, indicating that no detectable intermediate was generated during the entire reaction (Asamizu et al., 2012).

To gain insights into how three homologous enzymes (EEVS, EVS, and DDGS) catalyze different cyclization reactions using the same substrate SH7P, the crystal structures of ValA (EEVS: 4P53) (Kean et al., 2014) and Ava_3858 (DDGS: 5TPR) (Osborn et al., 2017a) were solved. The crystal structures of ValA and Ava_3858 were found to be cocrystalized with NAD+ and Zn2+ and showed folds that were similar to those of DHQS (Carpenter et al., 1998). A comparison of the amino acid residues forming the catalytic pocket among EEVS, DDGS, and DHQS provided some insights into the fingerprint amino acid residues used for accurate annotation of gene function for similar enzymes (Kean et al., 2014; Osborn et al., 2017a). However, swapping the amino acid residues that are specifically conserved in each enzyme (L267E/D281A/H360T for ValA; E254L/A268D/T347H for Ava_3858) did not convert the activity of the enzyme; thus, it remained unclear how the additional dehydration process could proceed in the DDGS reaction (Osborn et al., 2017a).

In addition, during genome mining using the EEVS sequence as a probe, unexpectedly, homologous genes were found in the genome of vertebrates, such as fish, birds, reptiles, and amphibians (Osborn et al., 2015). Interestingly, the putative EEVS genes from animals were flanked by a putative protein with an oxidoreductase (Ox) domain and a methyltransferase (MT) domain, and were also flanked by putative transcriptional regulators (Osborn et al., 2015). The genes for the EEVS homolog and the Ox-MT di-domain protein were synthesized based on the zebrafish (Danio rerio) sequences and expressed in E. coli. The purified recombinant DrEEVS was shown to synthesize EEV from SH7P. Furthermore, co-incubation with Ox-MT and SAM resulted in the formation of gadusol from EEV (Osborn et al., 2015) (Fig. 5). Gadusol is a natural sunscreen compound that possesses UV-resistance activity

S37

Page 39: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

(Shick and Dunlap, 2002). Gadusol was originally identified in fish eggs and was believed to accumulate from consumption in the diet (Shick and Dunlap, 2002). However, this study provided insights into the animal de novo synthetic pathway of a natural C7 cyclitol sunscreen compound that exists not only in prokaryotes but also in higher organisms, such as vertebrates (Osborn et al., 2015).

Until recently, the EEVS involved in the biosynthesis of C7N aminocyclitol natural products from actinomycetes was the only characterized SH7P cyclase, a family of enzymes that convert SH7P to carbocyclic molecules, such as EEV, 2EV, and DDG (Osborn et al., 2017b). However, genomic and biochemical investigations have revealed that SH7P cyclase is distributed in a wide range of species, including actinomycetes, cyanobacteria (Asamizu et al., 2012; Balskus and Walsh, 2010), myxobacteria (Asamizu et al., 2012), and vertebrates, such as zebrafish (D. rerio) (Osborn et al., 2015). Further bioinformatics analysis of homologous genes for SH7P cyclase revealed that this gene is widely distributed in a variety of organisms (Osborn et al., 2017a; Osborn et al., 2017b). These recently investigated SH7P cyclase genes will provide a template for easier access to gene clusters for new C7N aminocyclitols that are buried inside the growing genome databases.

Conclusion and perspective In this section, I reviewed recent progress in research on

the biosynthesis of C7N aminocyclitol validamycin A. These recent investigations have revealed the intriguing assembly pathways of these secondary metabolites by unique enzymes. The recent expansion of genome databases has been a driving force in the discovery of unprecedented biological, chemical, and catalytic repertoires, which can provide challenges to create novel bioactive “artificial” natural products. Further accumulation of knowledge is indispensable and will facilitate the development of new technologies to achieve the aim of creating novel cell factories that can synthesize complex small molecules.

Acknowledgments I am grateful to Prof. Hiroyasu Onaka at The University of

Tokyo, and Prof. Taifo Mahmud at Oregon State University for their kind support. I would like to acknowledge Prof. Andrew Karplus at Oregon State University, Prof. Yong-Hwan Lee at Louisiana State University, Dr. Hideaki Kakeya at Kyoto University, Dr. Satoh Katsuya at QST, and Dr. Kanae Teramoto at JOEL Ltd. for research collaboration. I would like to thank Dr. Taro Ozaki, Dr. Shohei Hayashi, and Dr. Yoshinori Sugai for their kind support. I would also like to thank all present and past laboratory members at The University of Tokyo and Oregon State University for their kind support. Finally, I would like to thank the Society of Actinomycetes Japan for the Hamada Award.

References

Abuelizz, H.A., and Mahmud, T. (2015). Distinct substrate specificity and catalytic activity of the

pseudoglycosyltransferase VldE. Chem. Biol. 22, 724-733. Almabruk, K.H., et al. (2012). The alpha-ketoglutarate/Fe(II)-

dependent dioxygenase VldW is responsible for the formation of validamycin B. Chembiochem. 13, 2209-2211.

Asamizu, S., et al. (2011). Pseudoglycosyltransferase catalyzes nonglycosidic C-N coupling in validamycin A biosynthesis. J. Am. Chem. Soc. 133, 12124-12135.

Asamizu, S., et al. (2012). Evolutionary divergence of sedoheptulose 7-phosphate cyclases leads to several distinct cyclic products. J. Am. Chem. Soc. 134, 12219-12229.

Asamizu, S., et al. (2013). Comparative metabolomic analysis of an alternative biosynthetic pathway to pseudosugars in Actinosynnema mirum DSM 43827. Chembiochem. 14, 1548-1551.

Asamizu, S., et al. (2015). Killing of Mycolic Acid-Containing Bacteria Aborted Induction of Antibiotic Production by Streptomyces in Combined-Culture. PLoS One. 10, e0142372.

Asano, N., et al. (1987). Effect of validamycins on glycohydrolases of Rhizoctonia solani. J. Antibiot. 40, 526-532.

Bai, L., et al. (2006). Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A. Chem. Biol. 13, 387-397.

Balskus, E.P., and Walsh, C.T. (2010). The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science. 329, 1653-1656.

Bentley, S.D., et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 417, 141-147.

Bertrand, S., et al. (2014). Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv. 32, 1180-1204.

Blin, K., et al. (2017). antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res.

Buscaglia, C.A., et al. (2015). Neglected Tropical Diseases in the Post-Genomic Era. Trends Genet. 31, 539-555.

Carpenter, E.P., et al. (1998). Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis. Nature. 394, 299-302.

Cavalier, M.C., et al. (2012). Mechanistic insights into validoxylamine A 7'-phosphate synthesis by VldE using the structure of the entire product complex. PLoS One. 7, e44934.

Choi, W.S., et al. (2008). Genetic organization of the putative salbostatin biosynthetic gene cluster including the 2-epi-5-epi-valiolone synthase gene in Streptomyces albus ATCC 21838. Appl. Microbiol. Biotechnol. 80, 637-645.

Cui, L., et al. (2016). De Novo biosynthesis of beta-valienamine in engineered Streptomyces hygroscopicus 5008. ACS Synth. Biol. 5, 15-20.

Demain, A.L., and Sanchez, S. (2009). Microbial drug discovery: 80 years of progress. J. Antibiot. 62, 5-16.

Derewacz, D.K., et al. (2015). Mapping Microbial Response Metabolomes for Induced Natural Product Discovery. ACS Chem. Biol. 10, 1998-2006.

Elshahawi, S.I., et al. (2015). A comprehensive review of glycosylated bacterial natural products. Chem. Soc. Rev. 44,

S38

Page 40: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

7591-7697. Errey, J.C., et al. (2010). Mechanistic insight into enzymatic

glycosyl transfer with retention of configuration through analysis of glycomimetic inhibitors. Angew. Chem. Int. Ed. 49, 1234-1237.

Flatt, P.M., and Mahmud, T. (2007). Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat. Prod. Rep. 24, 358-392.

Flatt, P.M., et al. (2013). Genetic insights into pyralomicin biosynthesis in Nonomuraea spiralis IMC A-0156. J. Nat. Prod. 76, 939-946.

Giaever, H.M., et al. (1988). Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170, 2841-2849.

Gloster, T.M., and Davies, G.J. (2010). Glycosidase inhibition: assessing mimicry of the transition state. Org. Biomol. Chem. 8, 305-320.

Goodwin, C.R., et al. (2015). Structuring Microbial Metabolic Responses to Multiplexed Stimuli via Self-Organizing Metabolomics Maps. Chem. Biol. 22, 661-670.

Hoshino, S., et al. (2015a). Niizalactams A-C, Multicyclic Macrolactams Isolated from Combined Culture of Streptomyces with Mycolic Acid-Containing Bacterium. J. Nat. Prod. 78, 3011-3017.

Hoshino, S., et al. (2015b). Chojalactones A-C, cytotoxic butanolides isolated from Streptomyces sp. cultivated with mycolic acid containing bacterium. Org. Lett. 17, 1501-1504.

Hoshino, S., et al. (2015c). Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. J. Antibiot. 68, 342-344.

Igarashi, Y., et al. (2010). Alchivemycin A, a bioactive polycyclic polyketide with an unprecedented skeleton from Streptomyces sp. Org. Lett. 12, 3402-3405.

Ikeda, H., et al. (2003). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol. 21, 526-531.

Iwasa, T., et al. (1970). Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var., validamycin-producing organism. J. Antibiot. 23, 595-602.

Jackson, M. (2014). The mycobacterial cell envelope-lipids. Cold Spring Harb Perspect Med. 4.

Katz, L., and Baltz, R.H. (2016). Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 43, 155-176.

Kawamura, N., et al. (1995). Pyralomicins, new antibiotics from Actinomadura spiralis. J. Antibiot. 48, 435-437.

Kean, K.M., et al. (2014). Structure of a sedoheptulose 7-phosphate cyclase: ValA from Streptomyces hygroscopicus. Biochemistry. 53, 4250-4260.

Lairson, L.L., et al. (2008). Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521-555.

Lee, S.S., et al. (2011). Mechanistic evidence for a front-side, SNi-type reaction in a retaining glycosyltransferase. Nat. Chem. Biol. 7, 631-638.

Mahmud, T., et al. (1999). Biosynthetic studies on the alpha-glucosidase inhibitor acarbose in Actinoplanes sp.: 2-epi-5-

epi-valiolone is the direct precursor of the valienamine moiety. J. Am. Chem. Soc. 121, 6973-6983.

Mahmud, T. (2003). The C7N aminocyclitol family of natural products. Nat. Prod. Rep. 20, 137-166.

(2009). Progress in aminocyclitol biosynthesis. Curr. Opin. Chem. Biol. 13, 161-170.

Martens, E., and Demain, A.L. (2017). The antibiotic resistance crisis, with a focus on the United States. J Antibiot (Tokyo). 70, 520-526.

Minagawa, K., et al. (2007). ValC, a new type of C7-cyclitol kinase involved in the biosynthesis of the antifungal agent validamycin A. Chembiochem. 8, 632-641.

Miyamoto, K.T., et al. (2014). Discovery of gene cluster for mycosporine-like amino acid biosynthesis from Actinomycetales microorganisms and production of a novel mycosporine-like amino acid by heterologous expression. Appl. Environ. Microbiol. 80, 5028-5036.

Nett, M., et al. (2009). Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep. 26, 1362-1384.

Netzker, T., et al. (2015). Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol. 6, 299.

Ochi, K. (2017). Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. Journal of Antibiotics. 70, 25-40.

Onaka, H., et al. (2001). Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and characterization. J. Antibiot. 54, 1036-1044.

Onaka, H., et al. (2002). Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans. J. Antibiot. 55, 1063-1071.

(2003). Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci. Biotechnol. Biochem. 67, 127-138.

Onaka, H., et al. (2011). Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl. Environ. Microbiol. 77, 400-406.

Onaka, H., et al. (2015). Mycolic acid-containing bacteria activate heterologous secondary metabolite expression in Streptomyces lividans. J. Antibiot. 68, 594-597.

Osborn, A.R., et al. (2015). De novo synthesis of a sunscreen compound in vertebrates. Elife. 4.

Osborn, A.R., et al. (2017a). Evolution and Distribution of C7-Cyclitol Synthases in Prokaryotes and Eukaryotes. ACS Chem Biol. 12, 979-988.

Osborn, A.R., et al. (2017b). The sedoheptulose 7-phosphate cyclases and their emerging roles in biology and ecology. Nat Prod Rep.

Ozaki, T., et al. (2016). Insights into the Biosynthesis of Dehydroalanines in Goadsporin. Chembiochem. 17, 218-223.

Pinto-Carbo, M., et al. (2016). Evidence of horizontal gene transfer between obligate leaf nodule symbionts. Isme Journal. 10, 2092-2105.

Rockser, Y., and Wehmeier, U.F. (2009). The gac-gene cluster for the production of acarbose from Streptomyces glaucescens GLA.O: identification, isolation and

S39

Page 41: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

characterization. J. Biotechnol. 140, 114-123. Schlorke, O., et al. (2002). Structure and biosynthesis of

cetoniacytone A, a cytotoxic aminocarba sugar produced by an endosymbiontic Actinomyces. J. Antibiot. 55, 635-642.

Schmidt, D.D., et al. (1977). alpha-Glucosidase inhibitors - new complex oligosaccharides of microbial origin. Naturwissenschaften. 64, 535-536.

Shick, J.M., and Dunlap, W.C. (2002). Mycosporine-like amino acids and related gadusols: biosynthesis, acumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 64, 223-262.

Sieber, S., et al. (2015). Isolation and total synthesis of kirkamide, an aminocyclitol from an obligate leaf nodule symbiont. Angew. Chem. Int. Ed. 54, 7968-7970.

Singh, D., et al. (2006). Genetic localization and heterologous expression of validamycin biosynthetic gene cluster isolated from Streptomyces hygroscopicus var. limoneus KCCM 11405 (IFO 12704). Gene. 376, 13-23.

Skinnider, M.A., et al. (2017). PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res.

Stratmann, A., et al. (1999). The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the alpha-glucosidase inhibitor acarbose. J. Biol. Chem. 274, 10889-10896.

Stubbendieck, R.M., and Straight, P.D. (2016). Multifaceted Interfaces of Bacterial Competition. J Bacteriol. 198, 2145-2155.

Sugiyama, R., et al. (2015). 5-Alkyl-1,2,3,4-tetrahydroquinolines, new membrane-interacting lipophilic metabolites produced by combined culture of Streptomyces nigrescens and Tsukamurella pulmonis. Org. Lett. 17, 1918-1921.

(2016). Discovery and Total Synthesis of Streptoaminals: Antimicrobial [5,5]-Spirohemiaminals from the Combined-Culture of Streptomyces nigrescens and Tsukamurella pulmonis. Angew. Chem. Int. Ed. Engl. 55, 10278-10282.

Traxler, M.F., et al. (2013). Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio. 4.

Traxler, M.F., and Kolter, R. (2015). Natural products in soil

microbe interactions and evolution. Nat Prod Rep. 32, 956-970.

Tsuchida, T., et al. (1996). Epoxyquinomicins A and B, new antibiotics from Amycolatopsis. J. Antibiot. 49, 326-328.

van der Meij, A., et al. (2017). Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev. 41, 392-416.

Vertesy, L., et al. (1994). The trehalase inhibitor salbostatin, a novel metabolite from Streptomyces albus ATCC21838. Angew. Chem. Int. Ed. 33, 1844-1846.

Westhoff, S., et al. (2017). Distance-dependent danger responses in bacteria. Curr Opin Microbiol. 36, 95-101.

Wu, X., et al. (2007). A comparative analysis of the sugar phosphate cyclase superfamily involved in primary and secondary metabolism. Chembiochem. 8, 239-248.

Wu, X., et al. (2009). Biosynthetic gene cluster of cetoniacytone A, an unusual aminocyclitol from the endosymbiotic bacterium Actinomyces sp. Lu 9419. Chembiochem. 10, 304-314.

Xu, H., et al. (2008). Catalytic analysis of the validamycin glycosyltransferase (ValG) and enzymatic production of 4''-epi-validamycin A. J. Nat. Prod. 71, 1233-1236.

Xu, H., et al. (2009a). Genetically engineered production of 1,1'-bis-valienamine and validienamycin in Streptomyces hygroscopicus and their conversion to valienamine. Appl. Microbiol. Biotechnol. 81, 895-902.

Xu, H., et al. (2009b). Alternative epimerization in C7N-aminocyclitol biosynthesis is catalyzed by ValD, a large protein of the vicinal oxygen chelate superfamily. Chem. Biol. 16, 567-576.

Yang, J., et al. (2011). Nucleotidylation of unsaturated carbasugar in validamycin biosynthesis. Org. Biomol. Chem. 9, 438-449.

Yokose, K., et al. (1983). New alpha-amylase inhibitor, trestatins. I. Isolation, characterization and biological activities of trestatins A, B and C. J. Antibiot. 36, 1157-1165.

Yu, Y., et al. (2005). Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl. Environ. Microbiol. 71, 5066-5076.

S40

Page 42: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Publication of Award Lecture

The Society for Actinomycetes Japan Hamada Award 2016,

Dr. Shumpei Asamizu

“Exploiting the potential of biosynthesis of natural products by actinomycetes: bacterial interaction-driven natural product discovery and biosynthetic

machinery”

Actinomycetologica (2017) 31 [1], S30-S40.

Graduate School of Agricultural and Life Sciences, The University of Tokyo

1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan

S41

Page 43: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Hamada award 2016

Enzyme involved in the biosynthesis of a unique polyketide in actinomycetes

Takashi Kawasaki

College of Pharmaceutical Sciences, Ritsumeikan University,

1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

INTRODUCTION

Angucycline antibiotics are a large group of naturally occurring aromatic polyketides of microbial origin (Rohr, J etal., 1992; Krohn, K et al., 1997). They exhibit a wide range of biological activities including antibacterial, antiviral, antitumor, and enzyme inhibitory activities. Although they contain a benz[a]anthraquinone skeleton, the structural diversity of these antibiotics is very broad with a wide variety of oxidation states. Hatomarubigins A, B, C, and D (Fig. 1) belong to the angucycline family and reverse colchicine resistance in multidrug-resistant tumor cells (Hayakawa, Y etal., 1991). Among them, hatomarubigin D is a unique hatomarubigin C dimer with a methylene linkage. This dimer has not been reported previously and little is known about the mechanism of methylene bridge formation between the two aromatic rings. In this review, I describe studies that identified a gene cluster for hatomarubigin biosynthesis in Streptomyces sp. 2238-SVT4, conversion of new metabolite hatomarubiginE by hrbU encoding an O-methyltransferase, and hrbY genesinvolved in the biosynthesis of hatomarubigin D in a unique dimeric angucycline.

Cloning of a gene cluster for angucycline biosynthesis from Streptomyces sp. 2238-SVT4

Angucycline biosynthetic gene clusters commonly contain both aromatase and cyclase genes, which construct the tetracyclic angucycline frameworks. The primers for PCR amplification were designed from conserved amino acid sequences of the aromatase (lanL/jadD/urdL) and cyclase (lanF/jadI/urdF) genes in the landomycin biosynthetic gene cluster from S. cyanogenus S136 (Westrich, L., et al. 1999), jadomycin biosynthetic gene cluster from S. venezuelae ISP5230 (Han, L., K., et al. 1994; Chen, Y. H., et al. 2005), and urdamycin biosynthetic gene cluster from S. fradiae Tü2717 (Decker, H., et al. 1995; Faust, B., D., et al. 2000).The aromatase and cyclase gene fragments were amplified byPCR with Streptomyces sp. 2238-SVT4 genomic DNA. Thesegene fragments shared amino acid identities of 79% with aromatase UrdL and 76% with cyclase JadI. Two cosmid clones were selected from a cosmid library of Streptomyces sp. 2238-SVT4 by colony hybridization and Southern blot

Fig. 1. Structures of angucycline antibiotics

S42

Page 44: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

analysis using the aromatase and cyclase gene fragments as probes. These cosmids were sequenced to identify a 35-kbp DNA region consisting of 33 open reading frames (ORFs) as shown in Fig. 2. Seventeen ORFs were homologous to angucycline biosynthesis genes previously reported by homology searching (Table 1). Based on their positions and deduced functions, 30 ORFs were designated as hrb genes and consisted of a gene cluster for angucycline biosynthesis in Streptomyces sp. 2238-SVT4. The hrb cluster contained theketosynthase, chain length determinant factor, acyl carrier protein, ketoreductase, aromatase, cyclase, O-methyltransferase, oxidoreductase, and oxygenase genes.Three regulatory genes, hrbR1, hrbR2, and hrbR3, and atransporter gene, hrbT, were found in the cluster (Kawasaki, T.,et al. 2010a).

Expression of part of the hrb gene cluster in S. lividans To establish the function of hrbs, the expression plasmid

pWHM-HR containing hrbR1 to hrbX was constructed and introduced into S. lividans TK23. S. lividans harboring pWHM-HR or an empty vector pWHM3 was cultivated, and the mycelial extract was analyzed by high-performance liquid chromatography (HPLC). S. lividans expressing hrb genes produced hatomarubigins A, B, and C and rubiginone B2 as show in Fig. 3. However, a peak for hatomarubigin D was not detected in HPLC. These results demonstrated that the hrb genes consist of a gene cluster for hatomarubigin biosynthesis in Streptomyces sp. 2238-SVT4.

Estimated function of hrb genes in hatomarubigin biosynthesis

hrbI resembles lanV, a 6-ketoreductase gene involved in

Fig. 2. Hatomarubigin biosynthesis gene cluster from Streptomyces sp. 2238-SVT4. Arrow shows DNA regions used for heterologous expression.  

TABLE 1. Deduced functions of the hrb gene products.

ORF Size (aa) Homologous protein (angucycline biosynthesis gene product) Identity (%) Similarity (%) Proposed function

1 160 Alanine rich protein of Streptomyces ambofaciens 42 49 R1 71 Regulatory protein of Streptomyces coelicolor 42 50 Regulator A 281 Unknown protein in an angucycline biosynthesis gene cluster(Aur1O) 42 53 B 112 Cyclase (JadI) 70 79 Cyclase C 423 Ketosynthase (JadA) 82 87 Minimal PKS D 107 Predicted protein of Coprinopsis cinerea 42 66 E 404 Chain length determinant factor (JadB) 71 79 Minimal PKS F 234 Methyltransferase of Caulobacter crescentus 34 44 G 680 Oxygenase-reductase (LndM2) 57 66 6-Hydroxylase H 373 Oxygenase of Rhodococcus sp. 45 60 Oxygenase I 262 Reductase (LanV) 49 62 6-Ketoreductase J 226 Oxygenase of Pseudomonas fluorescens 35 59 Oxygenase K 208 Oxygenase (JadG) 30 48 Oxygenase L 358 Oxygenase (LndZ5) 42 56 Oxygenase M 87 Acyl carrier protein (JadC) 72 80 Minimal PKS N 302 Type II thioesterase of Mycobacterium liflandii 35 53 O 261 Ketoreductase (JadD) 79 88 10-Ketoreductase P 311 Aromatase (UrdL) 79 87 Aromatase Q 279 Phosphopantetheinyl transferase (JadM) 53 63 R 460 Oxygenase (LanE) 64 75 Oxygenase S 254 Ketoacyl reductase of Frankia alni 44 55 Oxidoreductase T 434 Transporter (UrdJ2) 47 55 Transporter U 343 O-Methyltransferase of Streptomyces glaucescens 38 55 O-Methyltransferase V 263 Short-chain dehydrogenase / reductase of Thermobifida fusca 43 57 Oxidoreductase W 193 Reductase (LanO) 58 65 11-Hydroxylase X 377 Oxygenase (LanZ5) 36 49 11-Hydroxylase R2 200 Transcriptional regulator of Saccharopolyspora erythraea 46 62 Regulator Y 365 Oxidoreductase of Saccharopolyspora erythraea 47 60 Methylene bridge formation R3 240 Repressor-response regulator (JadR1) 61 72 Regulator Z1 304 N5,N10-Methylenetetrahydromethanopterin reductase of Rhodococcus sp. 32 48 Oxidoreductase Z2 334 Aldo/keto reductase of Actinosynnema mirum 71 81 Oxidoreductase 2 53 S-Adenosylmethionine synthase of Streptomyces clavuligerus 72 81 3 336 Carbohydrate kinase of Streptomyces rishiriensis 55 63

aa, number of amino acids. PKS, polyketide synthase

S43

Page 45: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

landomycin biosynthesis (Mayer, A., et al. 2005), and shows the same function. Hatomarubigins possess a methoxy group at the 8-position. hrbU is a candidate O-methyltransferase gene based on its homology to tcmO, an O-methyltransferase gene involved in tetracenomycin biosynthesis (Summers, R. G., et al. 1993). hrbG encodes an enzyme with putative oxygenase and reductase domains. Although its homologous gene urdM is involved in 12b-oxygenation in urdamycin biosynthesis (Faust, B. D., et al. 2000), C-12b bears no oxygen atom in hatomarubigins. A gene homologous to urdM, lndM2, is responsible for 6-hydroxylation in landomycin biosynthesis (Zhu, L., et al. 2005), and the oxygenase domain of HrbG displays the highest identity (57%) to that of LndM2, suggesting that HrbG catalyzes 6-hydroxylation of rubiginone B2 to yield hatomarubigin A (Fig. 4). In landomycin biosynthesis, the two tandem genes lanZ4 and lanZ5 encoding oxidoreductase and oxygenase are involved in 11-hydroxylation (Ostash, B., et al. 2004). A gene homologousto lanZ5, hrbX, is followed by the reductase gene hrbW. Thesetwo gene products may catalyze 11-hydroxylation ofrubiginone B2 to give hatomarubigin B (Fig. 4).

The hrb cluster contains three regulatory gene candidates. HrbR1, HrbR2, and HrbR3 show sequence similarity with a putative regulatory protein of Streptomyces coelicolor (Bentley, S.D., et al. 2004), MarR-family regulator ofSaccharopolyspora erythraea (Oliynyk, M., et al. 2007), and atypical response regulator (JadR1) of Streptomyces venezuelae (Wang, L., et al. 2009), respectively.

Fig. 3. HPLC analysis of hatomarubigins produced by S. lividans expressing a part of the hatomarubigin biosynthesis gene cluster. 1: rubiginone B2. 2: hatomarubigin B. 3: hatomarubigin A. 4: hatomarubigin C.

Fig. 4. Proposed pathway for hatomarubigin biosynthesis.

S44

Page 46: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

New metabolite hatomarubigin E, a biosynthetic intermediate of hatomarubigin C

A new metabolite in the 2-day culture of Streptomyces sp. 2238-SVT4 detected by thin-layer chromatography and HPLC analyses. The molecular formula of hatomarubigin E was established as C19H16O5 by high-resolution fast-atom bombardment-mass spectrometry. The 13C- and 1H-NMR data of hatomarubigin E resembled those of hatomarubigin C, except for a methoxy group in hatomarubigin C (Fig. 1). We isolated the new metabolite hatomarubigin E, 8-demethyl hatomarubigin C (Kawasaki, T., et al. 2010b). In the hrb cluster, hrbU shows homology to an O-methyltransferase gene involved in tetracenomycin C biosynthesis. This indicates that hrbU catalyzes the methylation of hatomarubigin E. To confirm the function of hrbU, the recombinant enzyme was expressed in Escherichia coli. HrbU converted hatomarubigin E to hatomarubigin C, using S-(5′-adenosyl)-L-methionine as a cofactor (Fig. 5). This reaction corresponds to the 8-O-methylation step in hatomarubigin biosynthesis. HrbUcontains a conserved motif for S-(5′-adenosyl)-L-methioninebinding (DVGGARG) (Ingrosso, D., et al. 1989; Haydock,S.F.,et al. 1991; Madduri, K., et al. 1993). HrbU was found toconvert hatomarubigin E to hatomarubigin C duringhatomarubigin biosynthesis.

Conversion of hatomarubigin C to hatomarubigin D by HrbY

Genes remaining in the cluster are candidates for methylene bridge formation in the production of hatomarubigin D. The gene cluster for hatomarubigin biosynthesis includes the oxidoreductase gene hrbY, which is present in hrbR3, a gene homologous to the regulator of angucycline biosynthesis (Table 1). HrbY was expressed in E. coli, and the purified recombinant HrbY was assayed for its ability to convert hatomarubigin C. Hatomarubigin C was converted into hatomarubigin D by HrbY, using methylcobalamin and NADPH as cofactors (Fig. 6) (Kawasaki, T., et al. 2010a). This reaction is the final step of hatomarubigin biosynthesis (Fig. 4). HrbY exhibited homology to an FAD-dependent pyridine nucleotide-disulfide oxidoreductase of Saccharopolyspora erythraea (Oliynyk, M., et al. 2007) and contained conserved FAD and NAD(P)H binding motifs (GGGYGGAAVAKALEAEADVILIDPRD and VLILGAGPVGLE; underlining indicates conserved amino acids) (Dym, O., et al. 2001). Because the reaction required NAD(P)H but not FAD, the recombinant enzyme may be purified as a complex with FAD. HrbY used methylcobalamin as a C1 donor for methylene bridge formation. Methylcobalamin is known to participate in several enzymatic methyl group transfer reactions (Banerjee, R., et al. 2003). However, there is no similarity between HrbY and such enzymes. These results indicate that HrbY is a novel enzyme that catalyzes methylene bridge formation between two angucycline molecules.

CONCLUSION

We attempted to elucidate the biosynthetic mechanism of hatomarubigin D, which has a unique dimeric structure with a

methylene linkage. In the beginning of the first step, we cloned the gene cluster for angucycline biosynthesis from Streptomyces sp. 2238-SVT4, a hatomarubigin producer. To identify the gene cluster involved in hatomarubigin biosynthesis, a gene cluster of 25 genes (hrbR1-hrbX) was expressed in S. lividans, and transformants produced hatomarubigin A, B, and C. Thus, we obtained the gene cluster involved in hatomarubigin biosynthesis. To further understand the biosynthesis of hatomarubigin, we isolated new metabolite hatomarubigin E, 8-demethyl hatomarubigin C, following 2-day culture of Streptomyces sp. 2238-SVT4. hrbU showshomology to an O-methyltransferase gene. Therefore, HrbUlikely catalyzes methylation of hatomarubigin. Indeed,recombinant HrbU converted hatomarubigin C tohatomarubigin E. Hatomarubigin C was converted tohatomarubigin D of unique structure by HrbY, which usedmethylcobalamin as a C1 donor for methylene bridgeformation. However, there is no similarity between HrbY andother enzymes that use methylcobalamin as a C1 donor. The

Fig. 5. HPLC analysis of hatomarubigins. (a): Mycelial acetone extract of 2-day cultured Streptomyces sp. 2238-SVT4. (b): standard sample of hatomarubigin C. (c): reaction mixture for hatomarubigin E conversion without HrbU. (d): reaction mixture of hatomarubigin E conversion with HrbU.

Fig. 6. HPLC analysis of the conversion of hatomarubigin C into hatomarubigin D. (A): hatomarubigin D. (B): reaction mixture without enzyme. (C): reaction mixture with HrbY

S45

Page 47: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

enzymatic hatomarubigin C conversion reported here will facilitate future studies of the exact mechanism of methylene bridge formation.

ACKNOWLEDGMENTS

I am very pleased to receive the prestigious Hamada Award of SAJ (Society of Actinomycetes, Japan). This study was mainly conducted at the Faculty of Pharmaceutical Sciences, Tokyo University of Science. I would like to express my gratitude to the members of the laboratory. I would like to express my deepest gratitude and appreciation to Prof. Yoichi Hayakawa for providing suggestions and guidance. I am deeply indebted to Prof. Tohru Dairi from Hokkaido University for providing suggestions. I would like to thank everyone at SAJ.

REFERNCES

Banerjee, R., et al. (2003). The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu. Rev. Biochem. 72, 209-247.

Bentley, S. D., et al. (2004). SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol. Microbiol. 51, 1615-1628.

Chen, Y. H., et al. (2005). Functional analyses of oxygenases in jadomycin biosynthesis and identification of JadH as a bifunctional oxygenase/dehydrase. J. Biol Chem. 280, 22508-22514.

Decker, H., et al. (1995). Cloning and characterization of a polyketide synthase gene from Streptomyces fradiae Tü2717, which carries the genes for biosynthesis of the angucycline antibiotic urdamycin A and a gene probably involved in its oxygenation. J. Bacteriol. 177, 6126-6136.

Dym, O., et al. (2001). Sequence-structure analysis of FAD-containing proteins. Protein Sci. 10, 1712-1728.

Faust, B. D., et al. (2000). Two new tailoring enzymes, a glycosyltransferase and an oxygenase, involved in biosynthesis of the angucycline antibiotic urdamycin A in Streptomyces fradiae Tü2717. Microbiology 146, 147-154.

Han, L. K., et al. (1994). Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology. 140, 3379-3389.

Hayakawa, Y., et al. (1991). Studies on the isotetracenone antibiotics. IV. Hatomarubigins A, B, C and D, new isotetracenone antibiotics effective against multidrug-resistant tumor cells. J. Antibiot. 44, 1179-1186.

Haydock, S. F., et al. (1991). Cloning and sequence analysis of genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea: sequence similarities between EryG and a family of S-adenosylmethionine-dependent methyltransferase. Mol.Gen. Genet. 230, 120–128.

Ingrosso, D., et al. (1989). Sequence of the

D-aspartyl/Lisoaspartyl protein methyltransferase fromhuman erythrocytes. Common sequence motifs forprotein, DNA, RNA and small moleculeS-adenosylmethionine dependent methyltransferase. J.Biol. Chem. 264, 20131–20139.

Kawasaki, T., et al. (2010a). Cloning and Characterization of a Gene Cluster for Hatomarubigin Biosynthesis in Streptomyces sp. Strain 2238-SVT4. Appl. Environ. Microbiol. 76, 4201-4206.

Kawasaki, T., et al. (2010b). Hatomarubigin E, a biosynthetic intermediate of hatomarubigins C and a substrate of HrbU O-methyltransferase. The Journal of Antibiotics. 63, 725-727.

Krohn, K., et al. (1997). Angucyclines: Total syntheses, new structures, and biosynthetic studies of an emerging new class of antibiotics. Top. Curr. Chem. 188, 127–195.

Madduri, K., et al. (1993). Cloning and sequencing of a gene encoding carminomycin 4-O-methyltransferase from Streptomyces peucetius and its expression in Escherichia coli. J. Bacteriol. 175, 3900–3904.

Mayer, A., et al. (2005). LanV, a bifunctional enzyme: aromatase and ketoreductase during landomycin A biosynthesis. Chembiochem. 6, 2312-2315.

Oliynyk, M., et al. (2007). Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. 2007. Nat. Biotechnol. 25, 447-453.

Ostash, B., et al. (2004). Generation of new landomycins by combinatorial biosynthetic manipulation of the lndGT4 gene of the landomycin E cluster in S. globisporus. Chem. Biol. 11, 547-555.

Rohr, J., et al. (1992). Angucycline group antibiotics. Nat. Prod. Rep. 9, 103–137.

Summers, R. G., et al. (1993). The tcmVI region of the tetracenomycin C biosynthetic gene cluster of Streptomyces glaucescens encodes the tetracenomycin F1 monooxygenase, tetracenomycin F2 cyclase, and, most likely, a second cyclase. J. Bacteriol. 175, 7571-7580.

Wang, L., et al. (2009). Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci USA. 106, 8617-8622.

Westrich, L., et al. (1999). Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol Lett. 170, 381-387.

Zhu, L., et al. (2005). Identification of the function of gene lndM2 encoding a bifunctional oxygenase-reductase involved in the biosynthesis of the antitumor antibiotic landomycin E by Streptomyces globisporus 1912 supports the originally assigned structure forlandomycinone. J. Org. Chem. 70, 631-638.

S46

Page 48: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Publication of Award Lecture

The Society for Actinomycetes Japan Hamada Award 2016,

Dr. Takashi Kawasaki

“Enzyme involved in the biosynthesis of a unique polyketide in actinomycetes”

Actimomycetologica (2017) 31 [1], S42-S46.

College of Pharmaceutical Sciences, Ritsumeikan University,

1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

S47

Page 49: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

60th Regular Colloquium

Date: Mar. 10 (Fri), 2017 Place: Kitasato University

Program: 1. “Non-cleaving genome editing and its applications”

Keiji NISHIDA (Graduate School of Science, Technology and Innovation, Kobe University)

2. “Bioinformatics for microbial analysis”Wataru IWASAKI (Graduate School of Science, The University of Tokyo)

3. “ Actinomycetaceae showing pathogenicity in animals”

Satoshi MURAKAMI (Tokyo University of Agriculture)

4. “Boron-based drug discovery - with the experience of two FDA approvals in a US biotech

start-up -”

Tsutomu AKAMA ((Former) Anacor Pharmaceuticals, Inc.)

5. “Retraction of papers in major scientific journals; Can you believe what described in the

paper? ”

Hiroyuki OSADA (RIKEN Center for Sustainable Resource Science)

S48

Page 50: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

The 2017 Annual Meeting of the Society for Actinomycetes Japan

Chair person: Masakazu Kataoka (Shinshu University, Nagano)

The 2017 annual meeting of SAJ will be held in September 2017 in Nagano, Japan. We are looking forward to welcoming you to participate in the meeting and to submit papers. Updated information will be provided on the 2017 Annual Meeting Website ( http://awamori.urdr.weblife.me/index.html) and SAJ Website (http://www.actino.jp/index-e.html).

General Outline

Dates: September 7 (Thu)-­‐8 (Fri), 2017 Venue: The Nagano Wakasato Bunka Hall (http://www.nagano-mwave.co.jp/wakasato_hall/) Address: Wakasato 3-22-2, Nagano 380-0928, Japan

TEL: +81-26-223-2223

Registration fee (including abstracts): SAJ member 10,000 yen (8,000 yen until July 14, 2017) Student 3,000 yen (2,000 yen until J July 14, 2017) Non-member 12,000 yen (10,000 yen until July 14, 2017) Non-member Student 4,000 yen (3,000 yen until July 14, 2017) Abstracts only 2,000 yen Registration is acceptable through the 2017 Annual Meeting Website. If you need help, do not hesitate to tell through [email protected]).

Reception: From 19:00 on September 7 (Thu) 2017 at Hotel Metropolitan Nagano, 3F Room Asama (http://www.metro-n.co.jp). SAJ member 9,000 yen (7,000 yen until July 14, 2017) Student 5,000 yen (4,000 yen until July 14, 2017) Non-member 11,000 yen (9,000 yen until July 14, 2017) Non-member Student 8,000 yen (6,000 yen until July 14, 2017)

Scientific program: Invited lectures, SAJ award lectures, and contributed paper sessions (oral/poster) will be arranged.

Submission of abstracts: Abstracts for contributed paper sessions should be submitted via Web-Resister system through Annual Meeting Website as an attachment file. Deadline for submission of abstracts will be on 7th July (Tanabata), 2017.

For further information, contact to: SAJ2016 congress office, c/o Kataoka Lab. Fac. Engineering, Shinshu University Wakasato 4-17-1, Nagano 380-8553, Nagano, Japan Tel: +81-26-269-5538, FAX: +81-26-269-5550 E-mail: [email protected]

S49

Page 51: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

Online access to The Journal of Antibiotics for SAJ members

Eligible members of SAJ can access to online issues of The Journal of Antibiotics (JA)

by taking following steps;

1. Open the SAJ official website (URL: http://www.actino.jp/) and click the banner of JA.

2. To register, enter your Membership number (10-digit figures starting with 154), First

name, Last name, and E-mail address to receive a password and click 'Send'. You can

find your Membership number on the envelope from SAJ.

3. Then, you will receive your password from SAJ.

4. Open the SAJ official website (URL: http://www.actino.jp/) and click the banner of JA

again. To access the JA website, enter Membership number and password and click

'Login'.

5. Upon recognition of Membership number and password, SAJ site relays the access to

the journal's website on nature.com

6. In the journal's website on nature.com, contents are freely available. Members can find

the article from current issue table of contents, or archive issues list. Click 'PDF' or

'HTML' link of each article to read full contents.

Please note;

Unique set of Membership number and password is issued and provided to each

eligible members of SAJ. Members are not allowed to distribute this information to the

third person or third parties.

Depending on the network environment there's a case where access to full contents is

not permitted even though Membership number and password is correct. In such case

please contact us by email for alternative access method. When contacting please provide

your membership number and password, and specify name and version of your Internet

browser.

RBA Helpdesk- The Journal of Antibiotics

E-mail : [email protected]

S50

Page 52: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

日本放線菌学会誌

会 報

第 31 巻 1 号

Page 53: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

— 目 次 —

受賞論文掲載のおしらせ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1

2016年度学会賞受賞論文(上田 賢志 博士) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2

2017年度(第32回)日本放線菌学会大会のご案内 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 19

2017年度日本放線菌学会授賞者の決定について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 21

第60回日本放線菌学会学術講会 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 22

学会見聞録 (ISBA2017) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 29

学会見聞録 (日米生合成セミナー) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 31

日本放線菌学会賛助会員 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 33

著作権について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 33

Page 54: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

受賞論文掲載のおしらせ

2016 年度学会賞受賞 上田 賢志 博士

(日本大学生物資源科学部応用生物科学科)

「放線菌の形態分化と二次代謝の適応応答機構に関する研究」

“Mechanism of adaptive response controlling morphological and physiological development in

Streptomyces”

Dr. Kenji UEDA

日本放線菌学会誌 (2017) 31 [1], 2-17.

1

Page 55: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

2016年度日本放線菌学会・学会賞受賞総説

放線菌の形態分化と二次代謝の適応応答機構に関する研究

上田 賢志

日本大学生物資源科学部応用生物科学科

〒252-0880 神奈川県藤沢市亀井野 1866

Mechanism of adaptive response controlling morphological and physiological

development in Streptomyces

Kenji Ueda

Department of Applied Biological Science, College of Bioresource Sciences,

Nihon University

1866 Kameino, Fujisawa, Kanagawa 252-0880

1.はじめに

Streptomyces属に代表される糸状性放線

菌は、カビに類似した複雑な生活環と抗生

物質をはじめとする様々な二次代謝産物を

生産する能力のために、生命科学分野にお

ける基礎と応用の両側面から格好の研究対

象として注目されてきた。特に、この菌群が

生産する抗生物質ならびに各種生理活性物

質は医療分野に大きな変革をもたらし、人

類の生活に欠かせないものになっている。

一方、昨今では、放線菌が生産する代謝産物

が自然界で担っているであろう本来の役割

についての議論も活発になっている。抗生

物質(antibiotics)という用語は、ストレ

プトマイシンの発見者であるワクスマンに

よって「微生物によって生産される微生物

の増殖を抑える物質」と定義されて今に至

るが、抗生物質としての活性を示す物質も

自然界においては抗生物質とは異なる作用

を有している可能性があることを、ワクス

マン自身が指摘している 1。

筆者は、本総説の前半で解説する A-ファ

クターの作用に関する研究から出発して、特

にこの菌群の形態分化と二次代謝の開始に

影響する要因に着目した研究を進めること

で、放線菌の複雑な増殖相が多様な環境因子

に応答して制御されていること、さらには、

そうして生産される様々な代謝産物が微生

物コミュニティーの構築に関与し、生態系を

形作る一つの基盤になっているとする概念

を確立しつつある。ここでは、その道のりか

ら最近の知見に至るまでを紹介する。

2

Page 56: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

2.自己調節因子、A-ファクター

2-1 生産現場の問題がもたらした再発見

Streptomyces 属の抗生物質生産がγ-ラ

クトン骨格を有する自己調節物質(図 1)に

よって誘導されることは、今では広く知ら

れるようになった。一方、その先駆けとなっ

た研究が、ストレプトマイシン(Sm)の生産

現場に於ける生産菌 Streptomyces griseus

の遺伝的不安定性に関する観察から始まっ

た史実は、今日の溢れる情報の中に埋もれ

つつあるかもしれない。

Sm生産性を失った変異株が高い頻度で出

現するという問題に端を発するその研究は、

東京大学農学部・別府研究室に研究生とし

て出向した明治製菓の原によって開始され

た。生合成経路中のどこかに変異が起きて

いる可能性が想定されたことから、寒天培

地上に異なる変異株を隣接して植え、一方

の株から放出される代謝産物を受け取るこ

とでもう一方の株の Sm 合成能が回復する

かを観察する cosynthesis 試験が行われた。

その結果としてわかったことは、Sm非生産

変異体が失っていたのは Sm 生合成能では

なく、Sm生産を誘発する拡散性の信号物質

の合成能である、ということであった。

後に A-ファクター(自己調節因子 auto-

regulatory factorの略;図1)として広く

知られることになったその信号物質は、そ

の時すでにソビエト連邦共和国(当時)の有

機化学者・ココロフによって Sm合成を誘導

する分子として単離同定されていた化学

物質であった。原・別府らが自らの成果を

A-ファクターの「再発見」と表現したのはそ

のためである。A-ファクター再発見への道

のりについては、別府による総説 2に詳しく

記述されている。その後、堀之内によって

A-ファクターの合成遺伝子 afsA が同定さ

れると 3、その脱落が上記の変異体出現の遺

伝的要因であることが明確になった。S.

griseusの線状ゲノム上で afsAが位置する

末端近傍は脱落が起こりやすく、それが高

い頻度で Sm 非生産性の変異体が出現する

ことの理由として理解されている。

図 1 γ-ラクトン型シグナルの例

A-ファクターは S. griseus の気中菌糸形成と

種々の二次代謝産物の生産に、VB-A(バージニ

アブタノライドの一誘導体)は S. virginiaeの

バージニアマイシン生産に、 SCB1 は S.

coelicolor A3(2)のアクチノロージン生産にそ

れぞれ関与する誘導因子として同定された。

3

Page 57: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

このように、実生産の現場における観察

によって、この種のバクテリアに自らの生

活環をコントロールする分子メカニズムが

存在することが明らかとなり、産業上極め

て重要な本菌群が有する複雑な遺伝生理学

的特性を掘り下げる基礎研究への入り口が

開かれた。このような制御は放線菌のみな

らず、グラム陰性のバクテリア集団におい

ても N-アシルホモセリンラクトン(AHL)の

作用を通じて作動していることが知られて

いる(クオラムセンシング)。この AHLにつ

いての知見は、発光性のイカに共生する

Vibrio属細菌のルシフェラーゼ生産制御に

関する基礎遺伝学的研究にはじまるが、興

味深いことに、AHLの合成に関与する遺伝子

luxIが発見されたのは、上記の堀之内によ

る afsA の同定がなされたのと同じ 1984 年

のことであった 4。

2-2 A-ファクターカスケード解明の糸口

図2左に示すように、A-ファクターは S.

griseusにおける Sm生産と同時に基底菌糸

(栄養細胞)から気中菌糸への形態分化も

誘導する。この現象は、(i) A-ファクター

に結合する蛋白質(受容体)が存在し、(ii)

それが A-ファクターを受容することで分化

と二次代謝の両方を制御するマスターレギ

ュレーター(複数の遺伝子を一斉調節する

制御蛋白質)のスイッチを入れ、(iii)マス

ターレギュレーターは、次に経路特異的レ

ギュレーター(各経路の発現調節を専門に

受け持つ制御蛋白質)のスイッチを入れ、そ

の延長線上でそれぞれの形質の発現が誘導

されるという、いわゆるカスケード制御系

(一つの信号が増幅されながら伝達される

ことで、その制御の下流において様々な機

能が一斉に誘発される制御体系)による調

節がなされていることを推測させた。その

全貌解明を目標にかかげた堀之内と別府は、

①A-ファクター受容体の同定、および ②

Sm 生合成遺伝子クラスターに A-ファクタ

ーの信号を伝える制御因子の同定、に的を

絞った。前者は制御の進行方向(図2右図の

上から下の向き)と同一方向に、一方後者は

それと逆方向に解析を進めるもので、両者

がつながることで A-ファクターカスケード

の中心部が明らかにできると考えたのであ

る。

図 2 A-ファクターによる気中菌糸形成と Sm生産の誘発

写真は A-ファクター合成能を欠損した変異株の 6 個のコロニーを A-ファクターの濃度勾配のもと

に増殖させた様子。左端の濾紙ディスクに合成 A-ファクターが添加されている。気中菌糸と胞子を

形成しているコロニーは白く、基底菌糸のみを形成しているコロニーは褐色に見える。Sm生産は一

面に重層した枯草菌に対する増殖阻止ゾーンの大きさによって観察している。

4

Page 58: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

A-ファクター受容体の同定に至る研究の

詳細についてはここでは触れないが、大阪

大学(当時)の岡本らによって Streptomyces

virginiaeが生産するγ-ラクトンシグナル

であるバージニアブタノライド(VB;図1)

の受容体が明らかにされたこと 5 がその礎

になった。岡本は、放射合成されたバージニ

アブタノライドに対する結合活性を指標に

同蛋白質を精製し、そのアミノ酸配列をも

とにして遺伝子をクローン化した。その後、

東京大学の尾仲が同様の手法を用いること

で A-ファクター受容体 ArpA(A-factor-

receptor protein)を単離精製し、遺伝子

をクローン化した 6。

一方、筆者は A-ファクターの信号が Sm生

合成遺伝子クラスターのどこに伝えられる

かについての取組みを進めた。Sm生合成遺

伝子クラスターは、独のピーパースバーグ

らによって同定され、その塩基配列の解読

がなされていた 7。クラスターの中央付近に

見いだされた strR 遺伝子は転写調節蛋白

質をコードしており、耐性酵素遺伝子 aphD

と隣接した配置にあった(図3)ことから、

それがクラスターの初期発現に関わる経路

特異的レギュレーターをコードしていると

推測された。そこで、strR 上流のプロモー

ター活性を、独自に確立した耐熱性リンゴ

酸脱水素酵素をレポーターに用いた転写ア

ッセイによって測定した。上述の A-ファク

ター生産性を失った株に人工合成した A-フ

ァクターを添加した場合と添加しない場合

でプロモーター活性を比較したところ、

strR の転写開始点を含むおよそ 600 bp の

領域に認められる転写活性が A-ファクター

の添加によって上昇することが観察された。

そこで、その領域をエキソヌクレアーゼを

用いて段階的に切り縮めて同様のアッセイ

を行ったところ、-430 bp までは A-ファク

ターによる誘導性が認められたが、-330 bp

まで削るとそれが消失した(図3)。このこ

とから、-430 bpから-330 bpの間に A-フ

ァクターの信号を伝える転写調節蛋白質が

結合すると予想された 8。同蛋白質はヴャク

リャによってその存在が確認され 9、後に大

西によって単離精製と遺伝子のクローン化

がなされた。adpA(A-factor-dependent

protein)と名付けられたこの遺伝子のプロ

モーター領域にはさらに、上記の A-ファ

クター受容体である ArpA が結合すること

が判明した 10。

図 3 Sm 合成遺伝子クラスター

と strRプロモーター活性

中央やや左に存在する strRは Sm

合成遺伝子クラスターの初期の

発現を担う正の転写調節因子

を、その下流に同じ向きに隣接

して存在する aphD は Sm 耐性酵

素をコードしている。strR のコ

ード領域上流に存在するプロモ

ーター領域を切り縮めて A-ファ

クター依存性を検定した結果の

概略を併せて表示した。

5

Page 59: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

こうした経緯をもとに、堀之内・大西らに

よって全貌が明らかにされた A-ファクター

カスケードの概要を図4に示す。上述のよ

うに、strRのプロモーターに結合する活性

を手がかりに同定された AdpAは、二次代謝

と形態分化の各経路に特異的な調節遺伝子

群のスイッチを一斉に入れるマスターレギ

ュレーターとして機能し、A-ファクターの

生産以前はその転写が ArpA によって抑制

されている。A-ファクターが生産されると、

それが ArpA に結合して adpA に対する転写

抑制を解除することでその発現を誘導、二

次代謝産物群の生産と栄養菌糸から気中菌

糸・胞子鎖への細胞分化を開始させる。A-フ

ァクターの作用に関する一連の研究成果は、

放線菌の複雑な生活環が、精巧に構築され

たカスケード制御系によってプログラムさ

れていることを明らかにした貴重な具体事

例となった 11,12。

2-3 分化誘導ペプチド AmfS

A-ファクターの生産能を欠損した上述の

変異株は、Sm生産性と同時に気中菌糸を形

成する能力も失っていたことから、A-ファ

クターカスケードの下には、Sm生合成遺伝

子群とは独立に、基底菌糸から気中菌糸へ

の細胞分化の開始を制御する遺伝子も含ま

れると考えられた。細胞分化のメカニズム

図 4 A-ファクターカスケード

A-ファクターの信号が受信されることで誘発されるカスケード制御系の模式図。大西博士の好意によ

り文献 12を改編して掲載した。

6

Page 60: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

の理解が最も進んでいる Streptomyces

coelicolor A3(2)をモデルに用いた研究 13

では、基底菌糸から気中菌糸への分化の開

始が起こらなくなった変異株を bld 変異と

呼び、取得された種々の bld 変異の間の制

御的な上下関係(bld ヒエラルヒー)を、分

化 誘 導 ペ プ チ ド SapB ( sporulation-

associated protein B)の生産性を指標に

して推定、整列化する試みがなされた。さら

に、遺伝的相補試験などによって各変異に

対応する bld 遺伝子を特定することで、分

化を開始するための一連の制御ネットワー

クが明らかにできると考えられた。このア

プローチは、枯草菌 Bacillus subtilisの

内生胞子形成の遺伝制御機構に関する研究

を成功に導いたもので、放線菌においても

その有効性が期待された。S. griseusにも

S. coelicolor A3(2)の bld遺伝子群に対応

する一連の制御遺伝子が存在し、A-ファク

ターカスケードに連動していると予想され

た。

上述の研究において、A-ファクター受容

体の同定に取り組んでいた三宅は、その遺

伝子クローニングを目的としたショットガ

ンクローニングを数多く実施していた。そ

の過程で同氏は、上述の A-ファクター合成

能欠損変異株にコピー数の高いプラスミド

に連結して導入することでその気中菌糸形

成を回復させる性質をもつ DNA 断片をクロ

ーン化していた。しかし、この断片の導入は

Sm生産性は回復させなかったことから、そ

こには目的の受容体遺伝子とは異なる、細

胞形態の分化に特異的な役割を持った遺伝

子が存在すると考えられた。

そこで筆者は、三宅によってクローン化

された断片の中でも気中菌糸形成の誘導に

図 5 気中菌糸形成誘導ペプチド AmfSの生成メ

カニズム

A. amf遺伝子クラスターの発現制御。正の転写

調節因子である AmfR蛋白質によって amfTSBAオ

ペロンの転写が誘導され、前駆体ペプチド AmfS

が生成する。本ペプチドはその後 AmfTによる修

飾を経て活性型に変換され、膜輸送体 AmfA/AmfB

により分泌される。活性型 AmfSは栄養菌糸の表

面に作用することで表面張力を変化させ、気中

菌糸の伸長を促すと考えられている。B. 活性型

AmfSの推定構造。前駆体ペプチドの C-末端側 22

アミノ酸領域中に2つのランチオニン(アラニ

ン 2 分子がチオエーテル結合した構造)と2つ

のデヒドロアラニン(Dha)が形成され、疎水性

アミノ酸が連続する2つの環状構造をとると予

想されている。C. 活性型 AmfS ペプチドによる

気中菌糸形成の誘発。全面に増殖させた amfS遺

伝子破壊株は気中菌糸形成を形成する能力が欠

損しているが、活性型 AmfSを添加することでそ

の回復がおこる(中央)。

7

Page 61: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

重要と考えられた 5.4 kbの塩基配列を決定

し、3つの完全なコード領域を見いだした。

そのうちの 2 つは、互いに相同な排出型の

ABCトランスポーターAmfAと AmfBを、もう

ひとつの逆向きのコード領域は二成分制御

系の応答蛋白に相同な転写調節蛋白質 AmfR

をコードしていた。当時、分化の遺伝制御に

関する詳細な理解が進んでいた枯草菌では、

このファミリーの転写調節蛋白質がそのリ

ン酸化を介して信号を伝達し分化の開始を

決定する役割を担うことが明らかになりつ

つあったことから、AmfRが分化の開始に必

要な遺伝子の転写を誘導する主役であると

推測された 14。

一方で筆者は、上記の領域中にもうひと

つ、43アミノ酸から成るペプチドをコード

しうる領域が存在することに気付いていた。

それが実際に転写・翻訳されるかについて

の確証はなかったが、上記の排出ポンプを

コードする遺伝子の前に存在していたこと、

ならびに GC-plot(ゲノム中の総 GC含量が

高い菌はアミノ酸を指定するコドンの第三

文字に GC が多く第二文字に少ない傾向が

あることを利用して蛋白質コード領域を推

定するコンピュータープログラム)による

解析がコード領域としての可能性を支持し

ていたことから、細胞外に輸送されるペプ

チドの可能性を想定して ORF6 として記述

した 14。これが後に、長年にわたって本体が

不明であった S. coelicolor A3(2)の分化

誘導ペプチド SapB の実体解明につながっ

た。

現段階の理解を図5に示す。上述のマス

ターレギュレーターAdpAが直接プロモータ

ーに結合することで転写誘導される amfR

は転写調節蛋白質をコードしており、その

作用によって amfTSBA オペロンの転写が活

性化される(図5A)。おそらく AmfT が関

与する修飾(図5Bも参照)を経て前駆体

AmfS(上述の ORF6産物に相当)から活性型

ペプチドが生成し、排出ポンプ AmfA・AmfB

によって細胞外に輸送され、細胞表層に作

用することで気中菌糸の伸長が誘起される。

疎水性のアミノ酸配列が露出した球状の構

造をとると推測される活性型 AmfSは、細胞

表層の表面張力を変化させることで気中菌

糸の伸長を促すと予想されている。amfクラ

スターは S. coelicolor A3(2)にも存在し、

それによって生成する活性型 AmfS ペプチ

ドのホモログが、本菌をモデルとした一連

の形態分化の研究で SapB として知られて

きた気中菌糸形成を誘発するペプチドその

ものであることが明らかになっている

13,15,16。

3. 放線菌代謝産物に見る生物間相互作

上述の A-ファクターならびに関連の化合

物は、生産菌自身の二次代謝産物生産なら

図6 異種放線菌間のクロストークによる抗

生物質生産の誘発

S. scabrisporus(左端)のコロニーから放

出される化学物質の濃度勾配に応じて隣接

する S. griseorubiginosus のコロニーにお

ける抗生物質生産の誘発が認められる。抗生

物質は図2と同様に枯草菌の重層によって

可視化している。

8

Page 62: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

びに形態分化の開始を制御する自己調節因

子として機能していた。筆者らは次に、類似

の誘導現象が、異なる放線菌の間において

観察される可能性について、様々な株の間

におけるクロストーク実験を通じて検証し

た。その結果、予想を上回る数の組み合わせ

において、気中菌糸形成や抗生物質生産の

促進がおこるものが見いだされた(図6に

事例)17。それらの結果をもとに、放線菌の

代謝産物の中には異なる菌の間の相互作用

を仲介する役割を担うものが含まれる可能

性があることを見いだしつつある。

3-1 鉄イオンの奪い合い

異なる放線菌の種間におけるクロストー

ク実験をもとに同定された化合物の一つは、

デフェリオキサミンE(図7)であった。本

化合物は、S. griseusによって生産・分泌

され、隣接する Streptomyces tanashiensis

の増殖と分化および抗生物質生産を顕著に

促進する活性に基づいて単離された 18。デ

フェリオキサミンは、鉄イオンを包み込ん

で細胞内に取り込む籠としての役割を有す

るシデロフォアの一種であり、放線菌をは

じめいくつかの細菌によって生産されるこ

とが知られている。恐らく、上述の S.

tanashiensisはその生産性を欠損している

ために鉄の取り込み効率が低く単独では増

殖能が弱いが、隣接する S. griseusによっ

て生産された同物質が鉄イオンを包摂した

状態で存在すると、それを取り込むことで

鉄イオンを充足させ、顕著な増殖と分化を

行うと考えられた。

この S. tanashiensisのように、デフェ

リオキサミンの生産能はもたないが、その

取り込みに関与する膜輸送系を有している

菌は、他にも酵母等で知られていた 18。そこ

で筆者らはさらに、本化合物の添加によっ

て影響を受ける菌株の探索を実施し、デフ

ェリオキサミンの添加がさまざまな株に多

図 7 異種放線菌間のクロスト

ークに基づいて同定された化合

デフェリオキサミン E は S.

griseus が 生 産 し S.

tanashiensis の増殖と分化を誘

発する物質として同定された。プ

ロモマイシンは図 6 に示したク

ロストークに介在する誘発因子

として、SF2768 はそれによって

生産が誘発される抗生物質とし

てそれぞれ同定された。

9

Page 63: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

様な形質の変化をひきおこすことを見いだ

した 19。特に、Micrococcus属に属する分離

株は、デフェリオキサミン添加条件では通

常の増殖を示したが、非添加の条件ではほ

とんど増殖が見られないという高い依存性

を示した。また、増殖度には大きく影響しな

いが、粘性物質や色素の生産、または遊走性

が顕著に誘発されるものも見いだされた。

一方、0.1 mMの本物質の添加によって逆に

完全に増殖が阻害されるものも数多く見つ

かった。これらの株は、異なるタイプのシデ

ロフォアに鉄の取り込みを依存し、デフェ

リオキサミンの取り込み能を有しないと推

測された。そのため、添加された過剰量のデ

フェリオキサミンによって鉄がキレートさ

れることで、本来の取り込みメカニズムに

よる鉄の獲得ができず、増殖を阻害された

ものと考えられた。

上記の観察は、図8に示すような鉄の取

り込みに関する微生物間の協調と競合の構

図を想起させる。すなわち、Streptomyces属

は広くデフェリオキサミンを生産・分泌し

て鉄イオンを包摂して取り込み、活性に鉄

を必要とする酵素等に供給している。さら

にデフェリオキサミンは、Streptomyces属

以外にもその合成能をもたない株を含め

様々な菌にも利用されていると考えられる。

一方、異なるシデロフォアについても類似

の群集構造が存在し、それは植物について

も同様と推測される。このように、環境中に

はシデロフォアの利用性にもとづいた複数

の集団が存在し、その間の競合と集団内で

の協調が環境中における微生物群集の構造

基盤を形成していると考えられる。

3-2. 低濃度の抗生物質が誘発する抗生

物質生産-その1

デフェリオキサミンに続いて筆者らが同

定 し た 化 合 物 は 、 Streptomyces

scabrisporusに分類される分離株によって

生産され Streptomyces griseorubiginosus

の抗生物質生産を誘導する活性(図6)を示

す物質である。構造決定の結果、それは図7

に示すポリエーテルであることが明らかに

なった 20。プロモマイシンと命名された本

化合物は、それ自身がイオノフォアとして

作用する抗生物質である。本物質の添加は、

S. griseorubiginosus 以外にも複数の

Streptomyces属細菌株の抗生物質生産を促

進した。また、モネンシンをはじめとする類

似のイオノフォア系抗生物質も同様の活性

を示すことが見いだされた。

興味深いことに、プロモマイシンやモネ

図 8 シデロフォアの利用

性に基づく微生物群集構築

放線菌が広く生産するシデ

ロフォアであるデフェリオ

キサミンは、その生産能力

を持たない他の微生物にも

広く取り込まれ鉄の補給に

利用される。同様の体系は

異なるタイプのシデロフォ

アについても存在し、各シ

デロフォアグループ間で鉄

の獲得を巡る競合がおこっ

ていると考えられる。

10

Page 64: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

ンシンによる抗生物質生産の誘導は、それ

が抗生物質としての活性を示すより低い濃

度 ( subinhibitory concentration of

antibiotics; SICA)においても認められた。

昨今では、抗生物質としての活性を示す生

理活性物質も低濃度においてはそれと異な

る生理作用を発揮する可能性が広く議論さ

れるようになったが、プロモマイシンの作

用はそれを具体的に示す一つの先駆的事例

といえる。

上述の促進現象において、プロモマイシ

ンの作用によって生産が誘発された S.

griseorubiginosusの抗生物質は、本菌の単

独培養では生産がおこらないことから、

従来の探索では見いだされない新規の化合

物である可能性が期待された。そこで、市販

のモネンシンを添加した培地条件で生産誘

導させた本抗生物質を単離精製し構造解析

を行ったところ、本化合物は特許において

記載がなされているイソニトリル抗生物質

SF2768 と同一であることが判明した 21。特

許に記載の生産菌は単独で本化合物を生産

していることから、同一の構造をもつ代謝

産物も菌株によってその生産性を決定する

遺伝・生理学的背景が異なるものと考えら

れた。上記の化合物は既知であったが、同様

の促進現象によって生産される化合物の中

にはこれまでに知られていない構造や作用

を有するものが含まれる可能性は依然とし

て高く残されていると筆者は考えている。

3-3 低濃度の抗生物質が誘発する抗生物

質生産-その 2

筆者らは、放線菌種間における相互作用

の探索研究とは独立に、培地への銅イオン

とグルコースの添加が Streptomyces の分

化と二次代謝に及ぼす影響に着目した研究

を進めた 22,23。特に、低濃度(数μM)の銅

イオンの添加は分化と二次代謝の開始に対

して促進的に作用することが様々な菌株に

共通して観察された。このことから、銅イオ

ンに依存した制御メカニズムが放線菌にお

ける分化の開始に共通して作用しているも

のと予想された。

そこでまず、SenC/Sco1ファミリーの蛋白

質に着目した検証を行った 24。このファミ

図 9 銅イオンの取り込みに関与す

る sco オペロンの役割

SenC/Sco1 ファミリーの銅シャペロ

ンをコードする scoC遺伝子が含まれ

る scoオペロンは Streptomyces属に

広く分布する。銅イオン欠乏下で転

写が誘導される本オペロンは、銅イ

オンの細胞内への取り込みと銅酵素

への運搬に関与していると考えられ

る。銅を要求する酵素にはシトクロ

ム c酸化酵素 CcO、リジルオキシダー

ゼ HyaS ならびにラッカーゼ EpoA が

含まれる。HyaSは細胞の凝集に、EpoA

はリグニンに含まれるフェノールの

酸化に関与する。CcOが高い活性を示

すことは栄養細胞が分化を開始する

ために重要であると考えられてい

る。

11

Page 65: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

リーの蛋白質は多くの微生物に分布し、銅

要求性の酵素に銅を運搬する銅シャペロン

として機能する。Streptomyces属放線菌の

SenC/Sco1ホモログは、7つのコード領域か

ら成る sco オペロンの 3 つめの読み取り枠

scoCにコードされていた(図 9)。本オペロ

ンの構造は Streptomyces 属で広く保存さ

れていることから、ここにコード化されて

いる銅イオンの利用に関する機能はこのグ

ループのバクテリアに共通した生理的意義

をもつものと推測される。

S. coelicolor A3(2)および S. griseus

において scoCを破壊したところ、いずれの

破壊株も抗生物質生産と形態分化を行う能

力の低下を示し、それは銅イオンの添加に

よって回復した。この結果から、ScoCによ

る銅イオンの運搬に活性を依存する何らか

の銅蛋白質の機能が二次代謝と分化の開始

に関与していると予想された 24。scoC 破壊

株では、銅オキシダーゼである末端呼吸酵

素シトクロム c オキシダーゼ(CcO)、リジ

ルオキシダーゼと予想される HyaS、および

小型ラッカーゼ EpoA 25,26の活性が顕著に低

下しており、いずれも銅の添加によって回

復することが観察された。このことから、少

なくともこれらの酸化酵素への銅の運搬が

ScoCによって仲介されていると考えられた

(図 9)。

そこで次に、シトクロム cオキシダーゼ

をコードする遺伝子の破壊を試みた 27。

Streptomyces属放線菌は、多くの好気性細

菌と同様に 2 種の末端呼吸酵素、シトクロ

ム cオキシダーゼおよびシトクロム bdオキ

シダーゼを有している(図 10)。 S.

coelicolor A3(2)において前者をコードす

る cta ならびに後者をコードする cyd 遺伝

子をそれぞれ破壊したところ、いずれの破

壊株においても二次代謝と形態分化の能力

の低下が認められ、特に cta 破壊株でそれ

が顕著であった。

図 10 放線菌が保有する 2種の末端呼吸酵素

多くの好気性細菌と同様に、放線菌には 2 種のシトクロム酸化酵素が存在する。銅を要求するシトク

ロム c 酸化酵素は酸素分子に対する親和性が低いために高い濃度の酸素を必要とする。一方、銅を必

要としないシトクロム bd酸化酵素は酸素親和性が高く低い濃度の酸素条件でも活性を示す。いずれの

酸化酵素も破壊すると分化の阻害が観察される。

12

Page 66: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

呼吸酵素の破壊は細胞内のエネルギー準

位に大きく影響すると考えられたことから、

次に細胞内の ATP 含量を測定したところ、

意外なことに呼吸酵素の破壊株は親株に比

べて顕著に高い細胞内 ATP レベルを示すこ

とが判明した 27。顕著に高い細胞内 ATP 含

量は、上記の scoC破壊株およびいくつかの

bld変異株においても同様に観察された。呼

吸酵素の破壊がなぜ ATP レベルの上昇を引

き起こすかは現在不明であるが、呼吸欠損

を補う恒常性維持機構が発動することで誘

発される代替の代謝メカニズムが ATP の生

成レベルを維持すると同時に、ATPを消費す

る効率が何らかの要因によって低下するこ

とがその背景にあるものと考えられる。

上記の呼吸酵素欠損株についての観察は、

エネルギー代謝と分化の開始が連携してお

り、細胞内 ATP レベルが分化開始に対する

信号としての役割を担っている可能性を想

起させた。そこで、破壊株の形質に対する

ATP合成阻害剤 CCCPの添加効果を観察した

ところ、増殖を阻害する濃度より低い一定

の濃度範囲において抗生物質生産と気中菌

糸形成の回復が観察された(図 11)27。同様

の効果はオリゴマイシンなどの ATP 合成阻

害剤にも観察された。この現象は、細胞内

ATPレベルが分化・二次代謝の開始に制御的

に連動しているとする仮説を強く支持する

ものである。同時に、ATP合成の阻害剤とし

て作用する抗生物質にも、上記のイオノフ

ォアと同様に、増殖阻害濃度より低濃度で

は分化や二次代謝を誘発する因子としての

作用を発揮するものがあることを強く示唆

している。

4. 放線菌代謝産物の多様な役割

上記のように筆者らは、放線菌の代謝産

物が果たす役割には、従来観察されてきた

抗菌性などの生理活性にとどまらない多様

性が存在する可能性を見いだした(図12)。

一連の研究の引き金を引いた A-ファクター

は、生産菌自身に作用してその二次代謝な

らびに形態分化の開始を誘発するスイッチ

として機能し、同一集団内の細胞が同じタ

イミングで抗生物質生産と形態分化を開始

することを可能にしていた。生産菌自身の

増殖も阻害する抗生物質の場合、その生産

に先立ってあらかじめそれに対する耐性メ

カニズムを発現させておく必要がある。そ

のため、上記の Smの事例に見られるように、

抗生物質の生合成クラスター中には初期に

発現する遺伝子群の中に自己耐性遺伝子が

含まれていることが多い。しかし、そのクラ

スターの発現時期が細胞集団全体でそろわ

ないと、一部の細胞によって生産された抗

図 11 ATP 合成阻害剤 CCCP による分化と抗生

物質生産の回復

シトクロム c 酸化酵素の銅結合ドメインをコー

ドする ctaCD の欠失変異株は通常では気中菌糸

と胞子の形成を行わず、また色素性抗生物質も

生産しないが、ATP 合成阻害剤 CCCP(中央の濾

紙ディスクから供給)の一定の濃度範囲におい

てそれらの回復が観察される。

13

Page 67: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

生物質によって周辺の細胞が死滅する可能

性がある。形態分化についても、気中菌糸形

成の開始とともに栄養菌糸を分解するため

に発現するプロテアーゼ等が同様の影響を

及ぼす可能性がある。A-ファクターが拡散

して一斉に作用することは、そうしたタイ

ミングのずれを回避し、細胞集団を同調的

に制御するために重要な役割をもつと推測

される。

A-ファクターやバージニアブタノライド

などのγ-ラクトンシグナルは、その受容体

への結合特異性が厳密で、異なる側鎖構造

を有するγ-ラクトンを作る種の間での交

信は起こらないと考えられている。一方、同

一の構造をもつγ-ラクトンが複数の異な

る種によって生産される事例も知られてお

り、そうした場合には種間クロストークが

起こる可能性が指摘されている 28。同様の

細菌種内・種間における信号のやりとりの

可能性は、前述のグラム陰性菌が生産する

AHL についてもその合成遺伝子と受容体遺

伝子のゲノム上の分布に基づいた議論がな

されている 29。

異なる放線菌の間においてクロストーク

が実際におこることは、筆者らが実施した

様々な株の間におけるクロストークアッセ

イによって強く示唆された。一方の菌が生

産する拡散性物質に応答してもう一方の菌

の分化や抗生物質生産が促進されていると

考えられる組み合わせの中には、γ-ラクト

ン化合物による作用が含まれている可能性

も考えられるが、これまでに同定された因

子はいずれもγ-ラクトン化合物とは異な

る代謝産物であった。

種間促進因子として一つ目に同定された

デフェリオキサミンは、放線菌によって広

く生産されるシデロフォアであった。筆者

らによる調査は、鉄イオンを包摂した本物

質は、その生産能力を持たない菌にも広く

取り込まれ、鉄イオン源として利用されて

いることを示していた。このことから、本物

質は微生物界におけるグローバルな共生因

子としての役割を果たしていると考えるこ

とができる。一見、生産者の放線菌はエネル

ギーを浪費しているように思われるが、本

シデロフォアを様々な菌が利用することは

生産菌の周囲に活発な代謝活性をもつ微生

物コミュニティーを発達させることにつな

がり、それが生産菌に副次的なメリットを

もたらす可能性も考えられる。

二つ目に同定されたプロモマイシンは、

モネンシンに類縁のポリエーテルで、イオ

ノフォアとして作用する抗生物質であった。

特筆すべき点は、本物質の二次代謝促進活

性が抗生物質として作用するより低い濃度

でも認められたことで、抗生物質として知

図 12 放線菌の代謝産物が果たす多様な役割(概

念図)

放線菌が生産・分泌する代謝産物には、自身の形

質を制御する自己調節因子や鉄をはじめとする環

境中の特定の因子を取り込むための分子が存在す

るが、それらの中には他の菌にも同様に受容ない

し利用されるものが含まれる。また、高濃度の抗

生物質のように他の菌の増殖に阻害的に作用する

もの、一方で同じ抗生物質も低濃度では異なる作

用を示すものも存在する。そうした複雑な代謝産

物の作用の重なりの上に微生物の群集構造が構築

されていると考えられる。

14

Page 68: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

られる化合物が阻害濃度未満において抗生

物質とは異なる生理作用を示す事例となっ

た。冒頭で触れたように、抗生物質が自然界

において実際に抗生物質として作用するか

については、抗生物質を定義したワクスマ

ン自身も疑問を投げかけている。その詳細

は明らかでないが、上記のポリエーテルに

よる抗生物質生産の促進にはイオノフォア

としてのそれとは異なる作用機序が関与し

ている可能性がある。

阻害濃度未満の抗生物質が放線菌の分化

と二次代謝を誘発する事例として、筆者ら

は ATP 合成阻害剤にも同様の効果を見いだ

した。この効果はおそらく、末端呼吸におけ

る異常によって起こる細胞内 ATP レベルの

上昇が低濃度の呼吸阻害剤によってある水

準にまで抑えられることによってひき起こ

されると考えられる。なぜ呼吸の異常によ

って細胞内 ATP レベルが増大するのかにつ

いての詳細は不明であるが、一次代謝にお

けるエネルギー効率と二次代謝・細胞分化

の開始決定機構が制御的に連動しているこ

とは想像に難くない。そこに細胞内 ATP レ

ベルが指標として関わっていることは、放

線菌の生理学的特性ならびに有用物質生産

に関する基礎的な理解に対し、新たな洞察

を与えるものと期待される。

5. おわりに

筆者らは、放線菌の形態分化と二次代謝

が自己調節物質と内在因子によって柔軟か

つ精密に調節される一方、その代謝産物は

異なる生物どうしの間の共生相互作用に介

在して多様な作用を発揮し、それらを通じ

て生物群集構造の構築に一定の役割を果た

しているという概念を創出した。昨今で

は、放線菌の二次代謝遺伝子群の多くが通

常の培養条件では発現していないという問

題が大きく取り上げられているが、筆者ら

の研究成果は、そうした遺伝子の中には他

生物との共生・共存・競合を含め、多様な

環境への適応応答に依存して発現するもの

が含まれる可能性を示している。これはす

なわち、そうした従来の培養条件には反映

されていない要素をいかに分離・培養系に

取り入れることができるかが、これからの

微生物探索における重要課題であることを

意味している 30。

代謝産物の機能が生物群集構造の構築を

担っていることはまた、そうした化合物の

作用を通じて目に見えない群集の実態を探

る研究手法に一定の有効性を見いだせる可

能性を示唆している。農芸化学分野で古く

から取り組まれてきた、特定化合物をプロ

ーブに用いて生体中の複雑な生理現象とそ

の分子メカニズムを探る研究手法は、最近

ではケミカルバイオロジーという言葉を持

って広く認識されるようになった。同様の

概念は複雑な生態系の理解にも適用できる

可能性があり、実際にケミカルエコロジー

と呼ばれる生態学研究領域が主として昆虫

フェロモンの作用に着目して発展してき

た。筆者は、同様の研究手法を通じて、見

えない微生物の群集構造が基礎となる生態

系にあらたな理解が進むと同時に、そこか

ら次世代の微生物バイオテクノロジーが拓

かれることを期待している。

謝辞

本研究は、主として日本大学生物資源科学

部・生命工学研究室において、またその礎

15

Page 69: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

となった研究は東京大学農学部・醗酵学教

室において行われました。格別のご指導を

賜りました別府輝彦先生ならびに故堀之内

末治先生に深く感謝申し上げます。同時

に、本研究推進の要所を担ってくださった

高野英晃博士、白鳥初美博士、天野昭一さ

んをはじめとする生命工学研究室の同僚な

らびに卒業生・学生の皆様の多大な努力に

心から敬意と謝意を表します。吉田 稔先

生、西山 真先生、洪 淳光博士、Duška

Vujaklija博士、三宅克英博士、大西康夫

博士、尾仲宏康博士をはじめとする醗酵学

教室時代の指導者・同門の皆様、本研究を

様々にご指導・ご支援くださいました作田

庄平先生、降旗一夫先生、池田治生先生、

岡本晋博士はじめ日本放線菌学会の皆々様

に厚く御礼申し上げます。

引用文献

1. Davies, J. (2006). Are antibiotics naturally

antibiotics? J. Ind. Microbiol. Biotechnol., 33,

496-499.

2. 別府輝彦. (2010). A-ファクターの再発見. 化学

と生物, 48, 498-502.

3. Horinouchi, S., Kumada, Y. and Beppu, T. (1984).

Unstable genetic determinant of A-factor

biosynthesis in streptomycin-producing

organisms: cloning and characterization. J.

Bacteriol., 158, 481-487.

4. Engebrecht, J. and Silverman, M. (1984).

Identification of genes and gene products

necessary for bacterial bioluminescence. Proc.

Natl. Acad. Sci. U S A, 81, 4154-4158.

5. Okamoto, S., Nakamura, K., Nihira, T. and

Yamada, Y. (1995). Virginiae butanolide binding

protein from Streptomyces virginiae. Evidence that

VbrA is not the virginiae butanolide binding

protein and reidentification of the true binding

protein. J. Biol. Chem., 270, 12319-12326.

6. Onaka, H., Ando, N., Nihira, T., Yamada, Y.,

Beppu, T. and Horinouchi, S. (1995). Cloning

and characterization of the A-factor receptor gene

from Streptomyces griseus. J. Bacteriol., 177,

6083-6092.

7. Distler, J., Ebert, A., Mansouri, K., Pissowotzki, K.,

Stockmann, M. and Piepersberg, W. (1987).

Gene cluster for streptomycin biosynthesis in

Streptomyces griseus: nucleotide sequence of three

genes and analysis of transcriptional activity.

Nucleic Acids Res., 15, 8041-8056.

8. Vujaklija, D., Ueda, K., Hong, S.K., Beppu, T. and

Horinouchi, S. (1991). Identification of an A-

factor-dependent promoter in the streptomycin

biosynthetic gene cluster of Streptomyces griseus.

Mol. Gen. Genet., 229, 119-128.

9. Vujaklija, D., Horinouchi, S. and Beppu, T. (1993).

Detection of an A-factor-responsive protein that

binds to the upstream activation sequence of strR,

a regulatory gene for streptomycin biosynthesis in

Streptomyces griseus. J. Bacteriol., 175, 2652-

2661.

10. Ohnishi, Y., Kameyama, S., Onaka, H. and

Horinouchi, S. (1999). The A-factor regulatory

cascade leading to streptomycin biosynthesis in

Streptomyces griseus: identification of a target

gene of the A-factor receptor. Mol. Microbiol., 34,

102-111.

11. Horinouchi, S. (2007). Mining and polishing of the

treasure trove in the bacterial genus Streptomyces.

Biosci. Biotechnol. Biochem., 71, 283-299.

12. Horinouchi, S. and Beppu, T. (2007). Hormonal

control by A-factor of morphological development

and secondary metabolism in Streptomyces. Proc.

Jpn. Acad. Ser. B Phys Biol Sci, 83, 277-295.

13. Chandra, G. and Chater, K.F. (2014).

Developmental biology of Streptomyces from the

perspective of 100 actinobacterial genome

sequences. FEMS Microbiol. Rev., 38, 345-379.

14. Ueda, K., Miyake, K., Horinouchi, S. and Beppu,

T. (1993). A gene cluster involved in aerial

mycelium formation in Streptomyces griseus

encodes proteins similar to the response regulators

of two-component regulatory systems and

membrane translocators. J. Bacteriol., 175, 2006-

2016.

15. Kodani, S., Hudson, M.E., Durrant, M.C.,

Buttner, M.J., Nodwell, J.R. and Willey, J.M.

(2004). The SapB morphogen is a lantibiotic-like

peptide derived from the product of the

developmental gene ramS in Streptomyces

coelicolor. Proc. Natl. Acad. Sci. U S A, 101,

11448-11453.

16. Takano, H., Matsui, Y., Nomura, J., Fujimoto, M.,

Katsumata, N., Koyama, T., Mizuno, I., Amano,

S., Shiratori-Takano, H., Komatsu, M. et al.

(2017). High production of a class III lantipeptide

AmfS in Streptomyces griseus. Biosci. Biotechnol.

Biochem., 81, 153-164.

16

Page 70: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

17. Ueda, K., Kawai, S., Ogawa, H., Kiyama, A.,

Kubota, T., Kawanobe, H. and Beppu, T. (2000).

Wide distribution of interspecific stimulatory

events on antibiotic production and sporulation

among Streptomyces species. J. Antibiot., 53, 979-

982.

18. Yamanaka, K., Oikawa, H., Ogawa, H.O., Hosono,

K., Shinmachi, F., Takano, H., Sakuda, S.,

Beppu, T. and Ueda, K. (2005). Desferrioxamine

E produced by Streptomyces griseus stimulates

growth and development of Streptomyces

tanashiensis. Microbiology, 151, 2899-2905.

19. Eto, D., Watanabe, K., Saeki, H., Oinuma, K.,

Otani, K., Nobukuni, M., Shiratori-Takano, H.,

Takano, H., Beppu, T. and Ueda, K. (2013).

Divergent effects of desferrioxamine on bacterial

growth and characteristics. J. Antibiot., 66, 199-

203.

20. Amano, S., Morota, T., Kano, Y.K., Narita, H.,

Hashidzume, T., Yamamoto, S., Mizutani, K.,

Sakuda, S., Furihata, K., Takano-Shiratori, H.

et al. (2010). Promomycin, a polyether promoting

antibiotic production in Streptomyces spp. J.

Antibiot., 63, 486-491.

21. Amano, S.I., Sakurai, T., Endo, K., Takano, H.,

Beppu, T., Furihata, K., Sakuda, S. and Ueda,

K. (2011). A cryptic antibiotic triggered by

monensin. J. Antibiot., 64, 703.

22. Ueda, K., Tomaru, Y., Endoh, K. and Beppu, T.

(1997). Stimulatory effect of copper on antibiotic

production and morphological differentiation in

Streptomyces tanashiensis. J. Antibiot., 50, 693-

695.

23. Ueda, K., Endo, K., Takano, H., Nishimoto, M.,

Kido, Y., Tomaru, Y., Matsuda, K. and Beppu,

T. (2000). Carbon-source-dependent transcripti-

onal control involved in the initiation of cellular

differentiation in Streptomyces griseus. Antonie

Van Leeuwenhoek, 78, 263-268.

24. Fujimoto, M., Yamada, A., Kurosawa, J., Kawata,

A., Beppu, T., Takano, H. and Ueda, K. (2012).

Pleiotropic role of the Sco1/SenC family copper

chaperone in the physiology of Streptomyces.

Microb. Biotechnol., 5, 477-488.

25. Endo, K., Hayashi, Y., Hibi, T., Hosono, K., Beppu,

T. and Ueda, K. (2003). Enzymological

characterization of EpoA, a laccase-like phenol

oxidase produced by Streptomyces griseus. J.

Biochem., 133, 671-677.

26. Endo, K., Hosono, K., Beppu, T. and Ueda, K.

(2002). A novel extracytoplasmic phenol oxidase

of Streptomyces: its possible involvement in the

onset of morphogenesis. Microbiology, 148, 1767-

1776.

27. Fujimoto, M., Chijiwa, M., Nishiyama, T., Takano,

H. and Ueda, K. (2016). Developmental defect of

cytochrome oxidase mutants of Streptomyces

coelicolor A3(2).. Microbiology, 162, 1446-1455.

28. Nodwell, J.R. (2014). Are you talking to me? A

possible role for gamma-butyrolactones in

interspecies signalling. Mol. Microbiol., 94, 483-

485.

29. Subramoni, S. and Venturi, V. (2009). LuxR-

family 'solos': bachelor sensors/regulators of

signalling molecules. Microbiology, 155, 1377-

1385.

30. Ueda, K. and Beppu, T. (2017). Antibiotics in

microbial coculture. J. Antibiot., 70, 361-365

17

Page 71: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

2016年度学会賞受賞

上田 賢志 博士

(日本大学生物資源科学部)

「放線菌の形態分化と二次代謝の適応応答機構に関する研究」

Dr. Kenji Ueda

Mechanism of adaptive response controlling morphological and physiological

development in Streptomyces

Department of Applied Biological Science, College of Bioresource Sciences,

Nihon University

18

Page 72: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

2017 年度(第 32 回)日本放線菌学会大会のご案内

大会長 片岡 正和

(信州大学大学院総合理工学系研究科生命医工学専攻)

2017 年度日本放線菌学会大会は、長野県長野市若里文化ホールにて開催することになりました。

日本を代表する観光地長野でさわやかな気候、おいしい季節の開催となります。 多くの皆様のご参

加を心よりお待ち申し上げます。

詳しい情報は大会のウェブサイト(http://awamori.urdr.weblife.me/index.html)、日本放線菌学会の

ウェブサイト(http://www.actino.jp)を通じて随時ご案内いたします。

概 要

期日:平成 29 年 9 月 7 日(木),8 日(金)

会場:長野市若里市民文化ホール

〒380-0928 長野市若里3丁目22番2号 (徒歩またはタクシーをお奨めします)

(JR 長野駅徒歩 20 分,タクシー10分,バス 15 分)

長野駅善光寺口(2番のりば)~日赤・松岡線「ビッグハット前」下車徒歩1分

路線番号:21 番「松岡・サンマリーン・大塚南」)

TEL:026-223-2223 http://www.nagano-mwave.co.jp/wakasato_hall/

講演申し込み,講演要旨提出の締切日:平成 29 年 7 月 7 日(金)七夕

大会参加の事前申し込みの締切日:平成 29 年 7 月 14 日(金)

参加費(講演要旨集代を含む)

7 月 14 日まで 7 月 15 日~当日

正会員: 8,000 円 10,000 円

学生会員: 2,000 円 3,000 円

非会員: 10,000 円 12,000 円

非会員学生: 3,000 円 4,000 円

*要旨集(2,000 円)のみをご希望の方は, 大会事務局までご連絡下さい。

懇親会

日時:平成 29 年 9 月 7 日(木)19:00~21:00 (予定)

会場:ホテルメトロポリタン長野 (http://www.metro-n.co.jp) 3F あさま

会費:

7 月 14 日まで 7 月 15 日~当日

正会員: 7,000 円 9,000 円

学生: 4,000 円 5,000 円

非会員: 9,000 円 11,000 円

非会員学生: 6,000 円 8,000 円

プログラム概要(詳細は大会ウェブサイトをご覧下さい。)

1. 一般講演(口頭発表とポスター発表 [ショートトークあり])

2. 受賞講演

3. 招待講演 (英国と日本のシステム・合成生物学関連研究者を予定)

4. エクスカーション 大会終了後バスで善光寺へ、18 時頃長野駅着 (無料)

19

Page 73: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

参加および講演申し込み要領 ● 参加および講演申し込み (今大会から大会登録システムを導入しています)

大会ウェブサイト(http://awamori.urdr.weblife.me/index.html)の参加登録より、リンク先の大会登録シ

ステムで参加・講演登録して下さい。

*講演申し込み、講演要旨提出の締切日:平成 29 年 7 月 7 日(金)七夕

*大会参加の事前申し込みの締切日:平成 29 年 7 月 14 日(金)

● 参加費・懇親会費等の振込み:下記の口座へお振込み下さい。お振込みには郵便局備え付けの

払込用紙、ATM 払込みもしくは郵貯ダイレクトをご利用下さい。

郵便局から

口座記号番号 :11190 − 37196921

口座名称(漢字):日本放線菌学会第 32 回大会

口座名称(カナ):ニホンホウセンキンガッカイダイサンジュウニカイタイカイ

他行等から 銀行名:ゆうちょ銀行

店名:一一八(イチイチハチ)店、店番:118

預金種目:普通 口座番号:3719692

口座名称(カナ):ニホンホウセンキンガッカイダイサンジュウニカイタイカイ

● 講演要旨:大会登録システムにある雛形をダウンロードして登録システムで入稿して下さい。

所属は和文・英文とも省略形で記載してください。英文タイトル等は英文プログラムに使用し

ますので, 2 頁目に記載して下さい。

● 発表形式の詳細等は、電子メールにてお知らせいたします。

● 発表スライドならびにポスターは英語で作成することを推奨します。

お問合せ先(大会事務局)

〒380-8553 長野市若里 4-17-1

信州大学工学部 片岡研内

第 32 回放線菌学会大会事務局

Tel: 026-269-5538

E-mail: [email protected]

20

Page 74: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

2017年度日本放線菌学会三賞授賞者の決定について

2017年4月21日

会長 早川 正幸

日本放線菌学会は、下記のように2017年度日本放線菌学会三賞授賞者を決定しましたので以下にご

報告致します。

日本放線菌学会大村賞(学会賞)および日本放線菌学会功績功労賞候補者については、理事、評議

員、監事およびその経験者が推薦することができます。日本放線菌学会浜田賞(研究奨励賞)候補

者については、自薦も含めてすべての正会員が推薦できることになっておりますので、今後も、積

極的なご推薦をお願い申し上げます。

【大村賞(学会賞)】

田村 朋彦氏(独立行政法人製品評価技術基盤機構 バイオテクノロジーセンター)

「日本及びアジア地域の放線菌多様性の研究とNBRC放線菌リソースの充実」

【功績功労賞】

浅野 行蔵氏 (北海道大学大学院農学研究院名誉教授, 旭川食品産業支援センター センター長)

「希少放線菌属の探索・発見に関する研究および学会への貢献」

【浜田賞(研究奨励賞)】

稲橋 佑起氏(北里大学北里生命科学研究所)

「植物由来放線菌の分離とその応用研究」

以上

21

Page 75: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

報告 第 60 回日本放線菌学会学術講演会

主催 : 日本放線菌学会

日時 : 平成 29 年 3 月 10 日(金) 13:00~17:40

場所 : 北里大学薬学部 1 号館 6 階 1603 教室

参加者: 64 名

プログラム

1.『切らないゲノム塩基編集の多様な生物への応用』

西田 敬二 (神戸大学 大学院科学技術イノベーション研究科)

2.『微生物解析におけるバイオインフォマティクスの活用』

岩崎 渉 (東京大学 大学院理学系研究科)

3.『動物に病原性を示す放線菌 Actinomycetaceae』

村上 覚史 (東京農業大学 農学部)

4.『ホウ素を元にした創薬

―米国ベンチャー企業で2剤の FDA 認可を受けた経験談とともにー』

赤間 勉 (元 Anacor Pharmaceuticals,Inc.)

5.『一流誌で目立つ論文撤回:その論文、信じられますか?』

長田 裕之 (理化学研究所 環境資源科学研究センター)

切らないゲノム塩基編集の多様な生物への応用

西田 敬二 (神戸大学大学院科学技術イノベーション研究科)

[email protected]

様々な生物種のゲノム情報を直接操作することが出来るゲノム編集技術は近年著しい進歩を遂げ

ており、生物工学はもちろんのこと生命科学全域においても革命的なツールとなりつつある。代表的

な ZFN、TALEN、CRISPR などは人工ヌクレアーゼと呼ばれるものであるが、これらの技術はいずれ

も標的としたい DNA 配列を特異的に認識するようデザインすることが可能であり、標的部位におい

て DNA 二重鎖切断を引き起こして、その後に宿主細胞が修復する過程で配列の変換を期待するもの

である。これまで相同組み換えおよびジーンターゲッティングが困難であった材料においても非常に

有効であることから、動物など高等真核生物を中心に急速に導入が進んでいる。しかしながら染色体

切断による細胞毒性が問題となり、特に多くの微生物等では多くの場合に致死的で利用法が限定的と

なっている。

私たちは新たなゲノム編集技術として、ヌクレアーゼ活性と代わる脱アミノ化による塩基変換反応

を採用することによってDNAを切らずに書き換える新たなゲノム編集技術 Target-AIDの開発に成功

22

Page 76: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

した。これにより標的に点変異を直接導入してゲノム情報を書き換えることが可能で、より精密でか

つ細胞毒性の低いゲノム編集技術として確立することができた。あらゆる生物種において実証が進め

られているが、特に微生物においては多点同時変異などが容易に行えるようになり、幅広い応用展開

が期待される。

参考文献

1) Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune sys-

tems. Science (2016)

2) Shimatani et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fu-

sion. Nature Biotechnology. accepted

微生物解析におけるバイオインフォマティクスの活用

岩崎 渉 (東京大学 大学院理学系研究科)

[email protected]

近年の微生物解析においてバイオインフォマティクスは不可欠なものとなった。特に第二世代DN

Aシーケンサ(次世代DNAシーケンサ、超並列DNAシーケンサとも)の登場はゲノム・メタゲノ

ムデータ取得のスピードを革命的に向上するとともに、そのコストを大幅に押し下げた 1)。急激な技

術革新を表す経験則としてはコンピュータの集積回路に使われる「ムーアの法則」が人口に膾炙して

いるが、驚くべきことに、DNAシーケンサの性能向上のスピードはそのムーアの法則によるコンピ

ュータの性能向上のスピードを遥かに上回っている。必然的に、第二世代DNAシーケンサから産出

されるデータを「力ずくで」コンピュータ解析するアプローチには限界が見えつつあり、バイオイン

フォマティクス分野においては、最新の情報科学のテクニックに基づいた高速なアルゴリズムの開発、

および、新しい生物学的アイデアに基づいた巧妙な切り口からの解析手法の開発が喫緊の課題となっ

ている。

DNAシーケンサの性能向上が微生物学分野にもたらした最も大きな変化は、第一に解読済み微生

物ゲノム配列数の加速度的なペースでの増加であり、第二に環境中の微生物ゲノムDNAを直接読み

取るメタゲノム解析の普遍化であろう。世界中で決められつつあるゲノム配列の全貌を把握しうる組

織はすでにどこにも存在しないが、このことは、微生物ゲノム配列データを大規模に比較解析するこ

とで、微生物ゲノムがどのように形作られるのか、そのメカニズムを探求することが可能になりつつ

あることを意味している。これまでに演者ら自身も、過去の微生物種がどのようなゲノムを持ってい

たかを高精度に推定するためのアルゴリズムを開発する 2)とともに、微生物ゲノムの進化の過程で

遺伝子水平伝播や遺伝子・ゲノムの重複が大きな役割を果たしたことを明らかにしてきた 3,4,5)。また、

メタゲノム解析は数年前まではごく限られたプロジェクトにおいて採用される研究アプローチであ

23

Page 77: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

ったが、現在では一つの研究室単位でも行われる日常的なアプローチとなった 6)。これらのデータが

もたらす膨大な環境微生物叢情報により、現在では、微生物と環境との関係をより俯瞰的な視点から

捉えることが可能になりつつある 7)。

本講演では、これらの大量のゲノムデータ・メタゲノムデータに日々接しバイオインフォマティク

ス研究を進めている立場から、話題を提供したい。

参考文献

1) Satoshi Hiraoka, Ching-chia Yang, and Wataru Iwasaki.

Metagenomics and bioinformatics in microbial ecology: Current status and beyond. Microbes and Envi-

ronments, 31, 204-212. (2016)

2) Wataru Iwasaki and Toshihisa Takagi.

Reconstruction of highly heterogeneous gene-content evolution across the three domains of life. Bioinfor-

matics, 23, i230-i239. (2007)

3) Wataru Iwasaki and Toshihisa Takagi.

Rapid pathway evolution facilitated by horizontal gene transfers across prokaryotic lineages. PLOS Ge-

netics, 5, e1000402. (2009)

4) Seishiro Aoki, Motomi Ito, and Wataru Iwasaki.

From beta- to alpha-proteobacteria: the origin and evolution of rhizobial nodulation genes nodIJ. Molecu-

lar Biology and Evolution, 30, 2494-2508. (2013)

5) Sira Sriswasdi, Masako Takashima, Ri-ichiroh Manabe, Moriya Ohkuma, Takashi Sugita, and Wataru

Iwasaki.

Global deceleration of gene evolution following recent genome hybridizations in fungi. Genome Re-

search, 26, 1081-1090. (2016)

6) Satoshi Hiraoka, Asako Machiyama, Minoru Ijichi, Kentaro Inoue, Kenshiro Oshima, Masahira Hattori,

Susumu Yoshizawa, Kazuhiro Kogure, and Wataru Iwasaki.

Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East

Japan Earthquake Tsunami. BMC Genomics, 17, 53. (2016)

7) Ching-chia Yang and Wataru Iwasaki.

MetaMetaDB: A database and analytic system for investigating microbial habitability. PLOS ONE, 9,

e87126. (2014)

24

Page 78: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

動物に病原性を示す放線菌 Actinomycetaceae

村上 覚史 (東京農業大学農学部畜産学科家畜衛生学研究室)

[email protected]

獣医師は放線菌と聞くと、誰もが牛の顎に形成される放線菌症の原因菌 Actinomyces bovis を思い浮

かべます。放線菌学会の会員の方々は放線菌と言えば、抗生物質などを生産する Streptomyces 属のこ

とを思い浮かべることでしょう。寄生虫の駆虫薬、イベルメクチンを知らない獣医師はいませんが、

大村智先生のノーベル賞受賞で、それが放線菌の産物であったことを知った獣医師も多かったのでは

ないかと思います。獣医師や医師は放線菌と言えばイコール放線菌症を思い浮るのです。そこで、今

回特に動物における Actinomycetaceae について、私が経験してきた幾つかの症例をもとに病原体とし

ての放線菌についてお話してみようと思います.

臨床的に動物の放線菌症は牛でよく知られ、顎に腫瘍のようなゴツゴツと盛り上がる病巣が形成さ

れ、通称”lumpy jaw”と言われていました。その病巣内に放射状に広がる菌塊(ray-fungus of the cow)

がみられることから A. bovis という種名が誕生しました。豚においても臨床的な放線菌症は昔から知

られており、牛と同様の病巣が乳房に形成されます。起因菌は Actinomyces suis と名付けられていま

したが、しかしその種名である A. suis は現在、尿路感染症の起因菌である Eubacterium suis から転属

された種名として扱われています。したがって、豚の乳房放線菌症の起因菌としての種名ではありま

せん。

Actinomyces 属は口腔内常在菌であると一般に考えられていることから牛の口腔で A. bovis の存在

の有無が調べられています。しかし分離された Actinomyces は A. denticolens, A. howellii, A. slackii とい

う新種ばかりで、肝心の A. bovis はこれまで分離されていません。ヒトの扁桃では、その陰窩に腐生

的な放線菌塊がよくみられます。動物では豚の扁桃陰窩で普通に放線菌塊が存在し、この菌塊は典型

的な放線菌病巣を形成します。豚扁桃分離株を母豚の乳房に接種すると乳房放線菌症を惹起します。

われわれは、牛に病原性の強い A. bovis も扁桃陰窩で放線菌病巣を形成するはずだと考え、67 頭の口

蓋扁桃を集めて調べましたが、病巣は全く存在しませんでした。最近、海外の馬下顎リンパ節膿瘍か

ら A. denticolens が分離されたことから馬の扁桃を調べたところ、ほとんどの扁桃陰窩に放線菌塊が

存在し、それらの分離菌は牛の口腔から分離された A. denticolens と同一菌種でした 1)。さらに驚いた

ことには、豚の扁桃で常在し、乳房放線菌症を起こした Actinomyces sp.も A. denticolens と同一種であ

ることが判明しました(第 31 回放線菌学会)。

その他、Actinomyces 以外にも Arcanobacterium pyogenes は牛に流産を、豚に皮下膿瘍を起こします

が、豚での流産は知られていません。ある時、豚の流産胎仔を調べたところ、その肺病変が牛のそれ

とよく類似したことから豚の Arcanobacterium pyogenes による流産かと考えましたが、細菌学的及び

16S rRNA 解析の結果、新種となり Arcanobacterium abortisuis と命名されました 2)。現在、両種は

Trueperella という新たな属に転属されています 3)。

25

Page 79: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

参考文献

1) Azuma, R., Murakami, S., Ogawa, A., Okada, Y., Myazaki, S. and Makino, T., Arcanobacterium abor-

tisuis sp. nov., isolated from a placenta of a sow following an abortion. Int. J. Syst. Evol. Microbiol., 59:

1469-1473. (2009)

2) Murakami, S., Otaki, M., Hayashi, Y., Higuchi, K., Kobayashi, T., Torii, Y., Yokoyama, E., and Azuma,

R., Actinomyces denticolens colonisation identified in equine tonsillar crypts. Vet Rec Open 8,

3(1):e000161. (2016)

3) Yassin AF, Hupfer H, Siering C. and Schumann P., Comparative chemotaxonomic and phylogenetic stud-

ies on the genus Arcanobacterium Collins et al. 1982 emend. Lehnen et al. 2006: proposal for Trueperella

gen. nov. and emended description of the genus Arcanobacterium. Int J Syst Evol Microbiol., 61:1265-

1274. (2011)

ホウ素を元にした創薬

-米国ベンチャー企業で 2 剤の FDA 認可を受けた経験談とともに-

赤間 勉 ((元)Anacor Pharmaceuticals, Inc.)

[email protected]

ホウ素は植物に必須な微量栄養素であり、ヒトは野菜や果物などから、平均して1日数ミリグラ

ム程度のホウ素を摂取していると考えられている。1) 天然のホウ素は、主にホウ酸またはそのエス

テル類として存在し、炭素-ホウ素結合を有する有機ホウ素化合物は天然からは見つかっていな

い。2)

元素周期表上で炭素の左隣に位置するホウ素を含む化合物には、空の p 軌道のルイス酸性のた

め、アルコールの水酸基などと相互作用することにより、sp2-sp3 の 2 つのコンフォメーション間

の平衡が存在する。この性質を利用することにより、タンパク質や核酸など様々な創薬ターゲット

と相互作用させることができ、従来の炭素ベースのものとは異なる、新規な医薬品の開発につなが

ることが期待された。

しかしながら、化学合成された多くの含ホウ素有機化合物が様々な生理活性を示すことは、長年

知られてきたものの、2002 年以前は医薬品として開発されるまでには至らなかった。1)

2003 年に、世界初のホウ素含有医薬品となる bortezmib (Velcade®) が多発性骨髄腫の治療薬(注

射剤)として FDA から認可された。3) その後、2014 年に tavaborole (Kerydin®) が爪白癬の外用剤

として、4) 2015 年に bortezmib の第 2 世代となる ixazomib (Ninlaro®) が経口剤として、5) そして

2016 年に crisaborole (EucrisaTM) がアトピー性皮膚炎の外用剤として FDA から認可される 6)という、

ここ数年の認可ラッシュにより、現在までに 4 剤のホウ素含有医薬品が生まれている。

26

Page 80: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

上記 4 剤のうち、tavaborole および crisaborole は、米国カリフォルニア州 Palo Alto に位置する An-

acor Pharmaceuticals によって開発された。従来の生理活性有機ホウ素化合物の大部分が脂肪族ホウ

酸誘導体であったのに対して、Anacor 社は芳香環と縮環した benzoxaborole 誘導体に注目して研究開

発を行った。Benzoxaborole 誘導体は、医薬品候補物質として考えた場合、化学的および代謝的安定

性、水溶性や脂溶性等の物性のコントロールのしやすさなど、脂肪族ホウ酸誘導体と比較して様々

な利点があることが見出されてきた。1

13 年余りに渡り、tavaborole および crisaborole を始めとする、様々な含ホウ素低分子医薬品の研究

開発の現場にいた経験を元に、含ホウ素医薬品が従来のものと比べてどう違うのか、その利点およ

び課題について紹介する。

参考文献

1) Baker, S. J., Ding, C. Z., Akama, T., Zhang, Y-K., Hernandez, V. S., Xia, Y., Therapeutic potential of

boron-containing compounds. (Review) Future Med. Chem., 1 (7), 1275–1288. (2009)

2) Dembitsky, V. M., Smoum, R., Al-Quntar, A. A., Ali, H. A., Pergament, I., Srebnik, M., Natural occur-

rence of boron-containing compounds in plants, algae and microorgamisms. Plant Sci., 163, 931–942.

(2002)

3) Navon, A., Ciechanover, A., The 26 S proteasome: From basic mechanism to drug targeting. J. Biol.

Chem., 284 (49), 33713–33718. (2009)

4) Jinna, S., Finch, J., Spotlight on tavaborole for the treatment of onychomycosis. Drug Des. Devel. Ther.,

9, 6185–6190. (2015)

5) Shirley, M., Ixazomib: First global approval. Drugs, 76 (3), 405–411. (2016)

6) http://www.pfizer.com/news/press-release/press-release-detail/pfizer_receives_fda_approval_for_eu-

crisa_crisaborole_a_novel_non_steroidal_topical_ointment_for_mild_to_moderate_atopic_dermati-

tis_eczema

N

NNH

O

O

HN B

OH

OH

Bortezomib

NH

O

O

HN B

OH

OH

Ixazomib

Cl

Cl

OBOH

F

OBOH

O

N

Tavaborole

Crisaborole

27

Page 81: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

一流誌で目立つ論文撤回:その論文、信じられますか?

長田 裕之 (理研 環境資源科学研究センター)

[email protected]

2012 年に Nature 誌に驚くべきコメントが掲載された 1)。Amgen 社と MD Anderson が、がん研究で

一流誌に報告された論文を調査したところ、53 報中 6 報(約 11%)しか再現性が得られなかったと

のコメントである。2015 年に発表された Global Biological Standards Institute の調査結果では、米国で

前臨床試験に使われている予算は約 6 兆円であるが、その半分の研究成果が再現できないので、約

3 兆円が無駄になっているとのことである 2)。生物実験では、生物の不均一性や抗体の特異性などが

原因となって再現性が得られない場合も多いようだが、最近は、意図的なデータの改ざん、ねつ造

も目立ってきている 3)。

本講演では、私自身の経験(自分で犯したミス、自分が見つけた他者のミス)を紹介し、どうした

らデータ解釈の誤りをなくせるか?再現性の低い論文を出さないようにできるか?を、聴衆とともに

考えたい。

参考文献

1) G. Begley & L. M. Ellis: Nature 483: 531 (2012)

2) L. P. Freedman , I. M. Cockburn & T. S. Simcoe: PLOS Biol 13: e1002165 (2015)

3) F. C. Fang, F. G. Steen & A. Casadevall: Proc. Natl. Acad. Sci. USA 109: 17028-17033 (2012)

28

Page 82: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

18th International Symposium on the Biology of Actinomycetes (ISBA)

見聞録

去る 2017年 5月 23日から 27日にかけて 18th International Symposium on the Biology of Actinomycetes

(ISBA) が韓国済州島にある ICC で開催された。今回はアメリカ、中国、イギリスを含む 33 カ国から

600 近くの参加者が集まった。日本からは約 70 人が参加した。オープニングセレモニーのあと、ま

ず、ノーベル賞受賞者である大村智博士による特別講演が行われた。それに続く最初のプレナリーレ

クチャーはハーバード大学教授 Roberto Kolter 氏が勤め、微生物間相互作用に関する最新の研究を紹

介した。2 日目以降、合計 13 のセッション、5 のワークショプ、7 つのプレナリーレクチャーが行わ

れた。2 日目の Genetics and Cell Biology のセッションでは GFP などの蛍光ラベリングを駆使し、染

色体の局在や FtsZ リングの形成に関わる因子の機能解析などの発表が行われ、放線菌に独特の細胞

生物学に関して多くを学ぶことができた。3日目には David Sherman 博士による講演が行われ、電子

顕微鏡を駆使したポリケタイド合成酵素の構造変化のダイナミクスに関する発表が行われた。最終日

のプレナリーレクチャーは Giles van Wezel 氏が務め、電子顕微鏡を駆使して放線菌の細胞内の構造の

解析に関する素晴らし発表を行った。いずれも電子顕微鏡を利用した新規発見であり、高解像度の電

子顕微鏡の利用は今後、放線菌研究の発展にも大きく寄与することを感じさせた。ポスターセション

は 2 回に分かれており、合計 301 の発表があった。そのうち、約 130 演題が生合成に関連するもので

あり、放線菌における生合成研究の重要さが伺える。また、植物放線菌相互作用や微生物間の相互作

用に関わる演題も増加傾向にあり、今後これらの分野の発展が期待される。最終日にはポスター賞の

発表があり、合計 12 名がポスター賞を受賞した。日本の参加者からは東京大学、河内護之氏の「Soil

Cultivation System for Physiological Analysis of Streptomyces griseus」と産業技術総合研究所、菅野学氏

の「Plant-Associated Streptomyces Consume Atmospheric H2 Usin a High-Affinity Hydrogenase」、東邦大学、

飯坂洋平氏の「Effective Production of New Rosamicin Derivatives by Engineered Micromonospora rosaria

Mutants with Disruption of a Cytochrome P450 Generated Introduction of the D-mycinose Biosynthetic Genes」

が受賞した。最後に次回の ISBA の開催地がトロントであることが告知され、本大会は閉会した。

(東京大学大学院農学生命科学研究科 勝山 陽平)

29

Page 83: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

大村智先生の特別講演

ポスター発表の様子

ポスター賞授賞

30

Page 84: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

9th US-Japan Seminar on Natural Product Biosynthesis 見聞録

五年に一度、日米の天然物の生合成研究者が一堂に集まって研究発表を行う 9th US-Japan Seminar

on Natural Product Biosynthesis が 5 月 30 日から 6 月 4 日まで米国カリフォルニア州のレークアローヘ

ッドで行われました。今回は日米合わせて 49 名の参加者で皆さんそれぞれ 30 分の発表を 6 日間にわ

たって行うという、きわめて内容の濃いセミナーでした。SAJ からは東大の阿部郁郎氏、西山真氏、

葛山智久氏、勝山陽平氏、北大の大利徹氏、筑波大学の小林達彦氏、福井県大の濱野吉十氏、広島大

学の荒川賢治氏、理研の長田裕之氏、そして私とたくさんの方が参加しました。これだけ生合成研究

者ばかりが一堂に集まっての発表を聴くと、生合成研究の現代の潮流が理解できてとても興味深いセ

ミナーでした。

生合成研究は以前より深く、細かい結果が求められていると感じました。分析機器の進歩などを巧

みに組み込んで研究を進めて行くことが求められているようです。たとえば結晶構造なら単なるスナ

ップショットではなく各反応段階ごとに解析したり、クライオ EM なども駆使して、よりダイナミッ

クに酵素反応をとらえる感じに進んでいます。また、ポスト生合成研究も重要性を増しており、得ら

れた生合成反応から新しい化合物の創製やバイオインフォを用いてより簡単により正確に天然物を

探索する手法なども今後の天然物生合成研究の流れなのではないかと感じました。

標高 1 マイルのアローヘッド湖のほとりに建っている UCLA のカンファレンスセンターが会場で

したが、その会場が素晴らしく、まるで軽井沢の別荘のような感じ(行ったことないけど)でした。

皆さんで同じところに泊まって文字通り寝食を共にして勉強しましたので、さしずめ合宿のような感

じでしょうか。

8 時から朝食、9 時から 12 時まで午前のセッション、12 時からランチ、13 時から 18 時までフリー

タイム、18 時から 20 時まで夕食、20 時から 23 時まで夜のセッションとなっており、お昼がフリー

なので、皆さんテニスをしたり散歩したり、部屋で仕事したりして過ごしていました。食事もレスト

ランでみんなで丸テーブルに座って食べているので、本当に合宿のようです。

次回は 5 年後に日本でということになっています。

(東京大学大学院農学生命科学研究科 尾仲 宏康)

31

Page 85: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

参加者の集合写真(上)

セミナー会場(上)

セミナー参加者そろっての夕食風景(右

上)

会場となった UCLA レークアローヘッ

ドカンファレンスセンター(右)

32

Page 86: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

日本放線菌学会賛助会員

中外製薬(株)鎌倉研究所創薬資源研究部

長瀬産業(株)研究開発センター

アステラスファーマテック(株)富山技術センター技術開発部

協和発酵キリン(株)研究本部創薬化学研究所

(公財)微生物化学研究会 微生物化学研究所

第一三共 RD ノバーレ(株)合成化学研究部天然物グループ

Meiji Seika フアルマ(株)足柄研究所

日本マイクロバイオファーマ(株)研究開発部

合同酒精(株)酵素医薬品研究所 図書室

味の素株式会社・イノベーション研究所

大鵬薬品工業株式会社 天然物フロンティア研究所

トヨタ紡織株式会社 基礎研究所

富士シリシア チーム未来グループ

著作権について

本誌に掲載された論文、抄録、記事等の著作権は、日本放線菌学会に帰属します。これら著作物の

一部または全部をいかなる形式でもそのまま転載しようとするときは、学会事務局から転載許可を得

て下さい。

日本放線菌学会誌 第 31 巻 1 号

ACTINOMYCETOLOGICA 平成 29 年 7 月 14 日発行

編集兼発行 日本放線菌学会

〒292-0818 千葉県木更津市かずさ鎌足 2-5-8

独立行政法人 製品評価技術基盤機構

バイオテクノロジーセンター(NBRC)

生物資源利用促進課内

TEL 0438-20-5763

FAX 0438-52-2329

E-mail [email protected]

年間購読料 5,000 円(会員無料)

http://www.actino.jp/

33

Page 87: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new
Page 88: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new
Page 89: NO. C VOL. NO. - Actinoactino.jp/journal/Actinomycetologica_31-1_nonmember.pdfSAJ NEWS Vol. 31, No. 1, 2017 Contents • Outline of SAJ: Activities and Membership S 2 • List of new

1CTINOMYCETO

LOG

IC

2017 VO

L. 31 NO

. 1A

CTIN

OM

YCETO

LOG

ICA

VOL. 27 NO. 1

1990年12月18日 第4種郵便物認可 ISSN 0914-5818

Published byThe Society for Actinomycetes Japan

日本放線菌学会誌 第31巻1号ACTINOMYCETOLOGICA VOL.31 NO.1, 2017

誌会学菌線放本日

A B C D

http://www0.nih.go.jp/saj/index-j.html

(会員用)

2014