nonequilibrium thermodynamics in mesoscopic oscillation systems (...

26
Nonequilibrium Thermodynamics in Mesoscopic Oscillation Systems ( 介介介介介介 介介介介介介介介 ) 介介介 2009 介 4 介 介介 介介介介介介介介介介介 介介介介介介介介介介介介

Upload: ima-king

Post on 30-Dec-2015

187 views

Category:

Documents


0 download

DESCRIPTION

Nonequilibrium Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 ). 侯中怀 2009 年 4 月 成都 中国科技大学化学物理系 合肥微尺度科学国家实验室. Our Research Interest. 非平衡非线性化学动力学 介观化学体系非平衡统计力学 复杂化学体系多尺度理论方法 复杂网络动力学. 非平衡 非线性 复杂性. 不可逆性佯谬. ?. 宏观体系 时间箭头. 微观运动 时间可逆. Solid Clusters 1~10nm. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

Nonequilibrium Thermodynamics in Mesoscopic Oscillation Systems( 介观化学振荡体系的非平衡热力学 )

侯中怀 2009年 4 月 成都

中国科技大学化学物理系

合肥微尺度科学国家实验室

Page 2: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

Our Research Interest

非平衡非线性化学动力学

介观化学体系非平衡统计力学

复杂化学体系多尺度理论方法

复杂网络动力学

非平衡 非线性 复杂性

Page 3: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

不可逆性佯谬

微观运动时间可逆

宏观体系时间箭头?

Magnetic Domains < 300nm

Quantum Dots 2~100nm

Molecular Motors 2~100nm

Solid Clusters 1~10nm

Ion channels

Subcellular reactions

小体系热力学性质!

Page 4: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

小体系非平衡热力学

非平衡涨落 ~ 均值 , 宏观热力学失效 热力学量是随机量 , 分布决定性质

不同次实验, W,Q 与 U 有显著涨落 分布 P(W)和 P(Q) 决定体系性质

Protocol:X(t)

Physics Today, 58, 43, July 2005;

实例:拉伸大分子

Page 5: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

涨落定理 (Fluctuation Theorem)

Nonequilibrium Steady States

( )lim ln

( )tB

tt

Pk

t P

/ ,S Q T

/S t

Adv. In Phys. 51, 1529(2002); Annu. Rev. Phys. Chem. 59, 603(2008); ……

Valid beyond linear response Second Law: More likely to deliver heat than absorb P(+)/P(-) grows exponentially with size and time For small system and short time, capture heat

from bath is possible (Molecular motor)

0

Page 6: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

随机热力学 (Stochastic thermodynamics)

0 1 2 1j

j j n ru u u u u u u

A Random Trajectory

Trajectory Entropy ln ;s p u

tot ms s s Total Entropy Change

R t u u

Fluctuation Theorems

Stochastic process(Single path based)

Second Law

, 1tot tots stot totp s p s e e

0tots

第一定律

Page 7: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

许多应用…… Probing molecular free energy landscapes by periodic loading

PRL(2004) Entropy production along a stochastic trajectory and an

integral fluctuation theorem , PRL (2005) Experimental test of the fluctuation theorem for a driven two-

level system with time-dependent rates, PRL (2005) Thermodynamics of a colloidal particle in a time-dependent

non-harmonic potential, PRL(2006) Measurement of stochastic entropy production, PRL(2006) Optimal Finite-Time Processes (最小功) In Stochastic

Thermodynamics, PRL(2007) Stochastic thermodynamics of chemical reaction networks,

JCP(2007) Role of external flow and frame invariance in stochastic

thermodynamics, PRL(2008) Recent Review: EPJB(2008)

Prof. Udo Seifert Prof. Udo Seifert

Page 8: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

化学振荡:非平衡自组织行为Oscillation: Temporally Periodic Variations

of Concentrations/Numbers

Macroscopic state: ( , )tX r Microscopic state: ,N Nq p

Nonequilibrium Statistical Mechanics

Synthetic Gene Oscillator CO+O2 Rate Oscillation

Page 9: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

宏观体系:确定性唯象方程

Macro- Kinetics: Deterministic, Cont.

N Species, M reaction channels, well-stirred in VReaction j:

j X X v Rate:

( ) jW VX

1

( ( ))( ( ) )

Mji

ij ij

W td X t VF

dt V

XX

Oscillation

Co

nce

ntr

atio

n

Control parameter

Hopf Bifurcation

Stale focus

Hopf bifurcation leads to oscillation

: 0

loses stabilityS S

S

X F X

X

has a pair of

pure imaginary eigenvalues

ij J F X

Page 10: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

介观体系:随机过程理论 Mesoscopic Level: Stochastic, Discrete

1

;; ;

M

j j j jj

P tW P t W P t

t

X

X ν X ν X XMaster

Equation

Kinetic Monte Carlo Simulation (KMC)Gillespie’s algorithm

Exactly( , )j

Approximately 1 2

1 1

1 ( )

M Mj ji

ij ij jj j

W WXdt

dt V V VV

X X

Chemi cal Langevi n Equati on (CLE)

V Deterministic kinetic equation

Fluctuation !

Page 11: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

内涨落效应:噪声诱导振荡

1.4 1.6 1.8 2.0 2.2 2.4 2.60.4

0.8

1.2

1.6

2.0

2.4

2.8

Con

cent

ratio

n X

1

Control parameter B

V=1E4

Stochastic OscillationA=1, B=1.95

0.0 0.4 0.8 1.2 1.6 2.010-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

Frequency (Hz)

Pow

er

FFT

A model system: The Brusselator

1.4 1.6 1.8 2.0 2.2 2.4 2.60.4

0.8

1.2

1.6

2.0

2.4

B=2.2 Oscillation

Con

cent

ratio

n X

1

Control parameter B

Hopf Bifurcation

B=1.9 Stale focus

A=1DeterministicStochastic

Noisy Oscillation

Page 12: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

最佳尺度效应 :

2 :

Peak Height HSNR

Width at H

Best performance

Brusselator: CPC 2004; Circadian clock: JCP 2003; Calcium Oscillation: CPC 2004, CPC 2005, PRE 2005, PCCP 2006; Gene network: CPL ; Surface Catalytic Reaction: JCP 2005; JPCA 2005, JPCA 2007; Neuron Network: CPC 2004, CPC 2006; ……

Page 13: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

问题:介观振荡体系非平衡热力学?

• 小体系• 远离平衡• 涨落显著• 随机过程

• 小体系• 远离平衡• 涨落显著• 随机过程

小体系非平衡热力学?

涨落定理?

振荡特性?

分岔行为?

……

Page 14: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

不可逆 Brusselator 体系

(X+1,Y-1)(X,Y-1)

(X-1,Y)

(X-1,Y-1)

(X+1,Y)(X,Y)

(X+1,Y+1)(X,Y+1)

Y

X

(X-1,Y+1)

(a)

微观:态空间随机行走宏观: Hopf 分岔

1.4 1.6 1.8 2.0 2.2 2.4 2.60.4

0.8

1.2

1.6

2.0

2.4

2.8

Con

cent

ratio

n X

1

Control parameter B

V=1E4

Stochastic OscillationA=1, B=1.95

1.4 1.6 1.8 2.0 2.2 2.4 2.60.4

0.8

1.2

1.6

2.0

2.4

B=2.2 Oscillation

Con

cent

ratio

n X

1

Control parameter B

Hopf Bifurcation

B=1.9 Stale focus

A=1

介观:随机振荡

Page 15: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

随机轨线及轨线熵

0 1 2 1j

j j n ru u u u u u u

随机轨线:

轨线熵: ln ;s p u 熵变:

R t u u

主方程:

tot ms s s

0;0ln

;n

ps

p t

u

u

1;ln

;

j j

m jj j

Ws

W

u r

u r

0 0| ;0ln

| ;tot R

n n

p ps

p p t

u u u

u u u动力学不可逆性(动力学耗散)

Page 16: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

随机振荡的熵变及分布熵变的分布:随机振荡(闭轨):

tot ms s 0 nu u

Hopf 分岔对总熵变的分布影响不大 存在总熵变小于 0 的轨线 ( 违反第二定律的事件 ) 总熵变的平均值大于 0, 第二定律满足

Page 17: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

涨落定理

msm mp s p s e

Page 18: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

分岔后1P V

熵产生的标度律

2 3 4 51

2

3

4 b=1.9 b=2.1

lnP

lnV

1lim tott

P st

熵产生分岔前

0P V

介观动力学分岔的随机热力学特征?Entropy production and fluctuation theorem along a stochastic limit cycle T Xiao, Z. Hou, H. Xin. J. Chem. Phys. 129, 114508(Sep 2008)

Hopf 分岔的影响?

Page 19: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

任意介观振荡体系化学朗之万方程 (CLE) 描述

相应 Fokker-Planck 方程

; 1( ) ; ;

2i iji ji j

p tf p t G p t

t x V x

xx x x x

1 1

1( )

M Mj j

jx v w v w tV

x x

1

( ) ,M

iif v w

x x 1

,M

i jijG v v w

x x1

2kj

k k jj

Gf f

V x

1Γ G 2H = Γf 1,...,T

Nf ff

1.4 1.6 1.8 2.0 2.2 2.4 2.60.4

0.8

1.2

1.6

2.0

2.4

2.8

Con

cent

ratio

n X

1

Control parameter B

V=1E4

Stochastic OscillationA=1, B=1.95

Page 20: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

0

0

|ln

|

t im ii

t

p ts V dt H s

p t

x

xx

轨线熵和熵产生轨线熵 ln ,s p x

熵产生动力学耗散

系统熵变

平均熵产生 lim mi ii st

SP V H

t

x

0 0 1ln ln ts p p x x

介质熵变

总熵变

0 0 0

1

|ln

|tot mt t

p t ps s s

p t p

x x

x x

路径积分

Page 21: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

Hopf 分岔点附近:随机范式理论

Effect of internal noise in mesoscopic chemical systems near Hopf bifurcationT Xiao, Z. Hou, H. Xin. New J. Phys. 9, 407(Nov 2007)

,Hopfc s x分岔,稳态值为

3( ) 0s

ij i j jJ f x i

x x矩阵: ,

N-2

时间尺度分离: 二维中心流形 振荡运动 慢 ;

维稳定流形 衰减运动 快

3 202r r i

dr dr C r t C r t

dt Vr dtV r V

振荡模式:随机范式方程 Normal Form

2 1j j j j ju u r t

V 衰减模式:

Page 22: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

熵产生:理论结果

212 21 , 2

2 k jkj kjj ks

k j

P V L L r L D

T T TL T J Γ T

3 ,..., Ndiag

TJ Λ

1 1 T D T G T

Page 23: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

标度律:理论解释

2 2 2( 2 / ) / ( 2 )m r rr C V C

0 0,ln

lim 1/ 2 0,ln

1 0.V

P

V

Page 24: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

普适物理图像

0 50 100

0.00

0.02

0.04

0.06

P(

s m)

sm

Below Onset Above

2 3 4 5 6

1

2

3

4

5

Below Onset Above

log

P

logV

Stochastic Thermodynamics in mesoscopic chemical oscillation systemsT Xiao, Z. Hou, H. Xin. J. Phys. Chem. B (In press)

FT Holds

Page 25: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

小结 Brusselator 体系随机热力学 1. 微观态可逆涨落定理 (FT) 2. 分岔点:熵产生分布和 FT 无定性变化 3. 分岔点前后:熵产生标度律突变 任意介观振荡体系 1. CLE 水平:熵产生表达式 2. 分岔点:随机范式理论标度律

普适性:介观 Hopf 分岔的随机热力学特征!

Page 26: Nonequilibrium  Thermodynamics in Mesoscopic Oscillation Systems ( 介观化学振荡体系的非平衡热力学 )

Thank you !

致谢Detail work: Dr. Tiejun Xiao ( 肖铁军 ), USTC

Discussions: Prof. Yijin Yan, HKUST

Funding: National Science Foundation of China