numerical studies of jupiter’s magnetosphere-ionosphere-thermosphere coupling current system

22
Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System PD 垰 垰垰 Chihiro Tao 2010/4/21 STP seminar 垰垰垰垰垰 垰垰垰垰 垰垰垰垰垰垰垰垰垰垰垰垰垰垰垰 ・・ ~ Doctor thesis and beyond ~

Upload: walt

Post on 06-Jan-2016

34 views

Category:

Documents


1 download

DESCRIPTION

2010/4/21 STP seminar. Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System. 木星磁気圏・電離圏・熱圏結合電流系に関する数値研究. ~ Doctor thesis and beyond ~. PD  垰 千尋 Chihiro Tao. 1. はじめに:木星電磁圏環境. ・太陽系惑星最大・高速自転   ( 9 時間 55 分:自転エネルギーは地球の 20 万倍) ・強磁場 (磁気双極子は地球の 2 万倍) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

PD  垰 千尋Chihiro Tao

2010/4/21 STP seminar

木星磁気圏・電離圏・熱圏結合電流系に関する数値研究

~ Doctor thesis and beyond ~

Page 2: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

1 ba

rか

らの

高度

[km

]

太陽風 磁気圏

イオ プラズマトーラス

磁気赤道

磁力線

・太陽系惑星最大・高速自転  ( 9 時間 55 分:自転エネルギーは地球の 20 万倍)

・強磁場(磁気双極子は地球の 2 万倍)

・磁気圏内イオからのプラズマ供給

   ◆自転卓越電磁圏 (cf. 地球:太陽風駆動型 )

ex. 磁気圏広範囲でプラズマ回転、周期的現象

  ◆高エネルギー加速器・電波星

Fig. 木星磁気圏模式図

2/26

0

500

1000

1500

~1000 K105-6 /cc

電離圏 熱圏

中性温度電子密度( 低緯度 )

( オーロラ域 )

乱流圏界面 ~300 km

2000

Fig. 木星電離圏・熱圏

数 100 km・ガス惑星: H2, He, H, CH4, C2H6, …

・電離圏・熱圏形成、磁気圏と相互作用

1. はじめに:木星電磁圏環境

Page 3: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

角運動量の流れ

磁気圏内広い領域でプラズマが回転イオからのプラズマ供給・外向き輸送⇒電磁的結合による、惑星から磁気圏への角運動量輸送

1. はじめに:木星電磁圏結合系

電離圏 プラズ

マ磁気圏 プラズ

マイオ

熱圏・電離圏 磁気圏

Fig. 木星電磁圏結合系

中性大気

電子降込

熱圏・電離圏のエネルギー源 Joule/auroral 加熱 >> solar EUV 加熱

⇒熱圏ダイナミクスは磁気圏 - 電離圏結合系に大きく影響 3/26

Page 4: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

1. はじめに 過去の研究◆極域イオン運動観測 [e.g.,Stallard et al.,2003] ⇒速度 ~ 数 km/s

◆熱圏電離圏モデル [e.g., Achilloes et al., 1998; Bougher et al., 2005]

 <着目>熱圏温度・速度分布、電離圏電子密度構造、極域オーロラの影響 ⇒極域速度 ~ 数 100 m/s, オーロラ電子 flux ・電場 (~ 磁気圏プラズマ対流 ) 依存あり <仮定>印加電場・印加電場・ flux⇒flux⇒ 大気運動によるフィードバックがかからない大気運動によるフィードバックがかからない◆結合電流モデル [e.g., Hill, 1979; Cowley et al., 2007]

<着目>磁気圏プラズマ速度分布、沿磁力線電流 / オーロラ構造、エネルギー収支 ⇒熱圏大気運動による電流量・角運動輸送量変化を示唆 [Huang and Hill, 1989]

<仮定>磁気圏プラズマ速度に一定の割合で連動した中性大気運動分布を仮定磁気圏プラズマ速度に一定の割合で連動した中性大気運動分布を仮定⇒相互作用下での熱圏大気運動および電流分布は ?

<手法>理論・解析的アプローチ:自転軸非対称性がもたらす時空間変動の調査困難 / 未解明

Fig. 木星オーロラ [Grodent et al., 2003]

Main oval

Io footprint

Ganimede/Europa footprint

Polar emission

4/26

Page 5: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

1. はじめに 過去の研究 2

down-, two-, multi- stream 近似[e.g., Grodent et al., 2001; Perry et al., 1999]

[/m3/s]

大気の厚さ gzPnmHZ

λ :電子エネルギー散逸関数

ε0 :入射電子のエネルギー [keV]

F :入射電子フラックス [/m2/s]

εion :イオン生成に要する エネルギー 0.035 [keV/ion]

ρ :中性大気密度 [kg/m3]

[kg/m2]

電子が最大限進入できる高度の大気の厚さ

75.10

50 106.4 R [kg/m2]

高度依存性イオン生成数

イオン化率:

cf. 地球版の式 [Rees, 1963]

FzR

q0ion

0aurora

※任意の中性大気分布、電子エネルギー、フラックスに対して求まる

<着目>・大気進入高度、イオン化率・加熱率・オーロラ発光との比較・降込電子エネルギースペクトル推定

◆電子降込モデル

◇電子降込効果の 3 次元モデルへの組込が困難

⇒H2 大気分布・電子エネルギーを関数とするパラメータ式による表記

5/26

Page 6: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

1. 研究目的

自転が卓越した木星電磁圏結合過程について、その相互作用における熱圏大気運動と結合電流の空間分布とその関係を明らかにすることを目的とする。

§2 電子降込によるイオン化率高度分布のパラメータ化

§3 磁気圏・電離圏・熱圏結合モデルと大気運動・電流分布

6/26

Page 7: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

2. オーロラ電子イオン化率のパラメータ化

水素大気への電子降込過程のモンテカルロ計算

その結果を用い、イオン化率高度分布のパラメータ化式作成※地球大気電子降り込みのパラメータ化式 [Rees, 1963] を参考

7/26

※主要部は Hiraki and Tao [2008, Ann. Geophys.]

Page 8: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

2.1 電子降り込みシミュレーション○水素分子大気への電子降込過程をモンテカルロ計算○考慮している衝突過程:

励起衝突(                       )

u1B u

1C g3a u

3b u3c u

3e弾性衝突、イオン化、振動励起 (v=1) 、回転励起(J=0→2)

○計算手順:大気上層から単色エネルギーの電子を降り込ませる。

乱数を用いて衝突の種類・衝突後の電子および生成 2次電子の方向を決定、全電離数の高度分布を導出。

断面積 [Tawara et al., 1990]

Fig. イオン化率高度分布 ( 計算結果 ).

8/26

Page 9: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

2.2 パラメータ化

(b)

Fig. (a) R0(ε0) 分布と (b) エネルギー散逸関数。

FzR

q0ion

0aurora

[Rees, 1963]

λ :電子エネルギー散逸関数

電子最大進入高度の大気の厚さ

75.10

50 106.4 R [kg/m2]

大気組成に関わる部分

(a)

⇒計算結果をもとに、 R0 と λ を導出

Fig. イオン化率高度分布の計算結果 ( 色 )とパラメータ式で得られた結果 ( 黒破

線 )

39.10

50 1039.3 R

9/26

Page 10: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

時定数は高度・衝突の種類ごとに異なる(∵断面積のエネルギー依存性)

2.3 系の時定数

Fig. 生成率高度分布の時間発展

∴時定数について、 力学輸送 >> 化学 >> 降下電子緩和⇒大気・化学モデルへの適応妥当性

10 keV 電子回転・振動励起、イオン化

⇒降込電子のエネルギー緩和時定数 イオン化・励起 101-2 msec, 回転・振動 101-3 msec

緩和時間スケール [msec]

衝突率が最終定常値の 90%になるまでの時間

Fig. 緩和時間スケールの高度分布

10 keV 電子

cf. 力学時定数 ( 輸送・拡散 ) : 106-12 msec イオン化学の時定数 : 104-7 msec

回転・振動励起、イオン化

10/26

Page 11: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

2.4 まとめオーロラ電子降込過程のモンテカルロ計算を行い、 Rees [1963] のイオン化率高度分布のパラメータ化式を基に、 H2 大気版の式を新たに得た。

1) 得られたパラメータ式は、任意の電子エネルギースペクトルおよび成層大気入射角 (ピッチ角+磁力線の傾き ) 分布と、任意の H2 密度高度分布に適用でき、計算結果をよく再現する。 H2 大気主成分である巨大惑星への適応できる。

2) 高エネルギー電子は高高度で衝突によりエネルギーを減じつつ低高度に至り、 2 次電子を生じて大半のエネルギーを消費する。

3) イオン化率高度分布について、過去の研究ともよい一致を示した。角度依存性は、モデルによる 2 次電子散乱の扱いの違いが確認された。

4) 電子のエネルギー緩和時間は 10-1000 ミリ秒であった。これは大気の力学・化学特性時間よりも十分短く、局所平衡仮定は十分成立する;大気・化学モデルへの適応が可能である。

11/26

Page 12: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

3. 磁気圏 - 電離圏 - 熱圏結合系相互作用下の電流構造 / 大気運動を明らかにする

12/26

木星

大気運動

磁気圏プラズマ対流

FAC

Fig. モデル領域

木星熱圏・電離圏モデル+

結合電流モデル:外向き輸送フラックスをもつ磁気圏プラズマ流の対流速度 / 電流分布 →対流電場・電子フラックスの更新

[Tao, Fujiwara, Kasaba, 2009, JGR]

Page 13: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

3.1 モデル : 熱圏

13/26Fig. Model Region: Thermosphere

FΦp

vωvv

t

vpp

p

Dt

Dpω

Dt

Dzvz

Tnkp B

QFvΦTcvp

ωΦTcvvt

Tcvppp

p

p

222 22

2

0 vp

gρz

p

auroral electron

H2・・・

equator pole90 deg.lat. 0 deg.

・・・

Δ=0.5 deg.

250 km

altitude~2000 km

Δ=0.4 scale height

30 levels

Joule heatingion drag

ionization/heating

molecular/eddy viscosity & conduction

H3+

IR cooling

ionization/heating

CxHy+

wave heating

― プリミティブ方程式系

― 境界条件 ・ミラー @ 赤道 , 極   (∵反対半球からの寄与 )

 ・ flux 一定 @上端  ・共回転 (v=0) 、温度固定 @ 下端

静水圧平衡

運動方程式

エネルギー保存

質量保存

状態方程式

― 計算パラメータ: 中性大気運動 (v) & 温度 (T)

― 計算 ・ 1 次風上差分 +Euler修正法  →大規模循環場 ・ Δ=60 sec

Page 14: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

3.1 モデル : 電離圏

14/26

H2+

H3+

CH5+

CH4+ C2H3

+

C2H5+

C2H2+

C3Hn+

C4Hn+

CH4

H2

C2H2

H2

H2

CH4

hν, electron

C2H2

C2H2

C2H2

C2H2

CH4

C2H4

H2

Fig. Ion chemistry

太陽紫外線 [Richards et al., 1994] ・オーロラ電子 [§2, Hiraki and Tao, 2008]

による大気電離→電離圏イオン化学→電離圏電気伝導度 Σ

+ recombinationFig. Profiles of ionization rate from Monte Carlo calculated (dot) & parameterized

(solid) results [Hiraki and Tao, 2008]

電子エネルギースペクトルは、 FACの関数として Knight の関係を満たすように変化 [Nichols and Cowley, 2004]

Page 15: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

3.1 モデル : 磁気圏との結合

15/26

zeerfluxt BrJrMDr 23

ωrvΣBEΣJ innP

PJj //

kg/s1000.2 constrvM rflux 0 vr

電離圏 / 熱圏

磁気圏

中性大気運動

電気伝導度電場

電離圏電流

FAC

プラズマ (@ 磁気赤道 ) 角速度

動径電流

イオンドラッグジュール加熱

磁場経験モデル

JXB 加速 電流保存

オームの法則

プラズマ運動

モデル:動径 1次元

モデル:緯度高度 2次元+経度方向成分

電流保存

時間積分: ~200 自転 準定常

Page 16: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

3.2 結果:電流・熱圏温度 / 速度分布

16/26

子午面内の温度・風速 max( 水平風 )=77 m/smax(鉛直風 )=0.98 m/s

電離圏→磁気圏( オーロラ電子降込 )

磁気圏→電離圏

温度 : ジュール加熱東西風 : イオンドラッグ+コリオリ力子午面循環 : オーロラ領域・極域の加熱

FAC が形成⇔Obs. 0.04-0.4 μA/m2

[Gustin et al., 2004]

Fig. Latitudinal distribution of FAC (left) and meridional temperature and wind fields (right).

Page 17: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

3.2 結果:速度分布

17/26

反自転方向 中性大気 max 742 m/s電離大気 max 2.1 km/s  ⇔観測 数 (0-3) km/s

中性大気 東西風速度

電離大気 東西風速度

磁気圏プラズマ角速度

←Without coupling

Fig. Zonal velocities of neutral wind (left) and ion wind (right) and magnetospheric plasma angular velocity normalized by the planetary one (down).

FAC max

Page 18: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

3.3 考察 : 系内の power

18/26

Power

Magnetospheric acce.

Ion drag

Joule heating

↑torque by J x B

iPiM Birp

iPiJJTotal Birp

Fig. Latitudinal profile of power per unit area.

6.4x1013, 3.2x1013, 7.9x107.9x101111 W

半球積分

cf. 観測からの見積もり .: 1012-1014 W

磁気圏プラズマ速度と中性大気速度を反映

iPimnmnJ Birp iPinJnJD Birp

<73.5 : ゚ PM 卓越>74 : ゚ PJ 卓越

[e.g., Cowley et al., 2005]

τ は j x B によるトルク磁気圏プラズマの仕事

率 :超高層大気領域のジュール加熱:     イオンドラッグによる消費:

電流系によって引き出される自転 仕事率 :

Page 19: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

3.3 考察:中性大気の影響

19/26

電離圏ペダーソン電流

Fig. Latitude-altitude map of k (upper) and σ k (lower) and FAC lat. profile (center).

k: 中性大気 Vn による E の減率 共回転と比較して  “中性・イオン結合係数” [Millward et al., 2005]

⇒ 高高度・低緯度で増大

σk : 電流系への寄与⇒90% は < 550 km  が寄与

σ k

%22~dzkσP

90%90%

k

v

1ΩΩrBΣ

rBΣ

EΣJ

MJiiP

MiniP

nPP

Page 20: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

3.3 考察 : 疑問点

20/26

1. 熱圏温度維持のメカニズム 本モデル : 音波による加熱 [Schubert et al., 2003] 他グループ : 電場擾乱 , ( 大きい ) 極域加熱2. 動径電流

Fig. Radial distribution of radial current

From Observation[Nichols and Cowley 2004; Khurana, 2001]

With assumed radial current

Without assumption

“ 閉じた”結合系、境界電流の仮定なし ⇒ 電流値小 (~20 MA) cf. 観測 ~80 MA 背景電気伝導度に依存 (ex. 太陽紫外線の短波長 , 流星 , 高エネルギー電子成分 )境界電流を仮定すると⇒ ~100A 電流の起源 ? (ex. 磁気圏 MHD 的発電 )⇒オーロラ時空間分布に見られる多様性の理解への鍵 ?

Page 21: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

3.4 まとめ

21/26

木星における磁気圏・電離圏・熱圏結合系は、電磁的結合による、惑星から磁気圏へと角運動量輸送が卓越した系である。

相互作用下の大気・プラズマ・電流分布を導出するモデルを開発した。

熱圏中性大気は、磁気圏対流のフィードバックを受ける。熱圏中性大気運動による電離圏 - 磁気圏結合系電流への影響は、定常状態において~22% と見積もられた。低緯度では電離大気から中性大気、高緯度では中性大気から電離大気への運動量輸送が卓越する。

問題点 /課題: 熱圏温度加熱・背景電気伝導度・動径電流( @~100RJ )の起源 ?

時間発展・ 3 次元性 ?

Page 22: Numerical Studies of Jupiter’s Magnetosphere-Ionosphere-Thermosphere Coupling Current System

5 まとめ

26/26

◆任意の電子エネルギースペクトルおよび任意の H2 密度高度分布に適用可能な、イオン化率高度分布のパラメータ式の適応に成功した。

◆熱圏中性大気運動・電離圏電気伝導度・磁気圏プラズマ対流の、相互作用のもとでの分布を導出した。熱圏中性大気運動による電離圏 -磁気圏結合系電流への影響は、定常状態において ~22% と見積もられた。低緯度では電離大気から中性大気、高緯度では中性大気から電離大気への運動量輸送が卓越する。

◆結合系の改善と非軸対称性効果の調査、観測される発光強度の理解、MHD データの同化研究を計画中である。