the structure of the pulsar magnetosphere via particle simulation shinpei shibata (1), shinya yuki...

27

Upload: abraham-little

Post on 13-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department
Page 2: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

The structure of the pulsar magnetosphere via particle simulation

Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1)

(1)Department of Phys. Yamagata University(2)National Astronomical Obvsevatory of Japan

Page 3: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Introduction

Pulsars

Page 4: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Neutron Starabout 1M_sun10km in size

Pulsars:B_d ~ 10^9 – 10^13GP ~ 1.5msec – several seconds

Emf ~ 10^14 Volt rotation powered pulsars

Magnetars: Small subclass of magnetic neutron starsmagnetic active regions with B ~ (maybe)10^15G

Emf ~ 10^14 Volt magnetic powered pulsars

Page 5: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Rotation axis

PulsarWind(relativisticoutflow ofmagnetizedplasmaγ ~ 10^6)

Size of the magnetosphere: c/Ω ~ 4.8×10^4 R_ns

1 ly

Beamed radiationObserved as pulsed radiation

Page 6: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

SED(spectral energy density plot)

magnetospheric

Nebula

2. Pulsar Wind Lwind=ηw Lrot

Aharonian, F.A. & Atoyan, A.M., 1998

Unpulsed emission

Pulsed emission

E// + e/p

BB 加熱

E // 加速

IC

sync

RL=c/Ω

Rs=(Lwind/4πPext)^1/2

Vacc=RL*BL=μΩ^2/c^2

Vacc=Rs*Bn with Pext=Bn^2/8π

keVGeV

TeV

垂直衝撃波加速の困難

1. High Energy Pulses1. High Energy Pulses3. Radio Pulses

Page 7: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

E// (field-aligned acceleration)

Page 8: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Roation × magnetizationmakes emf charge separation

Unipolar Inductor

E ⊥

Page 9: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

If pair creation is suppressed, charged particles are emitted from the neutron star and forms steady clouds.

Page 10: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

• Particle Simulation for the screening. (ref. Wada and Shibata 2003)

gap

The gap is unstable against pair creation.

Page 11: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

1. EMF and charge separation

Unipolar Induction

Basic properties of the pulsar magnetosphere

Motional field

As compared with required charge separation, plasma source is limited gap E//

Page 12: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Goldreich-Julian model (1969)

In reality, plasma is extracted from the stellar surface by E//: maybe, complete charge separation

Positive space charge

Negative space charge

Corotation speed becomes the light speed

Relativistic

centrifugal wind

Page 13: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Goldreich-Julian model (1969)

Strong charge separation in a rotating magnetosphere makes the gap, non-zero E//

Positive space charge

Negative space charge Null c

harge surfa

ce

Gap formation

Page 14: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Ω B

Dead zone

Null面

Light cylinder

Polar cap

Slot gap

Outer gap

Models based on observatons: PC, SG, OG

Closed field(dead zone)

Open field region

Page 15: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Ω B

Dead zone

Null面

Light cylinder

Polar cap

Slot gap

Outer gapClosed field

(dead zone)

Open field region

γ-ray pulse shape and relation to radio pulses are well explained if γ from OG and radio from PC

Two-pole caustic (TPC) geometry (Dyks & Rudak, 2003)

Radio pulse

Models based on observatons: PC, SG, OG

Page 16: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Particle simulation

Page 17: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

part

icle

code

acceleration

Gamma-ray―

radiation from the starStrong B

Page 18: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Particle codeParticle motion and the electromagnetic fields are solved iteratively for the axis-symmetric steady solution.

Emf is included in the BC

For the EM field

For the particle motion

Page 19: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

• Gravitational interaction

• For the electric field • For the magnetic field

We use Grape-6, the special purpose computer for astornonomical N-body problem at NAOJ.

Page 20: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

- Particles are emitted from the star if there is E// on the surface.

- On the spot approximation: e+/e- are created if E//>Ec

- Particles are removed through the outer boundary: loss by the puslar wind.

The system settles in a steady state when the system charge becomes constant:seteadily pairs are created in the magnetoschpere and lossed as the wind.

Particle creation and loss

Page 21: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Result

Page 22: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Modificaton of the magnetic field

Light cylinder

Outer gap

The outer gaps steadily create pairs.Gap electric fileld is kept above Ec as to create pairs.

Particle distribution and motion Strength of E//

Pair creation

Not so strong: limitation of particle number

Page 23: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Pola

r cap

current circulation seen

Slot

gap

Outer gap

Outward current

Retun current

Current-neutral dead zone

Dead zone

Page 24: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Light cylinder E/B map

E>BBread down of the ideal-MHD cond.

磁気リコネクション

Page 25: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Summary and Discussion1. The outer gap, which is the candidate place of

the particle acceleration and gamma-ray emission, is proven from the first principles by particle simulation.

2. Due to radiation reaction force, some particles escape through the closed field lines.

3. At the top of the dead zone, we find strong E field larger than B, i.e., break down of the ideal-MHD condition, and in addition PIC simulation indicates possibility of reconnection driven by the centrifugal force.

There are two places in which magnetic reconnection may play an important role.-Close-open boundary near the light cylinder-Termination shock of the pulsar wind

Page 26: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

Ω

Magnetic axis

Thick windNeutral sheet

Magnetic reconnection

パルサーオーロラ

Rotation axis

Lig

ht

cylin

der

Outer gap

Polar cap

Slot gap

Page 27: The structure of the pulsar magnetosphere via particle simulation Shinpei Shibata (1), Shinya Yuki (1), Tohohide Wada (2),Mituhiro Umizaki (1) (1)Department

SED(spectral energy density plot)

magnetospheric

Nebula

2. Pulsar Wind Lwind=ηw Lrot

Aharonian, F.A. & Atoyan, A.M., 1998

Unpulsed emission

Pulsed emission

E// + e/p

BB 加熱

E // 加速

IC

sync

RL=c/Ω

Rs=(Lwind/4πPext)^1/2

Vacc=RL*BL=μΩ^2/c^2

Vacc=Rs*Bn with Pext=Bn^2/8π

keVGeV

TeV

垂直衝撃波加速の困難

1. High Energy Pulses1. High Energy Pulses3. Radio Pulses