ocw.aoc.ntua.gr · 2015. 5. 8. · kef laio 1 fusik sust mata sto prohgoÔmeno mèroc jewr same...

64
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Στατιστική Φυσική Ενότητα 3 Βαρελογιάννης Γεώργιος

Upload: others

Post on 10-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Σχολή  Εφαρμοσμένων  Μαθηματικών  και  Φυσικών  Επιστημών  Εθνικό  Μετσόβιο  Πολυτεχνείο  

    Στατιστική  Φυσική  

    Ενότητα  3  

    Βαρελογιάννης  Γεώργιος  

  • Το  παρόν  εκπαιδευτικό  υλικό  υπόκειτα  σε  άδειες  χρήσης  Crea%ve  Commons.  Για  εκπαιδευτικό  υλικό,  όπως  εικόνες,  που  υπόκειται  σε  άδεια  χρήσης  άλλου  τύπου,  αυτή  πρέπει  να  αναγράφεται  ρητώς.  

    Άδεια  Χρήσης  

  • Keflaio 1

    Fusik Sust mata

    Sto prohgoÔmeno mèroc jewr same èna aplì pardeigma, tic pijanèc jèseicmiac mplac se èna apo ta kouti, kai orÐsame thn entropÐa pou metrei thnèleiyh plhroforÐac sto sÔsthma autì. Sta fusik sust mata pou mac endi-afèroun, th jèsh twn kouti¸n paÐrnoun oi dunatèc katastseic tou sust -matoc pou lègontai kai prospelsimec katastseic, kai to anlogotou erwt matoc se poiì koutÐ brÐsketai h mpla, eÐnai to er¸thma se poikatstash brÐsketai to fusikì sÔsthma pou mac endiafèrei.EÐnai profanèc ìti h angkh miac statistik c antimet¸pishc kai ra m  mh-denik c entropÐac prokÔptei ìtan den eÐmaste ikanoÐ me bsh ta dedomèna poudiajètoume na gnwrÐzoume se poi apo tic prospelsimec fusikèc katast-seic brÐsketai to sÔsthma. Autì sumbaÐnei arket suqn dedomènou ìti tamakroskopik sust mata pou mac endiafèroun apoteloÔntai apo ènaterstio arijmì mikroskopik¸n bajm¸n eleujerÐac. EÐmaste loipìnupoqrewmènoi na katafÔgoume se mia statistik  perigraf . H perigraf  aut ègkeitai sta paraktw b mata:

    • EntopÐzoume, me bsh ta dedomèna pou gnwrÐzoume gia to sÔsthma, ticprospelsimec katastseic tou sust matoc.

    • Me bsh epÐshc ta dedomèna pou diajètoume, prospajoÔme na antis-toiqÐsoume mia katanom  pijanot twn stic prospelsimec katastseic,dhlad  na broÔme poi pijanìthta èqei to sÔsthma na brÐsketai se kjemia apo tic prospelsimec katastseic tou.

    • Me bsh thn katanom  pijanot twn tou prohgoÔmenou b matoc eÐmastese jèsh na upologÐsoume mèsec timèc fsik¸n posot twn kai ra me bshta dedomèna na knoume problèyeic.

    3

  • 4 Keflaio 1. Fusik Sust mata

    Gia to pr¸to b ma basizìmaste sthn en gènei katanìhsh pou èqoume gia tosÔsthma, tìso gia touc mikroskopikoÔc tou suntelestèc ìso kai gia tou-c makroskopikoÔc periorismoÔc ìpwc gia pardeigma ì ìgkoc tou doqeÐoupou endeqìmena perièqei èna aèrio sÔsthma. Sthn perÐptwsh twn klassik¸nsusthmtwn, oi prospelsimec katastseic apartÐzoun to legìmeno q¸rotwn fsewn tou makroskopikoÔ sust matoc pou mac endiafèrei. Gia takbantik sust mata pou ja mac apasqol soun kata kÔrio lìgo, oiprospelsimec katastseic eÐnai autèc pou apartÐzoun to q¸ro Hilberttwn prospelsimwn katastsewn tou sust matìc. AfoÔ tautopoihjeÐ oprospelsimoc q¸roc twn fsewn, gia thn epilog  thc katanom c pijan-ot twn pou antistoiqeÐ se èna sÔsthma se isorropÐa eÐmaste upoqrewmènoi naprosfÔgoume se èna axÐwma pou basÐzetai sthn empeirik  mac katanìhsh: toaxÐwma Boltzmann - Gibbs . Me bsh thn epilog  thc katanom c Boltzmann- Gibbs , gia orismènec posìthtec eÐnai arket eÔkolo na upologÐsoume ticmèsec timèc touc sunart sei twn dedomènwn tou sust matoc mia kai arkeÐ o up-ologismìc thc legìmenhc sunrthshc epimerismoÔ. Gia llec posìthteceÐnai pio dÔskoloc o upologismìc autìc kai prèpei upoqrewtik na orÐsoumetouc telestèc puknìthtac. O orismìc tou telest  puknìthtac shmaÐneisthn ousÐa ton orismì thc katanom c pijanot twn pou epilèxame. Dedomènouìti oi telestèc autoÐ eÐnai aparaÐthtoi gia thn katanìhsh thc statistik c pnwsta kbantik sust mata, to ìlo prìblhma ja kwdikopoihjeÐ ston legìmenoformalismì twn telest¸n puknìthtac. Proèqei ìmwc o orismìc touq¸rou twn prospelsimwn katastsewn, gia ton opoÐo entopÐzoume orismènashmantik qarakthristik kurÐwc to legìmeno je¸rhma Liouville , kai sthsunèqeia ja orÐsoume touc telestèc puknìthtac.

    1.1 Klassik Sust mata

    Sta Klassik Sust mata, kje swmatÐdio perigrfetai apì èna dinusma jè-sewc r⃗ kai apì èna dinusma orm c p⃗. Dhlad  apì 6 bajmoÔc eleujerÐac.AntÐstoiqa, an èqoume èna sÔsthma N swmatidÐwn, apaitoÔntai gia thn peri-graf  tou sust matoc 6N bajmoÐ eleujerÐac. Gia na broÔme tic katastseicenìc sust matoc, orÐzoume to q¸ro twn fsewn. O q¸roc twn fsewneÐnai ènac 6N-distatoc uperq¸roc, o opoÐoc prokÔptei apìtouc 6N bajmoÔc eleujerÐac tou sust matoc. H katstash tousust matoc, th qronik  stigm  t = 0, apoteleÐ èna shmeÐo sto q¸ro twnfsewn. H troqi kje swmatidÐou, sto q¸ro twn fsewn, perigrfetai apìtic exis¸seic Hamilton:

  • 1.2. Kbantik Sust mata 5

    dr⃗idt

    =∂H

    ∂p⃗i(1.1.1)

    dp⃗idt

    =∂H

    ∂p⃗i, (1.1.2)

    ìpou o deÐkthc i anafèretai sto i-ostì swmatÐdio. H epÐlush tou parapnwsust matoc exis¸sewn eÐnai polÔ dÔskolh kai gia makroskopik sust mataen gènnei akatìrjwth. Upoqrewtik katafeÔgoume sth Statistik  Fusik .

    Je¸rhma Liouville

    O ìgkoc tou q¸rou twn fsewn diathreÐtai apì th Qamiltonian dunamik 

    �i��

    O ìgkoc tou q¸rou twn fsewn, diathreÐ thn puknìtht tou stajer ,parìlo pou to sq ma tou mporeÐ na allzei me thn prodo tou qrìnou.

    • Wc prospelsimo q¸ro, onomzoume to q¸ro ston opoÐo mporeÐ na brejeÐh katstash tou sust matoc. O ìgkoc tou prospelsimou q¸rou twnfsewn sÔmfwna me to Je¸rhma Liouville sumperifèretai ìpwc o ìgkocenìc asumpÐestou ugroÔ.

    • Wc prospelsimh katstash onomzoume kje shmeÐo tou prospelsi-mou q¸rou.

    1.2 Kbantik Sust mata

    Sta Kbantik Sust mata, kje katstash tou sust matoc ekfrzetai mèswenìc dianÔsmatoc | Ψ⟩. To dinusma | Ψ⟩ an kei sto q¸ro Hilbert, E , tousust matoc, o opoÐoc apoteleÐ ton prospelsimo q¸ro tou sust matoc. Oq¸roc Hilbert antistoiqeÐ sto q¸ro twn fsewn twn Klassik¸n Susthmtwn.To eswterikì ginìmeno sto q¸ro Hilbert, grfetai wc ⟨Φ | Ψ⟩, ìpou ta Φ kaiΨ, eÐnai tuqaÐa dianÔsmata tou q¸rou Hilbert.

  • 6 Keflaio 1. Fusik Sust mata

    Sta Kbantik Sust mata, kje mègejoc apoteleÐ ènan telest , o opoÐoc drasta dianÔsmata tou q¸rou Hilbert. Kje telest c Â, èqei èna sÔnolo idiodi-anusmtwn | ψn⟩ me idiotimèc αn. Dhlad  isqÔei:

    Â | ψn⟩ = αn | ψn⟩.

    MporoÔme na qrhsimopoi soume ta idiodianÔsmata enìc telest  (sun jwc thcQamiltonian c), wc bsh tou q¸rou Hilbert. Gia na problloume èna tuqaÐodinusma | Ψ⟩, sth bsh | ψn⟩, paÐrnoume to eswterikì ginìmeno ⟨ψn | Ψ⟩.Mlista, h posìthta | ⟨ψn | Ψ⟩ |2, ekfrzei thn puknìthta pijanìthtac nabrejeÐ to sÔsthma sthn idiokatstash | ψn⟩, ìtan ektelèsoume mÐa katllhlhmètrhsh sto sÔsthma.

    1.3 Telestèc Puknìthtac

    Oi Telestèc Puknìthtac eis qjhkan apì ton Von Neumann to 1950. OiTelestèc Puknìthtac, mporoÔn na parast soun èna statistikì meÐgma mikrokatastsewn.Se aut n thn perÐptwsh, den gnwrÐzoume epakrib¸c thn katstash tou sust -matoc. AntÐjeta, èqoume mÐa katanom  pijanot twn kajar¸n mikrokatastsewn,me thn opoÐa proseggÐzoume pijanojewrhtik thn pragmatik  katstash tousust matoc. To gegonìc ìti qrhsimopoioÔme mÐa katanom  pijanot twn gia naperigryoume thn katstash tou sust matoc, mac upagoreÔei thn eisagwg enìc telest  puknìthtac pijanot twn, ¸ste na ekfrsoume to statistikìmeÐgma twn mikrokatastsewn.

    Telest c Puknìthtac KlassikoÔ Sust matoc

    JewroÔme èna klassikì sÔsthma N swmatidÐwn, to opoÐo perigrfetai apìtic genikeumènec suntetagmènec qi kai tic genikeumènec ormèc pi, ìpou i =1, 2, . . . , 3N . O Telest c Puknìthtac ρ(qi, pi) eÐnai h puknìthta pijanìthtacna qarakthrÐzetai to sÔsthma apì tic dunatèc timèc (q, p), pou brÐskontai seènan stoiqei¸dh ìgko dτ , gÔrw apì to shmeÐo (qi, pi). O stoiqei¸dhc ìgkoctou q¸rou twn fsewn, dτ , dÐnetai apì th sqèsh:

    dτ =1

    N !

    N∏i=1

    d3qid3pi

    ~3(1.3.1)

  • 1.3. Telestèc Puknìthtac 7

    Idiìthtec tou Telest  Puknìthtac:

    • O Telest c Puknìthtac paristnei puknìthtac pijanìthtac, sunep¸cgia autìn ja isqÔei h sqèsh kanonikopoÐhshc :∫

    Vdτρ(q, p) = 1. (1.3.2)

    • H mèsh tim , enìc megèjouc A, mporeÐ na grafeÐ:

    ⟨A⟩ =∫VdτA(q, p)ρ(q, p) (1.3.3)

    • 'Olh h plhroforÐa enìc statistikoÔ meÐgmatoc katastsewn, brÐsketaiston Telest  Puknìthtac. H qronik  exèlixh tou Telest  Puknìthtac,dÐnetai apì th sqèsh:

    ∂ρ

    ∂t+ {H, ρ} = 0, (1.3.4)

    ìpou {, } oi agkÔlec Poisson kai H h Qamiltonian  tou sust matoc.

    Telest c Puknìthtac KbantikoÔ Sust matoc

    Kai to kbantikì sÔsthma mporeÐ na brÐsketai se èna statistikì meÐgmakatastsewn. JewroÔme san bsh tou q¸rou Hilbert, tic idiakatastseicenìc telest  Â, pou dÐnontai apì th sqèsh:

    Â | ψn⟩ = αn | ψn⟩.

    H mèsh tim  tou telest  Â, ⟨Â⟩, dÐnetai apì th sqèsh:

    ⟨Â⟩ =∑n

    Pnαn =∑n

    Pn⟨ψn | Â | ψn⟩, (1.3.5)

    ìpou Pn h pijanìthta na brejeÐ to sÔsthma sthn katstash ψn. Se autì toshmeÐo, orÐzoume ton Telest  Puknìthtac ρ̂, mèsw thc sqèshc:

    ρ̂ =∑n

    Pn | ψn⟩⟨ψn | . (1.3.6)

  • 8 Keflaio 1. Fusik Sust mata

    Idiìthtec tou Telest  Puknìthtac:

    • To gegonìc ìti to jroisma twn pijanot twn isoÔtai me th monda,dhlad 

    ∑n Pn = 1, sunepgetai thn akìloujh sqèsh gia to Ðqnoc tou

    Telest  Puknìthtac:Tr{ρ̂} = 1. (1.3.7)

    • H mèsh tim , enìc telest  Â, mporeÐ na grafeÐ:

    ⟨Â⟩ = Tr{ρ̂Â}. (1.3.8)

    • 'Olh h plhroforÐa enìc statistikoÔ meÐgmatoc katastsewn, brÐsketaiston Telest  Puknìthtac. H qronik  exèlixh tou Telest  Puknìthtac,dÐnetai apì th sqèsh:

    i~∂ρ̂

    ∂t= [Ĥ, ρ̂], (1.3.9)

    ìpou Ĥ h Qamiltonian  tou sust matoc.

    • MÐa teleutaÐa idiìthta, pou isqÔei kai sthn klassik  perÐptwsh, eÐnaiìti gia dÔo diaforetikèc katanomèc ρ̂ kai ρ̂ ′, isqÔei h sqèsh:

    −kBTr {ρ̂ ln ρ̂} ≤ −kBTr{ρ̂ ′ ln ρ̂ ′

    }ìpou h isìthta isqÔei gia ρ̂ = ρ̂ ′.

    (1.3.10)

    1.4 Katanomèc IsorropÐac

    'Ena sÔsthma, qarakthrÐzetai apì dÔo eÐdh dedomènwn:

    • Epakrib¸c kajorismèna dedomèna

    OrÐzoun ton prospelsimo q¸ro tou sust matoc, tìso se Kbantikìso se Klassik Sust mata. Gia pardeigma, jewroÔme ìti ìlec oimikrokatastseic eÐai isopÐjanec. Se aut n thn perÐptwsh, an èqoumeW isopÐjanec mikrokatastseic, o Telest c Puknìthtac grfetai:

    ρ̂ =∑n

    1

    W| ψn⟩⟨ψn |

  • 1.4. Katanomèc IsorropÐac 9

    kai h entropÐa tou sust matoc, isoÔtai me

    S = kB lnW

    • Dedomèna StatistikoÔ Qarakt ra

    Sth sugkerimènh perÐptwsh, h mèsh tim  kpoiou megèjouc, eÐnai ka-jorismènh. Gia pardeigma, an to sÔsthma eÐnai se epaf  me mÐa dex-amen  jermìthtac, h enèrgei tou eÐnai kajorismènh. Dhlad  isqÔei:U = Tr{ρ̂Ĥ}. Sth genik  perÐptwsh, èqoume kpoio dedomèno thc mor-f c ⟨X̂i⟩ = Tr{ρ̂X̂i}, en¸ parllhla isqÔei Tr{ρ̂} = 1. Den uprqeièna monadikì ρ̂ pou na ikanopoieÐ touc parapnw periorismoÔc. Mlista,oi katastseic den eÐnai isopÐjanec diìti èqoume statistik  katanom . Gi-a na epilèxoume to ρ̂ se aut n thn perÐptwsh, qrhsimopoioÔme to AxÐwmaBoltzman-Gibbs.

    AxÐwma Boltzmann-Gibbs

    O Telest c Puknìthtac ρ̂, ja prèpei na epilegeÐ apììlec tic katanomèc pou eÐnai sumbatèc me ta StatistikDedomèna, me krit rio th megistopoÐhsh thc entropÐac.Dhlad , th megistopoÐhsh tou ìrou S = −kBTr {ρ̂ ln(ρ̂)}.To sugkekrimèno krit rio, basÐzetai sto gegonìc ìtih epilog  tou ρ̂, den prèpei na prosjètei perissìterhplhroforÐa, apì aut n pou pragmatik èqoume. IsodÔ-nama, ja prèpei na mh mei¸nei thn gnoia pou èqoume.

    SÔmfwna me to axÐwma Boltzmann-Gibbs, o Telest c Puknìthtac upologÐze-tai apì th megistopoÐhsh thc entropÐac. Sth sugkekrimènh perÐptwsh, èqoumeepiplèon periorismoÔc. Autì mac anagkzei na qrhsimopoi soume th mèjodotwn pollaplassiast¸n Lagrange, ¸ste na enswmat¸soume touc periorismoÔc.OrÐzoume th sunrthsh:

    S̄ = S −∑i

    λiTr{ρ̂X̂i − λ0Tr {ρ̂}

    }. (1.4.1)

  • 10 Keflaio 1. Fusik Sust mata

    Ta λi, eÐnai oi pollaplassiastèc Lagrange, oi opoÐoi antistoiqoÔn stoucperiorismoÔc ⟨X̂i⟩ = Tr{ρ̂X̂i}. H mèjodoc pou akoloujoÔme, eÐnai na up-ologÐsoume to ρ̂ apì th megistopoÐhsh thc S̄ kai èpeita na broÔme ta λi mèswtwn periorism¸n. H megistopoÐhsh thc S̄, odhgeÐ sth sqèsh:

    dS̄dρ̂

    = 0 ⇒

    ln(ρ̂) +∑i

    λiX̂i + λ0 + 1 = 0 (1.4.2)

    Qrhsimopoi¸ntac thn parapnw sqèsh, mporoÔme na gryoume:

    ρ̂ =1

    Ze−

    ∑i λiX̂i , (1.4.3)

    ìpou Z, h sunrthsh epimerismoÔ tou sust matoc. H morf  thc sunrthshcepimerismoÔ, prokÔptei apì ton periorismì Tr{ρ̂} = 1. Eidikìtera, isqÔei:

    Z = Tr{e−

    ∑i λiX̂i

    }. (1.4.4)

    Sthn perÐptwsh pou èqoume kajorismènh enèrgeia, dhlad  sthn perÐptwsh touKanonikoÔ Sunìlou, h sunrthsh epimerismoÔ èqei th morf :

    Z = Tr{e−λĤ

    }=∑n

    e−βEn , (1.4.5)

    ìpou En, oi idiotimèc thc Qamiltonian c Ĥ. Epeid  to Ðqnoc enìc telest  eÐnaianexrthto thc bshc pou qrhsimopoioÔme, h parapnw sqèsh paramènei Ðdia,eÐte an qrhsimopoi soume san bsh tic idiokatastseic hc Qamiltonian c, eÐteìqi. H katanom  sthn opoÐa katal xame, onomzetai katanom  Boltzmann-Gibbs, kai isqÔei gia to Kanonikì SÔnolo.

    ⟨X̂i⟩ = −1

    Z∂

    ∂λiTr{e−

    ∑i λiX̂i

    }(1.4.6)

    Z = Tr{e−

    ∑i λiX̂i

    }(1.4.7)

    ⟨X̂i⟩ = −∂

    ∂λi(lnZ) (1.4.8)

  • 1.5. Genik  MejodologÐa 11

    S = −kBTr{ρ̂ ln ρ̂} (1.4.9)

    = −kBTr

    {ρ̂

    (lnZ +

    ∑i

    λiX̂i

    )}(1.4.10)

    = −kB lnZ − kB∑i

    λi∂ lnZ∂λi

    (1.4.11)

    dS = kB

    (d lnZ +

    ∑i

    λid⟨X̂i⟩+∑i

    ⟨X̂i⟩dλi

    )(1.4.12)

    d lnZ = −∑i

    ⟨X̂i⟩dλi (1.4.13)

    dS = kB∑i

    λid⟨X̂i⟩. (1.4.14)

    Oi fusikèc metablhtèc thc entropÐac, eÐnai oi mèsec timèc twn X̂i. Oi λi, eÐnaioi epimèrouc pargwgoi thc entropÐac S/kB se sqèsh me tic mèsec timèc ⟨X̂i⟩.Autì shmaÐnei, ìti o pollaplassiast c Lagrange, λi, metr thn taqÔthtametabol c thc entropÐac wc proc th metabol  thc mèshc tim c ⟨X̂i⟩.

    ∂S∂⟨X̂i⟩

    = kBλi (1.4.15)

    kB lnZ = S −∑i

    ⟨X̂i⟩∂S∂⟨X̂i⟩

    (1.4.16)

    H kB lnZ eÐnai o metasqhmatismìc Legendre thc entropÐac.

    1.5 Genik  MejodologÐa

    Genik  Mèjodoc gia sust mata se isorropÐa (mègisth en-tropÐa).

    • OrÐzoume to q¸ro Hilbert twn prospelsimwn katastsewn.

    • AnagnwrÐzoume tic �Stajerèc KÐnhshs� tou sust matoc kai sth sunèqeiatouc telestèc X̂i, pou antistoiqoÔn se autèc. Tètoiec stajerèc, eÐnaih enèrgeia, o arijmìc twn swmatidÐwn, ktl. Oi mèsec timèc ⟨X̂i⟩, eÐnaidedomèna pou qarakthrÐzoun to Makrskopikì SÔsthma se isorropÐa.

  • 12 Keflaio 1. Fusik Sust mata

    • Se kje X̂i antistoiqÐzoume èna λi. O Telest c Puknìthtac gia tosÔsthma se isorropÐa, dÐnetai apì thn katanom  Boltzmann-Gibbs:

    ρ̂ =1

    Ze−

    ∑i λiX̂i . (1.5.1)

    • Gia kje fusikì mègejoc Â, isqÔei ⟨Â⟩ = Tr{ρ̂Â}.

    • Gia ta fusik megèjh pou diathroÔntai, to prìblhma eÐnai aploÔstero.UpologÐzoume kat�arq n, th sunrthsh epimerismoÔZ = Tr

    {e−

    ∑i λiX̂i

    }kai èpeita upologÐzoume to diathroÔmeno mègejoc pou mac endiafèrei,apì th sqèsh:

    ⟨X̂i⟩ = −∂

    ∂λiln (Z {λi}) (1.5.2)

    • An endiaferìmaste gia th mèsh tim  mÐac posìthtac Â, h opoÐa mporeÐna prokÔyei apì kpoia diathroÔmenh posìthta X̂i me parag¸gish wcproc kpoia parmetro ξ pou emfanÐzetai ston orismì thc, tìte h gn¸shthc Z sunart sei thc ξ arkeÐ gia ton prosdiorismì thc mèshc tim c tou kai isqÔei h sqèsh

    ⟨Â⟩ = ⟨∂X̂i∂ξ

    ⟩ = − 1λi

    ∂ξln (Z {λi}) (1.5.3)

    Na shmeiwjeÐ ìti, oi idiotimèc twn X̂i eÐnai sun jwc gnwstèc (toulqis-ton gia ta aploÔstera probl mata). Dedomènou ìti o upologismìc touÐqnouc enìc pÐnaka eÐnai anexrthtoc thc bshc sthn opoÐa anaparÐs-tatai o pÐnakac, epilègoume na ergastoÔme sth bsh (  anaparstash)sthn opoÐa ta X̂i eÐnai diag¸nia kai ra kai o telest c puknìthtac eÐnaidiag¸nioc. To Ðqnoc isodunameÐ sthn perÐptwsh aut  me to jroismatwn antÐstoiqwn ekjetik¸n sta opoÐa antÐ gia ta X̂i brÐskontai oi an-tÐstoiqec idiotimèc touc.

    • 'Otan h Qamiltonian  tou sust matoc èqei th morf :

    Ĥ =N∑i

    Ĥi ìpou [Ĥi, Ĥj ] = 0 ∀ i, j (1.5.4)

    To gegonìc ìti oi epimèrouc Qamiltonianèc metatÐjentai, shmaÐnei ìtito sÔsthm mac apoteleÐtai apì N anexrthta uposust mata. Ara

  • 1.6. Kanonik SÔnola 13

    o sunolikìc q¸roc Hilbert, E , tou sust matoc, prokÔptei apì to exw-terikì ginìmeno twn q¸rwn Hilbert twn uposusthmtwn, dhlad 

    E = E1 ⊗ E2 ⊗ . . .⊗ EN

    . Autì èqei san apotèlesma h sunrthsh epimerismoÔ tou sust matoc,Z, na paragontopoieÐtai wc akoloÔjwc:

    Z =N∏i

    Zi (1.5.5)

    Sun jhc eÐnai h perÐptwsh kat thn opoÐa ta N sust mata eÐnai ìmoiametaxÔ touc opìte jètontac Zi = Zo, èqoume gia th sunolik  sunrthshepimerismoÔ thn apl  morf :

    Z = Z No (1.5.6)

    • Tèloc, gia thn entropÐa isqÔei:

    S = kB lnZ −∑i

    ∂λi(kB lnZ) (1.5.7)

    prgma pou anadeiknÔei pìso shmantik  eÐnai h eÔresh thc Z{λi}.

    1.6 Kanonik SÔnola

    'Estw oi 3 Stajerèc KÐnhshc:

    • Enèrgeia → X̂1 = Ĥ

    • Arijmìc SwmatidÐwn → X̂2 = N̂

    • 'Ogkoc → X̂3 = V

    1)H,N ,V Kajorismèna Akrib¸c⇒Mikrokanonikì SÔnolo (p.q.idanikì aèrio).

    Se aut n thn perÐptwsh èqoume W isopÐjanec prospelsimec katastseic. Oarijmìc W aut¸n twn katastsewn, exarttai apì tic timèc twn diathroÔmen-wn posot twn. O Telest c Puknìthtac, èqei th morf :

    ρ̂ =∑n

    | ψn⟩1

    W⟨ψn | . (1.6.1)

  • 14 Keflaio 1. Fusik Sust mata

    H entropÐa dÐnetai apì th sqèsh:

    S = kB lnW. (1.6.2)

    Oi posìthtec ∂S∂U ,∂S∂N ,

    ∂S∂V eÐnai oi SuzugeÐc Metablhtèc twn U , N , V se

    sqèsh me thn entropÐa S.

    2)N kai V kajorismèna akrib¸c, H kajorismèno kat Mèso'Oro ⇒ Kanonikì SÔnolo (p.q. jermikì sÔsthma).

    O Telest c Puknìthtac, èqei th morf :

    ρ̂ =1

    ZCe−λHĤ =

    1

    ZCe−βĤ . (1.6.3)

    H sunrthsh epimerismoÔ, dÐnetai apì th sqèsh:

    ZC = Tr{e−βĤ

    }. (1.6.4)

    Epilègoume san bsh tou q¸rou Hilbert, ta idiodianÔsmata | ψn⟩ thc Qamil-tonian c. IsqÔoun:

    Ĥ | ψn⟩ = En | ψn⟩

    e−βĤ | ψn⟩ = e−βEn | ψn⟩

    ZC = Tr{e−βĤ

    }=∑n

    ⟨ψn | e−βĤ | ψn⟩ =∑n

    e−βEn

    λi = β (1.6.5)

    X̂i = Ĥ (1.6.6)

    ⟨X̂i⟩ = ⟨Ĥ⟩ (1.6.7)

    ⟨Ĥ⟩ = U = −∂ lnZC(β)∂β

    (1.6.8)

    H entropÐa tou sust matoc, dÐnetai apì th sqèsh:

    S(U) = kB lnZC + βkBU (1.6.9)

    H metablht  ∂S∂U , eÐnai h Suzug c Metablht  thc enèrgeiac wc proc thn en-tropÐa.

    ∂S∂U

    = kBβ. (1.6.10)

  • 1.6. Kanonik SÔnola 15

    Oi diakumseic thc enèrgeiac, gÔrw apì th mèsh tim  thc, dÐnontai apì thsqèsh:

    ⟨(⟨Ĥ⟩ − U)2⟩ = ∂2 lnZC∂β2

    =−kB

    ∂2S/∂U2(1.6.11)

    3)V kajorismèno akrib¸c. H kai N kajorismèna kat mèsoìro. Megalo-Kanonikì SÔnolo.

    ⟨Ĥ⟩ = Tr{ρ̂Ĥ}= U ⟨N̂⟩ = Tr

    {ρ̂N̂}= N (1.6.12)

    ρ̂ =1

    ZGe−βĤ−λN N̂ (1.6.13)

    ZG = Tr{e−βĤ−λN N̂

    }(1.6.14)

    U = ⟨Ĥ⟩ = −∂ lnZG∂β

    (1.6.15)

    N = ⟨N̂⟩ = −∂ lnZG∂λN

    (1.6.16)

    S = kB lnZG + kBβU + kBλNN. (1.6.17)

    β =1

    kB

    ∂S∂U

    (1.6.18)

    λN =1

    kB

    ∂S∂N

    (1.6.19)

    4)N kajorismèno akrib¸c. Ta H kai V eÐnai kajorismèna katmèso ìro. Isojermikì-Isobarikì SÔnolo.

    ρ̂ =1

    ZIe−βĤ−λV V (1.6.20)

    ZI =∫

    dV e−λV V Tr{e−βĤ

    }= metasqhmatismìc Laplace thc ZC (1.6.21)

    Sugkentrwtik ja èqoume: β = 1kBT , λN = −µ

    kBTkai λV =

    pkBT

    .

  • 16 Keflaio 1. Fusik Sust mata

    1.7 ParadeÐgmata Tupik¸n Ask sewn

    H apìdeixh twn idiot twn twn Telest¸n Puknìthtac thc paragrfou 1.3 ka-j¸c kai twn sqèsewn pou prokÔptoun apì to axÐwma Boltzmann−Gibbs twnparagrfwn 1.4 - 1.7 apoteloÔn shmantikèc ask seic. Tupik paradeÐgmataeÐnai ta akìlouja:

    ΄Ασκηση

    Αποδείξτε ότι για μια ποσότητα X̂i για την οποία υπάρχειστατιστικός περιορισμός (διατηρήσιμη ποσότητα) αρκείη συνάρτηση επιμερισμού για τον υπολογισμό της μέσης

    τιμής από τη σχέση⟨X̂i

    ⟩= −∂ lnZ∂λi .

    Απάντηση

    ⟨X̂i

    ⟩= tr

    {ρ̂X̂i

    }= tr

    e−∑

    i λiX̂iX̂i

    tr{e−

    ∑i λiX̂i

    } = tr

    ∂λi

    (−e−

    ∑i λiX̂i

    )tr{e−

    ∑i λiX̂i

    } =

    =

    − ∂∂λi tr{e−

    ∑i λiX̂i

    }tr{e−

    ∑i λiX̂i

    } Z=tr{e−∑i λiX̂i}= = − ∂Z

    ∂λi

    1

    Z= −∂ lnZ

    ∂λi

    ΄Ασκηση

    Αποδείξτε ότι για τη μέση τιμή μιας ποσότητας Â πουπροκύπτει από μια πρώτη παραγώγιση μιας διατηρήσιμηςποσότητας X̂i ως προς μια παράμετρο ξ επίσης αρκεί η

    συνάρτηση επιμερισμού και ισχύει η σχέση⟨Â⟩= − 1λi

    ∂ ln Z∂ξ .

    Απάντηση

    Μπορούμε για παράδειγμα να ξεκινήσουμε από το δεύτερο μέρος τηςισότητας και να καταλήξουμε στο πρώτο. Εχουμε λοιπόν

    − 1λi

    ∂ ln Z

    ∂ξ= − 1

    λi

    1

    Z

    ∂Z

    ∂ξ= − 1

    λi

    1

    Z

    ∂ξ

    (tr{e−

    ∑i λiX̂i

    })=

    = − 1λi

    1

    Ztr

    {∂

    ∂ξ

    (e−

    ∑i λiX̂i

    )}= − 1

    λi

    1

    Ztr

    {∂X̂i∂ξ

    (−λi)(e−

    ∑i λiX̂i

    )}=

  • 1.7. ParadeÐgmata Tupik¸n Ask sewn 17

    =1

    Ztr

    {∂X̂i∂ξ

    (e−

    ∑i λiX̂i

    )} Â= ∂X̂i∂ξ= tr

    {Âe−

    ∑i λiX̂i

    Z

    }= tr

    {ρ̂Â}⇒

    ⇒⟨Â⟩= tr

    {ρ̂Â}= − 1

    λi

    ∂ ln Z

    ∂ξ

  • 18 Keflaio 1. Fusik Sust mata

  • Keflaio 2

    Nomoi thc Jermodunamik ckai Statistik  Fusik 

    Mhdenikìc Nìmoc thc Jermodunamik c:

    DÔo sust mata se jermik  isorropÐa me èna trÐto, mènounse jermik  isorropÐa metaxÔ touc, an ta fèroume se epaf .

    Apì ton parapnw nìmo mporoÔme na orÐsoume ta jermìmetra.

    2.1 Jermik  Epaf  sto Kanonikì SÔnolo

    'Estw dÔo sust mata α kai β se isorropÐa. An eÐnai jermik monwmèna, eÐ-nai anexrthta metaxÔ touc. Se aut n thn perÐptwsh, h enèrgeia tou kjesust matoc eÐnai mÐa statistik kajorismènh posìthta. Gia to kje sÔsthma,mporoÔme na eisgoume ènan pollaplassiast  Lagrange, o opoÐoc ja sundèe-tai me ton periorismì, thc Ôparxhc statistik kajorismènhc enèrgeiac. HQamiltonian  tou sunìlou twn dÔo anexrthtwn susthmtwn, grfetai wcex c:

    Ĥ = Ĥα + Ĥβ . (2.1.1)

    Epeid  ta dÔo sust mata eÐnai anexrthta, oi epimèrouc Qamiltonianèc metatÐ-jontai, dhlad  [Ĥα, Ĥβ ]. Gia ta dÔo sust mata, isqÔoun oi sqèseic:

    ρ̂α =1Zα e

    −βαĤα ρ̂β =1Zβ e

    −ββĤβ

    Zα = Tr{e−βαĤα

    }Zβ = Tr

    {e−ββĤβ

    }Uα = ⟨Ĥα⟩ = − ∂∂βα lnZα Uβ = ⟨Ĥβ⟩ = −

    ∂∂ββ

    lnZβ

    (2.1.2)

    19

  • 20 Keflaio 2. Nomoi thc Jermodunamik c kai Statistik  Fusik 

    Gia ton olikì Telest  Puknìthtac, isqÔei:

    ρ̂α+β = ρ̂α ⊗ ρ̂β =e−βαĤα−ββĤβ

    Zα · Zβ(2.1.3)

    Fèrnoume ta dÔo sust mata se jermik  epaf . Plèon sth Qamiltonian  tousust matoc, ja uprqei ènac ìroc allhlepÐdrashc V̂ . Dhlad :

    Ĥ = Ĥα + Ĥβ + V̂ . (2.1.4)

    H allhlepÐdrash V̂ , exarttai apì ta qarakthristik twn dÔo epimèrouc susth-mtwn. EÐnai polÔ asjen c kai den allzei th fusik  tou kje sust matoc.Eidikìtera,isqÔei V̂

  • 2.2. Pr¸toc Nìmoc thc Jermodunamik c 21

    Genik:Se kje suzug  metablht , antistoiqÐzoume mÐa diathr simh posìthta, h opoÐ-a, ìtan jètoume se epaf  ta dÔo sust mata ¸ste na mporoÔn na antallsounth sugkekrimènh diathr simh posìthta, ja teÐnei na gÐnei Ðsh sta 2 sust mata.Gia pardeigma, an dÔo sust mata se elafr epaf  mporoÔn na antallxounswmatÐdia, tìte to λN deÐqnei thn tsh tou sust matoc na apwlèsei swmatÐdi-a kai oi metabolèc tou λN qarakthrÐzei thn antallag  swmatidÐwn akrib¸cìpwc to β thn antallag  enèrgeiac.

    2.2 Pr¸toc Nìmoc thc Jermodunamik c

    Arq  Diat rhshc thc Enèrgeiac

    Kat th metbash enìc sust matoc, apì mÐa katstash 1 semÐa katstash 2, isqÔei:

    U2 −U1 = W +Qìpou U h eswterik  enèrgeia tou sust matoc, W to èrgo pouprokÔptei kat th metbash kai Q to posì thc jermìthtac pouantallsetai kat th metbash.

    U = Tr{ρ̂Ĥ}⇒ (2.2.1)

    dU = Tr{Ĥdρ̂

    }+ Tr

    {ρ̂dĤ

    }(2.2.2)

    ↑ ↑ (2.2.3)dQ dW (2.2.4)

    H jermìthta Q sqetÐzetai me th metabol  twn pijanot twn tou sust matoc,en¸ to èrgo W sqetÐzetai me th metabol  twn energeiak¸n epipèdwn. Jew-roÔme ìti h bsh tou q¸rou Hilbert tou sust matoc, eÐnai oi idiokatastseicthc Qamiltonian c | ψn⟩. Epiplèon, jewroÔme ìti h katstash tou sust -matoc, eÐnai mÐa upèrjesh twn | ψn⟩. H eswterik  enèrgeia tou sust matoc,U , dÐnetai apì th mèsh tim  thc Qamiltonian c:

    U = ⟨Ĥ⟩ = Tr{ρ̂Ĥ}=∑n

    PnEn. (2.2.5)

    H sqèsh (2.2.1), qrhsimopoi¸ntac thn parapnw sqèsh, aplopoieÐtai wc ex c:

    dU =∑n

    (dPn)En +∑n

    Pn(dEn) (2.2.6)

  • 22 Keflaio 2. Nomoi thc Jermodunamik c kai Statistik  Fusik 

    dQ =∑n

    EndPn (2.2.7)

    dW =∑n

    PndEn. (2.2.8)

    'Ergo:Ac upojèsoume mh apeirostèc metabolèc (dhlad  meglec allagèc). Jew-roÔme ìti uprqei mÐa energ  Qamiltonian  Ĥeff , h opoÐa perigrfei th metabol 

    kai den eÐnai h olik  Qamiltonian  tou sust matoc. H Qamiltonian  Ĥeffanafèretai sto sÔsthma pou energeÐ h Ĥeff sthn opoÐa oi parmetroi pouexart¸ntai apì exwterikoÔc pargontec antikajÐstantai apì paramètrouc ξαtwn opoÐwn h qronik  exrthsh eÐnai elegqìmenh (p.q. gia kÔlindro autokin -tou eÐnai o ìgkoc). Gia kÔlindro autokin tou h parmetroc ξα eÐnai o ìgkocV (t). En gènei:

    dHeff =∑α

    Fαξα, (2.2.9)

    ìpou Fα eÐnai oi genikeumènec dunmeic. Ta Fα eÐnai oi suzugeÐc posìthtectwn ξα kai eÐnai parathr shmec posìthtec. Ta ξα onomzontai genikeumènecmetatopÐseic. Gia pardeigma to ξα mporeÐ na eÐnai to magnhtikì pedÐo kai toFα h magnhtik  rop . Genik, gia kje metabol  isqÔei:

    dW = Tr{ρ̂Ĥ}=∑α

    ⟨Fα⟩dξα, (2.2.10)

    ìpou ⟨Fα⟩ h mèsh genikeumènh dÔnamh pou antistoiqeÐ sth genikeumènh metatìpishξα.

    PÐesh = −⟨∂H

    ∂V

    ⟩≡ P = −Tr

    {ρ̂∂Ĥ

    ∂V

    }(2.2.11)

    Pardeigma: 'Ergo exwterikoÔ magnhtikoÔ pedÐou: dW = ⟨M⃗⟩ · dB⃗.

    ShmeÐwsh:Oi antallagèc èrgou eÐnai antistreptèc! An ξα → −ξα tìtedW → −dW . Autì den isqÔei gia tic antallagèc jermìthtac.

  • 2.3. DeÔteroc Nìmoc thc Jermodunamik c 23

    2.3 DeÔteroc Nìmoc thc Jermodunamik c

    O deÔteroc nìmoc thc Jermodunamik c, sqetÐzetai me th mh antistreptìthtatwn metabol¸n twn makroskopik¸n susthmtwn. Arqik diatup¸jhke apìton Clausius.

    O DeÔteroc Nìmoc kat ton Clausius:

    H aujìrmhth antallag  jermìthtac metaxÔ dÔo susthmtwn èqeimìno mÐa for. Apì to jermì sto yuqrì. Oi antallagèc thcjermìthtac eÐnai mh antistreptèc. Den mporoÔme na ftixoumemÐa mhqan  h opoÐa ja metatrèpei ìlh th jermìthta se èrgo.

    O DeÔteroc Nìmoc kat touc Kelvin-Ostwald:

    To èrgo mporeÐ pnta na metatrapeÐ se jermìthta. 'Omwc den mpo-roÔme na kataskeusoume mÐa suneq  epanalambanìmenh kÐnhsh(kuklik ) pou ja par gage ènan kleistì kÔklo èrgou, paÐrnontacjermìthta apì mÐa mìno phg  me omoiogen  jermokrasÐa.

    Se mÐa sqedìn statik  (quasi-static) metabol  , ¸ste to sÔsthma eÐnai pntase jermik  isorropÐa, isqÔei:

    dS = δQT

    (2.3.1)

    ìpou S h jermodunamik  entropÐa. Se kje llh perÐptwsh metabol c (p.q.apìtomh),apì mÐa katstash isorropÐac 1, se mÐa nèa katstash isorropÐac 2, h metabol eÐnai mh antitrept  kai isqÔei:

    S2 − S1 >∫ 21

    δQ

    T(2.3.2)

    kai odhgeÐ se aÔxhsh thc entropÐac.ShmeÐwsh: H jermodunamik  entropÐa eÐnai prosjetik .Apì thn poyh thc statistik c:

    Q = Tr{dρ̂Ĥ

    }⇒

    βdQ = d(Tr{βρ̂Ĥ

    })− Tr

    {βρ̂dĤ

    }= d

    (Tr{βρ̂Ĥ

    })+

    1

    Zd(Tr{e−βĤ

    })(2.3.3)

  • 24 Keflaio 2. Nomoi thc Jermodunamik c kai Statistik  Fusik 

    ìpou qrhsimopoi same th sqèsh:

    Z = Tr{e−βĤ

    }(2.3.4)

    Telik, qrhsimopoi¸ntac touc orismoÔc thc eswterik c enèrgeiac U kai thcsunrthshc epimerismoÔ Z, prokÔptei:

    βdQ = d (βU) + d (lnZ) (2.3.5)

    Sthn perÐptwsh tou KanonikoÔ Sunìlou:

    kβdQ = d(kβU) + d (k lnZ) (2.3.6)= d(kβU + k lnZC) (2.3.7)

    kβdQ = dSΣτατιστική (2.3.8)

    Mèsw thc sqèshc:δQ = dSΘερμοδυναμική · T (2.3.9)

    Jètontac

    β =1

    kT(2.3.10)

    TautopoioÔme th Jermodunamik  EntropÐa me th Statistik EntropÐa :

    S = −kTr {ρ̂ ln ρ̂} = k lnZ + kβU (2.3.11)

    Jermodunamik Dunamik: Posìthtec twn opoÐwn ta akrìtata, dÐnountic katastseic isorropÐac tou sust matoc.

    Metablhtèc U,N, V T, V,N T, V, µ T, P,N

    SÔnola Mikrokanonikì Kanonikì Megalokanonikì Isobarikì-

    Isojermikì

    Sunrthsh W ZC = ZG = ZI =∫dV

    EpimerismoÔ Tr{e−βĤ

    }Tr

    {e−(βĤ−µN̂)

    }Tr

    {e−β(Ĥ+pV )

    }Jermodunamikì EntropÐa El. Enèrgeia Meglo Dunamikì El. EnjalpÐa

    Dunamikì S = k lnW F = −kT lnZC Ω = −kT lnZG G = −kT lnZISqèsh me F = U − TS Ω = U − µN − TS G = U + PV − TS

    thn entropÐa

    Diaforik  TdS = dU+ dF = −SdT+ dΩ = −SdT+ dG = −SdT+Morf  −µdN + PdV +V dP + µdN −PdV + µdN +V dP +Ndµ

  • 2.4. TrÐtoc Nìmoc thc Jermodunamik c 25

    2.4 TrÐtoc Nìmoc thc Jermodunamik c

    EÐnai adÔnato na petÔqoume thn apìluth mhdenik  jermokrasÐa.

    Apì thn poyh thc Statistik c, h Statistik  entropÐa eÐnaimhdèn sto apìluto mhdèn.

    2.5 Sqèseic Maxwell sth Jermodunamik 

    Ac upojèsoume ìti èqoume mÐa monadiaÐa mza ousÐac. Oi metablhtèc P, V, T, Sden eÐnai anexrthtec. Wc epÐ to pleÐston, dÔo apì autèc mporoÔn na jew-rhjoÔn wc anexrthtec. Gia pardeigma:

    dU = TdS − PdV (2.5.1)

    dU =

    (∂U

    ∂x

    )y

    dx+

    (∂U

    ∂y

    )x

    dy (2.5.2)

    ìpou o deÐkthc deÐqnei poia metablht  diathreÐtai stajer  kat th metabol .

    Gia tic meiktèc deÔterec parag¸gouc, isqÔei h sqèsh:

    ∂2U

    ∂x∂y=

    ∂2U

    ∂y∂x(2.5.3)

    Gia pardeigma: (∂T

    ∂V

    )S= −

    (∂P

    ∂S

    )V

    (2.5.4)

    H parapnw exÐswsh, apodeiknÔetai mèsw thc sqèshc:

    dU =

    (∂U

    ∂S

    )V

    dS +(∂U

    ∂V

    )SdV = TdS − PdV (2.5.5)

    Sunep¸c, ja isqÔoun:(∂U

    ∂S

    )V

    = T kai

    (∂U

    ∂V

    )S= −P (2.5.6)

    Mèsw thc isìthtac twn meikt¸n parag¸gwn:

  • 26 Keflaio 2. Nomoi thc Jermodunamik c kai Statistik  Fusik 

    ∂2U

    ∂SV ∂VS=

    ∂2U

    ∂VS∂SV(2.5.7)

    apodeiknÔetai h zhtoÔmenh sqèsh.

  • Keflaio 3

    Efarmogèc kai Probl mata

    3.1 Paramagnhtismìc

    To fainìmeno tou paramagnhtismoÔ, perigrfei èna sÔsthma diakrit¸n swmatidÐ-wn   iìntwn pou fèroun magnhtik  rop , h opoÐa prosanatolÐzetai parllhlase èna exwterik efarmozìmeno magnhtikì pedÐo. H kje rop  allhlepidrme to exwterikì magnhtikì pedÐo en¸ jewroÔme ìti den uprqei allhlepÐdrashmetaxÔ twn magnhtik¸n rop¸n.

    Sq¨ma 3.1: QwrÐc thn efarmog  magnhtikoÔ pedÐou (arister) oi magnhtikècropèc twn iìntwn èqoun tuqaÐa pìlwsh opìte h mèsh magn tish eÐnai mhdenik .Met thn efarmog  tou magnhtikoÔ pedÐou (dexi), oi ropèc peristrèfontai kaigÐnontai parllhlec (  sqedìn parllhlec) tou pedÐou opìte h mèsh magn tisheÐnai peperasmènh

    27

  • 28 Keflaio 3. Efarmogèc kai Probl mata

    Proèleush thc magnhtik c rop c enìc iìntoc

    'Ena iìn, apoteleÐtai apì ton pur na kai èna sÔnolo hlektronÐwn. H magnhtik rop  tou iìntoc prokÔptei apì ta hlektrìnia thc exwterik c tou stibdac. Hphg  thc magnhtik c rop c, eÐnai h olik  troqiak  stroform  kai to olikì spintwn hlektronÐwn thc exwterik c stibdac. Eidikìtera, h magnhtik  rop  enìciìntoc, to opoÐo qarakthrÐzetai apì touc kbantikoÔc arijmoÔc thc troqiak cstroform c L, tou olikoÔ spin S kai sunolik c stroform c J , dÐnetai apì thsqèsh:

    µ⃗ = −gµBJ⃗ (3.1.1)

    ìpou g eÐnai o pargontac Lande:

    g =3

    2− L(L+ 1)− S(S + 1)

    2J(J + 1)(3.1.2)

    kai µB h magnhtình tou Bohr:

    µB =e~2mc

    (3.1.3)

    Oi eswterikèc, sumplhrwmènec stibdec, den suneisfèroun sth magnhtik  rop tou iìntoc diìti qarakthrÐzontai apì mhdenik  troqiak  stroform  kai mh-denikì spin.

    H eÔresh twn kbantik¸n arijm¸n L, S, J enìc iìntoc, basÐzetai sthn katanom twn hlektronÐwn sta dunat troqiak thc exwterik c stibdac, me bsh toucKanìnec tou Hund.

    Kanìnec Hund

    1. Ta hlektrìnia topojetoÔntai sta troqiak me tètoio trìpo ¸ste naexasfalÐzetai to mègisto dunatì olikì spin, S =

    ∑i si.

    2. Ta hlektrìnia topojetoÔntai sta troqiak me tètoio trìpo ¸ste naexasfalÐzetai h mègisth dunat  olik  troqiak  stroform , L =

    ∑i li.

    3. An ligìtera apì ta mis troqiak thc exwterik c stibdac katalam-bnontai apì hlektrìnia, J =| L − S |. An perissìtera apì ta mis- troqiak thc exwterik c stibdac katalambnontai apì hlektrìnia,J = L+ S.

  • 3.1. Paramagnhtismìc 29

    ParadeÐgmata

    Iìn V 3+ Fe 2+

    Arijmìc 3d

    katastsewn

    2 6

    Kateileimmènec

    Katastseic

    lz = 2

    lz = 1

    lz = 0

    lz = −1

    lz = −2

    6

    6

    lz = 2

    lz = 1

    lz = 0

    lz = −1

    lz = −2

    ?6

    6

    6

    6

    6

    1os Kanìnac

    2os Kanìnac

    3os Kanìnac

    L = 2 + 1 = 3 L = 5− 3 = 2

    S = 12 +12 = 1 S =

    52 −

    12 = 2

    J =| L− S |= 2 J = L+ S = 4

    ΄Ασκηση

    ΄Εστω ένα σύστημα N ανεξάρτητων σωματιδίων με σπιν1/2 παρουσία ενός μαγνητικού πεδίου B, σε θερμοκρασίαT . Να βρεθεί η εντροπία S, η ελεύθερη ενέργεια F, ηεσωτερική ενέργεια U και η μέση τιμή της μαγνήτισης.

    Απάντηση

    Η Χαμιλτονιανή του συστήματος γράϕεται:

    Ĥ = −∑i

    µ⃗i · B⃗ (3.1.4)

    Επειδή η Χαμιλτονιανή έχει αυτή τη μορϕή, τα σωματίδια είναι ανεξάρτητακαι ο χώρος Hilbert του ολικού συστήματος προκύπτει από το εξωτερικόγινόμενο των χώρων Hilbertτων σωματιδίων. Δηλαδή:

  • 30 Keflaio 3. Efarmogèc kai Probl mata

    E = E1 ⊗ E2 ⊗ · · · ⊗ EN (3.1.5)

    Η Χαμιλτονιανή του κάθε σωματιδίου μπορεί να γραϕεί στη μορϕή:

    Ĥo = −µBσ⃗ · B⃗ (3.1.6)

    όπου σ οι πίνακες του Pauli. Για τους πίνακες σ ισχύουν:

    σ 2x = σ2

    y = σ2

    z = 1 (3.1.7)

    σxσy = −σyσx = iσz (3.1.8)

    σzσx = −σxσz = iσy (3.1.9)

    σyσz = −σzσy = iσx (3.1.10)

    Οι πίνακες του Pauli, είναι 2× 2 πίνακες, οι οποίοι στη βάση όπου είναιδιαγώνιος ο σz, γράϕονται:

    σx =

    (0 11 0

    ), σy =

    (0 −ii 0

    ), σz =

    (1 00 −1

    )(3.1.11)

    Η Χαμιλτονιανή (3.1.6) είναι διαγώνια για την παραπάνω βάση των πινάκ-ων του Pauli, αν θεωρήσουμε ότι B⃗ = Bẑ. Συγκεκριμένα, θα έχει τημορϕή:

    Ĥo =

    (−µBB 0

    0 µBB

    )(3.1.12)

    Κάθε υποσύστημα, διαθέτει δύο ενεργειακά επίπεδα:

    E1 = +µBB (3.1.13)

    E2 = −µBB (3.1.14)

    Zo = Tr{e−βĤo

    }= eβµBB + e−βµBB = 2 cosh

    (µBB

    kBT

    )(3.1.15)

    Ο Τελεστής Πυκνότητας ρ̂, δίνεται από τη σχέση:

    ρ̂ =e−βĤ

    Tr{e−βĤ

    } = e−βĤe−βµBB + eβµBB

    =1

    e−βµBB + eβµBB

    (eβµBB 0

    0 e−βµBB

    )(3.1.16)

  • 3.1. Paramagnhtismìc 31

    Από την παραπάνω σχέση, μπορούμε να υπολογίσουμε τη μέση τιμή τουσπιν, κατά τη διεύθυνση z. Δηλαδή:

    ⟨σz⟩ = Tr {ρ̂σz} =eβµBB − e−βµBB

    eβµBB + e−βµBB= tanh

    (µBB

    kBT

    )(3.1.17)

    Η συνάρτηση επιμερισμού του ολικού συστήματος, δίνεται από τη σχέση:

    Z =N∏i=1

    Zi = (Zo)N =[2 cosh

    (µBB

    kBT

    )]N(3.1.18)

    F = −kBT lnZ = −NkBT ln[2 cosh

    (µBB

    kBT

    )](3.1.19)

    F = U − TS ⇒

    S = −∂F∂T

    (3.1.20)

    = NkB

    [2 cosh

    (µBB

    kBT

    )− µBBkBT

    tanh

    (µBB

    kBT

    )](3.1.21)

    U = F + ST

    = −NµBB tanh(µBB

    kBT

    )(3.1.22)

    Γνωρίζουμε τη θερμοκρασία του συστήματος κατά μέσο όρο. Η ενέργειατου συστήματος, είναι μία διατηρήσιμη ποσότητα. Γενικά, η μέση τιμήμίας ποσότητας A, η οποία προκύπτει από μία διατηρήσιμη ποσότητα Xi,δίνεται από τη σχέση:

    ⟨A⟩ =⟨∂Xi∂ξi

    ⟩= − 1

    λi

    ∂ξiln(Z(ξ)) (3.1.23)

    Στην περίπτωσή μας, η ενέργεια είναι μία διατηρήσιμη ποσότητα. Αντικα-θιστώντας στην παραπάνω σχέση, τις ακόλουθες μεταβλητές:

    A → Μαγνήτιση (3.1.24)Xi → Ενέργεια (3.1.25)ξi → Μαγνητικό Πεδίο (3.1.26)

    M =N∑i

    µi (3.1.27)

  • 32 Keflaio 3. Efarmogèc kai Probl mata

    ⟨M⟩ = − 1β

    ∂Bln(Z(ξ))

    = −∂F∂B

    = −NµB tanh(µBB

    kT

    )(3.1.28)

    ΄ΑσκησηΓενικέυουμε την προηγούμενη άσκηση στην περίπτωσηκατά την οποία η μαγνητική ροπή του κάθε ιόντος παίρνειοποιαδήποτε τιμή J.Απάντηση

    Sq¨ma 3.2: Gia dedomènh tim  J èqoume 2J+1 diaforetikèc timèc thc probol ckat ton xona Oz (poÔ orÐzetai apì to magnhtikì pedÐo) kai ra 2J + 1diaforetikèc timèc thc enèrgeiac allhlepÐdrashc me to magnhtikì pedÐo.

    Θεωρούμε ότι η μαγνήτιση του κάθε ιόντος δίνεται από τη σχέση:

    m = gµBSz (3.1.29)

    όπου µB η μαγνητόνη του Bohr και

    µB =e~2mc

    (3.1.30)

  • 3.1. Paramagnhtismìc 33

    Ενώ με g συμβολίζουμε τον παράγοντα Lande.

    Η συνάρτηση επιμερισμού του συστήματος, δίνεται από τη σχέση:

    Z = [Zi]N (3.1.31)

    Η Χαμιλτονιανή του συστήματος, δίνεται από τη σχέση:

    Ĥ = −∑i

    µ⃗i · B⃗ (3.1.32)

    Zi =J∑

    Sz=−J

    eβMB (3.1.33)

    M =∑i

    µi(Sz) (3.1.34)

    Z =

    [J∑

    Sz=−J

    eβgµBBSz

    ]N(3.1.35)

    Χρησιμοποιούμε την ταυτότητα:

    n∑k=−n

    xk = x−n2n∑ρ=0

    xρ = x−nx2n+1 − 1x− 1

    =xn+1/2 − x−(n+1/2)

    x1/2 − x−1/2

    (3.1.36)

    Τελικά η συνάρτηση επιμερισμού, παίρνει τη μορϕή:

    Z =

    sinh(

    βgµB(2J+1)B2

    )sinh

    (βgµBB

    2

    )N (3.1.37)

    Από την παραπάνω σχέση, μπορούμε να υπολογίσουμε οποιαδήποτε θερ-μοδυναμική ποσότητα μας ενδιαϕέρει. Η μαγνήτιση, δίνεται από τηνακόλουθη σχέση:

    ⟨M⟩ = −kT ∂∂B

    ln(Z) = NgµBJBJ(βgµBJB) (3.1.38)

    όπου B η συνάρτηση Brillouin, η οποία δίνεται από τη σχέση:

    BJ(x) =2J + 1

    2Jcoth

    [2J + 1

    2Jx

    ]− 1

    2Jcoth

    ( x2J

    )(3.1.39)

    Στην περίπτωση J = 1/2, ισχύει:

  • 34 Keflaio 3. Efarmogèc kai Probl mata

    B1/2 = tanh(x) (3.1.40)

    Στην περίπτωση του κλασσικού ορίου J → ∞, ισχύει:

    BJ→∞ = L(x) = coth(x)1

    x(3.1.41)

    Η παραπάνω συνάρτηση, ονομάζεται συνάρτηση Langevin. Αν θεωρή-σουμε x

  • 3.2. ArmonikoÐ Talantwtèc 35

    Για τον κάθε κβαντικό αρμονικό ταλαντωτή έχουμε

    ZQuantum =∑n

    e−βEn (3.2.2)

    =∞∑

    n=0

    e−β(n+1/2)~ω (3.2.3)

    = e−β~ω/2∞∑

    n=0

    {e−β~ω

    }n(3.2.4)

    =e−β~ω/2

    1− e−β~ω(3.2.5)

    =1

    2 sinh( ~ωkT

    ) (3.2.6)Για έναν κλασσικό αρμονικό ταλαντωτή θα ίσχυε:

    ZClassic = lim~ω/kT→0

    ZQuantum (3.2.7)

    Για τους Ν ανεξάρτητους αρμονικούς ταλαντωτές έχουμε

    Z = [ZQuantum]N =[2 sinh

    (~ω2kT

    )]−N(3.2.8)

    Η εσωτερική ενέργεια προκύπτει εύκολα

    U = − ∂∂β

    lnZ = N ∂∂β

    ln [sinh (β~ω/2)] = N~ω2

    coth

    (~ω2kT

    )⇒

    (3.2.9)

    U = N

    (~ω2

    +~ω

    e~ω/kT − 1

    )(3.2.10)

    Η θερμοχωρητικότητα, δίνεται από την ακόλουθη σχέση:

    C =

    (∂U

    ∂T

    )= Nk

    (~ωkT

    )2e~ω/kT[

    e~ω/kT − 1]2 (3.2.11)

    Από την ελεύθερη ενέργεια

    F = −kT lnZ = NkT ln[2 sinh

    (~ω2kT

    )]= N

    [~ω/2 + kT ln

    (1− e−~ω/kT

    )](3.2.12)

  • 36 Keflaio 3. Efarmogèc kai Probl mata

    βρίσκουμε την εντροπία

    S = −∂F∂T

    = Nk

    [~ω2kT

    coth

    (~ω2kT

    )− ln

    (2 sinh

    (~ω2kT

    ))](3.2.13)

  • Keflaio 4

    Kbantik Sust mataTautìshmwn SwmatidÐwn

    Ta tautìshma swmatÐdia, sta plaÐsia thc kbantomhqanik cperigraf c, den eÐnai diakrÐsima.

    'Estw dÔo swmatÐdia me spin 1/2, twn opoÐwn oi probolèc tou spin èqounantÐjeth for. Dhlad , to èna eÐnai sthn katstash |↑⟩ kai to llo sthnkatstash |↓⟩. Se autìn ton orismì uprqei aujairesÐa sthn epilog  thcpnw kai thc ktw kateÔjunshc. Ta dÔo dianÔsmata katstashc, sqhmatÐ-zoun èna didistato q¸ro, pou prokÔptei apì to exwterikì ginìmeno twn dÔokatastsewn: |↑⟩ ⊗ |↓⟩ kai |↓⟩ ⊗ |↑⟩. Kje dinusma autoÔ tou q¸rou, eÐnaimÐa upèrjesh twn dÔo katastsewn |↑⟩ kai |↓⟩. Dhlad , kje tuqaÐo dinusmagrfetai sth morf :

    | ψ⟩ = α |↓↑⟩+ β |↑↓⟩ (4.0.1)

    Oi katastseic thc parapnw morf , mporoÔn na anaparast soun thn Ðdiafusik  katstash → Ekfullismìc Antallag c.

    Pardeigma

    'Estw ìti èqoume èna sÔsthma tri¸n tautìshmwn anexrthtwn swmatidÐwn.Kje swmatÐdio, dhmiourgeÐ èna q¸ro Hilbert, Ei. O q¸roc Hilbert tou olikoÔsust matoc, prokÔptei apì to exwterikì ginìmeno twn tri¸n èpimèrouc q¸rwn.

    E = E1 ⊗ E2 ⊗ E3 (4.0.2)

    37

  • 38 Keflaio 4. Kbantik Sust mata Tautìshmwn SwmatidÐwn

    JewroÔme touc ermitianoÔc telestèc B̂i oi opoÐoi droun stouc q¸rouc Hilbert,Ei, twn opoÐwn oi idiokatastseic | bn⟩i apoteloÔn bseic twn q¸rwn Ei. Hbsh tou q¸rou E , prokÔptei apì to exwterikì ginìmeno twn epimèrouc bsewn{| bn⟩i}.

    {| bn⟩1 ⊗ | bn⟩2 ⊗ | bn⟩3} (4.0.3)Ta dianÔsmata tou q¸rou E ,

    | bn⟩1 ⊗ | bn⟩2 ⊗ | bn⟩3 ≡| b 1n ; b 2n ; b 1n ⟩ (4.0.4)

    eÐnai koin idiodianÔsmata twn epektsewn sto q¸ro E twn telest¸n B̂i. Homoiìthta twn swmatidÐwn DEN EPITREPEI na metr soume xeqwristtic mèsec timèc twn telest¸n B̂i. MporoÔme na metr soume thn posìthta Bgia kajèna apì ta trÐa swmatÐdia, qwrÐc na xèroume to swmatÐdio. Upojè-toume ìti mÐa mètrhsh mac èdwse touc kbantikoÔc arijmoÔc: bα, bβ kai bγ . Hkatstash tou sust matoc, mporeÐ na eÐnai mÐa apì tic akìloujec:

    | bα; bβ ; bγ⟩ | bγ ; bα; bβ⟩ | bβ ; bγ ; bα⟩| bα; bγ ; bβ⟩ | bγ ; bβ ; bα⟩ | bβ ; bα; bγ⟩

    Uprqoun 3!=6 katastseic pou prokÔptoun apì tic dunatèc metajèseic. Opoios-d pote grammikìc sunduasmìc touc, orÐzei ènan upìqwro to q¸ro Hilbert, E .Qreiazìmaste èna sumplhrwmatikì axÐwma, to opoÐo ja mac epitrèyei na arjeÐh aoristÐa pou prokÔptei apì ton ekfulismì antallag c.

    AxÐwma

    'Otan èna sÔsthma apoteleÐtai apì poll anexrthta tautìsh-ma swmatÐdia, mìno merik dianÔsmata (katastseic) tou q¸roupou prokÔptei apì to ginìmeno Kronecker twn q¸rwn katastsewntou kje swmatidÐou mporoÔn na perigryoun tic fusikèckatastseic tou sust matoc. Aut ta dianÔsmata kats-tashc, exart¸ntai apì th fÔsh twn swmatidÐwn. EÐte eÐnaientel¸c summetrik, eÐte entel¸c antisummetrik sthn an-tallag  dÔo swmatidÐwn. Onomzoume Mpozìnia ta swmatÐdi-a gia ta opoÐa ta fusik dianÔsmata katstashc eÐnai sum-metrik sthn antallag  dÔo swmatidÐwn. Onomzoume Fer-miìnia ta swmatÐdia gia ta opoÐa ta fusik dianÔsmata kats-tashc eÐnai antisummetrik. Oi fusikèc katastseic, apoteloÔnmìno èna polÔ mikrì mèroc tou q¸rou Hilbert tou sust matoctou sust matoc twn poll¸n swmatidÐwn. Sugkentrwtik è-qoume:

  • 39

    SwmatÐdia Spin Fusikèc KatastseicMpozìnia Akèraio SummetrikècFermiìnia Hmiakèraio Antisummetrikèc

    Pardeigma

    JewroÔme èna sÔsthma tautìshmwn swmatidÐwn. To swmatÐdio (1) brÐsketaisthn katstash | ϕ⟩ kai to swmatÐdio (2) sthn katstash | χ⟩. H katstashtou olikoÔ sust matoc, dÐnetai apì thn katstash | ψ⟩ =| ϕ1;χ2⟩.

    • An ta swmatÐdia eÐnai mpozìnia, tìte h katstash tou sust matoc prèpeina eÐnai summetrik  kat thn antimetjesh twn dÔo swmatidÐwn. 'Ara,h katstash | ψ⟩ prèpei na summetrikopoihjeÐ. JewroÔme ènan telest summetrikopoÐhshc Ŝ, tou opoÐou h drsh sthn katstash | ψ⟩, èqei toakìloujo apotèlesma:

    | ψ⟩symmetric = Ŝ | ψ⟩ =1

    2(| ϕ;χ⟩+ | χ;ϕ⟩) (4.0.5)

    An oi katastseic ϕ kai χ eÐnai orjog¸niec metaxÔ touc tìte apì thnkanonikopoÐhsh thc ψ, prokÔptei:

    | ψ⟩symmetric =1√2(| ϕ;χ⟩+ | χ;ϕ⟩) (4.0.6)

    • An ta swmatÐdia eÐnai fermiìnia, tìte h katstash tou sust matocprèpei na eÐnai antisummetrik  kat thn antimetjesh twn dÔo swmatidÐ-wn. 'Ara, h katstash | ψ⟩ prèpei na antisummetrikopoihjeÐ. JewroÔmeènan telest  antisummetrikopoÐhshc Â, tou opoÐou h drsh sthn kats-tash | ψ⟩, èqei to akìloujo apotèlesma:

    | ψ⟩antisymmetric = Â | ψ⟩ =1

    2(| ϕ;χ⟩− | χ;ϕ⟩) (4.0.7)

    An oi katastseic ϕ kai χ eÐnai orjog¸niec metaxÔ touc tìte apì thnkanonikopoÐhsh thc ψ, prokÔptei:

    | ψ⟩antisymmetric =1√2(| ϕ;χ⟩− | χ;ϕ⟩) (4.0.8)

    Sthn perÐptwsh pou oi kbantikèc katastseic, stic opoÐec brÐskontai ta dÔoswmatÐdia, eÐnai Ðdiec, dhlad  | ϕ⟩ ≡| χ⟩, isqÔoun:

  • 40 Keflaio 4. Kbantik Sust mata Tautìshmwn SwmatidÐwn

    • An ta swmatÐdia eÐnai mpozìnia:

    | ψ⟩ = 1√2(| ϕ;ϕ⟩+ | ϕ;ϕ⟩) (4.0.9)

    Den parousizetai kanèna prìblhma.

    • An ta swmatÐdia eÐnai fermiìnia:

    | ψ⟩ = 1√2(| ϕ;ϕ⟩− | ϕ;ϕ⟩) = 0 (4.0.10)

    Se aut n thn perÐptwsh, katal goume sthn apagoreutik  arq tou Pauli.Dhlad , dÔo tautìshma fermiìnia den gÐnetaina katalboun thn Ðdia kbantik  katstash.

    Prèpei na anafèroume, ìti ta domik sustatik thc Ôlhc eÐnai ta fermiìnia.Ta mpozìnia paÐzoun to rìlo twn forèwn twn allhlepidrsewn metaxÔ twnfermionÐwn.

    Pardeigma

    'Estw trÐa tautìshma swmatÐdia, ta opoÐa brÐskontai stic katastseic ϕ, χ, η.H katstash tou sust matoc, ekfrzetai mèsw tou dianÔsmatoc katstashc| ψ⟩ =| ϕ1;χ2; η3⟩.

    • An ta swmatÐdia eÐnai mpozìnia, tìte:

    | ψ⟩symmetric = Ŝ | ψ⟩ =1

    3!

    ∑metajèseic

    | ψ⟩ =

    =1

    6( | ϕ1;χ2; η3⟩+ | ϕ1; η2;χ3⟩+ | χ1;ϕ2; η3⟩+

    + | η1;χ2;ϕ3⟩+ | χ1; η2;ϕ3⟩+ | η1;ϕ2;χ3⟩ ) (4.0.11)

    An oi katastseic ϕ, χ kai η eÐnai metaxÔ touc orjog¸niec, mporoÔme nakanonikopoi soume thn katstash ψ, mèsw thc sqèshc ⟨ψ | ψ⟩, katal -gontac sth sqèsh:

    | ψ⟩symmetric =1√6( | ϕ1;χ2; η3⟩+ | ϕ1; η2;χ3⟩+ | χ1;ϕ2; η3⟩+

    + | η1;χ2;ϕ3⟩+ | χ1; η2;ϕ3⟩+ | η1;ϕ2;χ3⟩ )(4.0.12)

  • 4.1. Formalismìc Arijm¸n Katlhyhc 41

    Sthn perÐptwsh pou | χ⟩ ≡| η⟩, prokÔptei:

    | ψ⟩ = 1√3(| ϕ;χ;χ⟩+ | χ;ϕ;χ⟩+ | χ;χ;ϕ⟩) (4.0.13)

    • An ta swmatÐdia eÐnai fermiìnia, tìte:

    | ψ⟩antisymmetric = Â | ψ⟩ =1

    3!

    ∑metajèseic α

    Eα | ψ⟩ =

    ìpou Eα = 1 an èqoume rtio arijmì metajèsewn kai Eα = −1 an è-qoume perittì arijmì metajèsewn. Gia pardeigma:| ϕ1;χ2; η3⟩ = − |ϕ1; η2;χ3⟩. H antisummetrikopoÐhsh tou dianÔsmatoc katstashc, m-poreÐ na gÐnei mèsw mÐac orÐzousac Slater. Dhlad :

    | ψ⟩antisymmetric = Â | ψ⟩ =1

    3!

    ∣∣∣∣∣∣| ϕ1⟩ | χ1⟩ | η1⟩| ϕ2⟩ | χ2⟩ | η2⟩| ϕ3⟩ | χ3⟩ | η3⟩

    ∣∣∣∣∣∣ ==

    1√3!( | ϕ1;χ2; η3⟩− | ϕ1; η2;χ3⟩− | χ1;ϕ2; η3⟩+

    − | η1;χ2;ϕ3⟩+ | χ1; η2;ϕ3⟩+ | η1;ϕ2;χ3⟩ ) (4.0.14)

    Sthn perÐptwsh | ϕ⟩ ≡| χ⟩ h orÐzousa mhdenÐzetai. ProkÔptei dhlad  hapagoreutik  arq  tou Pauli.

    Ta parapnw efarmìzontai me parìmoio trìpo kai se sust mata meN tautìsh-ma swmatÐdia.

    4.1 Formalismìc Arijm¸n Katlhyhc

    MÐa metjesh twn swmatidÐwn DEN EPHREAZEI mÐa katstash entel¸csummetrik    entel¸c antisummetrik . Sunep¸c, antÐ na exetzoume se poikats-tash brÐsketai kajèna apì ta N swmatÐdia, eÐnai protimìtero na metrme pìsaswmatÐdia brÐskontai se kje dunat  katstash. Dhlad  jèloume na peri-gryoume to sÔsthma me dianÔsmata katstashc th morf c:

    | nψ1 ;nψ2 ; . . . ;nψM ⟩ (4.1.1)

    ìpou oi metablhtèc nψi dhl¸noun pìsa swmatÐdia katalambnoun thn en-ergeiak  katstash | ψn⟩. Gia pardeigma, ac jewr soume èna sÔsthma tri¸n

  • 42 Keflaio 4. Kbantik Sust mata Tautìshmwn SwmatidÐwn

    tautìshmwn swmatidÐwn, to opoÐo qarakthrÐzetai apì thn katstash | ϕ;ϕ;χ⟩.Se aut n thn perÐptwsh, uprqoun dÔo diaforetikèc dunatèc katastseic ϕkai χ. Oi antÐstoiqoi arijmoÐ katlhyhc eÐnai Ðsh me: nϕ = 2 kai nχ = 1.Sta plaÐsia tou formalismoÔ twn katastsewn tou arijmoÔ katlhyhc, todinusma katstashc tou sust matoc mporeÐ na grafeÐ wc | 2; 1⟩. Ta nèaaut dianÔsmata eÐnai pio praktik kai mporoÔn na apotelèsoun th bsh twnfusik¸n katastsewn (Bsh tou Fock).

    • Eswterikì Ginìmeno

    JewroÔme dÔo dianÔsmata: | n1, n2, . . . , nq, . . .⟩ kai | n1 ′, n2 ′, . . . , nq ′, . . .⟩.To eswterikì ginìmeno wn dÔo parapnw dianusmtwn, eÐnai diforo toumhdenìc, mìno ìtan isqÔei nq = nq ′ gia kje k. Dhlad , oi katastseicme diaforetikoÔc arijmoÔc katlhyhc eÐnai orjog¸niec.

    • An ta swmatÐdia eÐnai mpozìnia, tìte oi arijmoÔ katlhyhc mporoÔn naproun tic timèc 0, 1, 2, . . . ,∞, arkeÐ na ikanopoieÐtai h sqèsh

    ∑k nk =

    N , ìpou N o olikìc arijmìc swmatidi¸n.

    • An ta swmatÐdia eÐnai fermiìnia, tìte oi arijmoÔ katlhyhc mporoÔn naproun tic timèc 0, 1, ikanopoi¸ntac tautìqrona th sqèsh

    ∑k nk = N ,

    ìpou N o olikìc arijmìc swmatidi¸n.

    • To kenì | 0⟩ orÐzetai wc h katstash gia thn opoÐa ìloi oi arijmoÐkatlhyhc eÐnai Ðsoi me to mhdèn. Dhlad  to kenì eÐnai h katstashìpou den uprqei kanèna swmatÐdio sto sÔsthma.

    Se autì to shmeÐo mporoÔme na orÐsoume to q¸ro Fock, wc :

    HFock = H1 ⊕H2 ⊕ · · · (4.1.2)

    ìpou me Hn sumbolÐzoume to q¸ro Hilbert pou dhmiourgeÐtai apì tic dunatèckatastseic pou èqoun n swmatÐdia. H kataskeu  tou q¸rou Fock onomzetaiDeÔterh Kbntwsh. Sth DeÔterh Kbntwsh, asqoloÔmaste me ton arijmìtwn swmatidÐwn pou katalambnoun tic energeiakèc katastseic.

    MerikoÐ Telestèc sthn Anaparstash Fock.O telest c tou arijmoÔ twn swmatidÐwn, eÐnai diag¸nioc.

    N̂ =∑q

    n̂q (4.1.3)

  • 4.1. Formalismìc Arijm¸n Katlhyhc 43

    Sthn perÐptwsh mh allhlepidr¸ntwn swmatidÐwn, h Qamiltonian  grfetai:

    Ĥ =∑q

    Eqn̂q (4.1.4)

    Lìgw tou ìti h Qamiltonian  eÐnai diag¸nia, oi idiokatastseic thc, antis-toiqoÔn stic fusikèc katastseic tou sust matoc. Oi parapnw sqèseic eÐnaiqr simec ìtan ergazìmaste sto Megalo-Kanonikì SÔnolo, tautìshmwn mhallhlepidr¸ntwn swmatidÐwn. Se aut n th bsh mporoÔme akìmh na melet -soume swmatÐdia me metablhtì arijmì swmatidÐwn. Sthn perÐptwshN tautìshmwnmh allhlepidr¸ntwn swmatidÐwn, o telest c puknìthtac èqei th morf :

    ρ̂ =∏q

    ρ̂q (4.1.5)

    ìpou

    ρ̂q =1

    Zqe−βEqn̂q−λN n̂q ≡ 1

    Zq(Xq)

    n̂q (4.1.6)

    Z =∏q

    Zq (4.1.7)

    Sth bsh tou q¸rou Fock, mporoÔme na eisgoume touc telestèc dhmiourgÐackai katastrof c.

    Gia ta mpozìnia:

    O Telest c Katastrof c âq, katastrèfei èna swmatÐdio to opoÐo brÐsketaisthn katstash | q⟩.

    âq | n1, n2, . . . , nq, . . .⟩ =√nq | n1, n2, . . . , (nq − 1), . . .⟩ (4.1.8)

    O Telest c DhmiourgÐac â†q dhmiourgeÐ èna swmatÐdio sthn katstash | q⟩.

    â †q | n1, n2, . . . , nq, . . .⟩ =√nq + 1 | n1, n2, . . . , (nq + 1), . . .⟩ (4.1.9)

    [âq , âq′ ] = 0 (4.1.10)

    [â †q , â†q′ ] = 0 (4.1.11)

    [âq , â†q′ ] = δq,q′ (4.1.12)

  • 44 Keflaio 4. Kbantik Sust mata Tautìshmwn SwmatidÐwn

    Gia fermiìnia:

    O Telest c Katastrof c ĉq, katastrèfei èna swmatÐdio to opoÐo brÐsketaisthn katstash | q⟩.

    ĉq | n1, n2, . . . , nq, . . .⟩ =√nq | n1, n2, . . . , (nq − 1), . . .⟩ (4.1.13)

    O Telest c DhmiourgÐac ĉ †q dhmiourgeÐ èna swmatÐdio sthn katstash | q⟩.

    ĉ †q | n1, n2, . . . , nq, . . .⟩ =√nq + 1 | n1, n2, . . . , (nq + 1), . . .⟩ (4.1.14)

    {ĉq , ĉq′} = 0 (4.1.15){ĉ †q , ĉ

    †q′ } = 0 (4.1.16)

    {ĉq , ĉ †q′ } = δq,q′ (4.1.17)

    ParathroÔme ìti {ĉ †q , ĉ †q } = 0 ⇒(ĉ †q)2

    = 0. Dhlad , mÐa energeiak 

    katstash, den mporeÐ na katalhfjeÐ me pnw apì èna hlektrìnia. ProkÔpteiloipìn h apagoreutik  arq  tou Pauli.

    Kje dinusma tou q¸rou Fock, mporeÐ na prokÔyei apì th drsh twn telest¸ndhmiourgÐac sthn katstash tou kenoÔ | 0⟩, dhlad :

    | n1, n2, . . . , nq, . . .⟩ =∞∏i=1

    (c †i

    )ni| 0⟩ (4.1.18)

    Sth bsh Fock, oi telestèc arijmoÔ katlhyhc, grfontai:

    n̂q = ĉ†q ĉq (4.1.19)

    H Qamiltonian  tou sust matoc, grfetai:

    Ĥ =∑q

    Eq ĉ†q ĉq (4.1.20)

    EÐnai parìmoio me thn perÐptwsh tou armonikoÔ talantwt , ìpou Ĥ = (â†â+1/2)~ω.

  • 4.2. Megalo-Kanonikèc Sunart seic Katanom c twn Kbantik¸n AerÐwn 45

    4.2 Megalo-Kanonikèc Sunart seic Katanom -c twn Kbantik¸n AerÐwn

    Ta Ĥ kai N̂ eÐnai diag¸nia sth bsh Fock. H sunrthsh epimerismoÔ, dÐnetaiapì th sqèsh:

    ZG =∑{nq}

    e−β∑

    q(Eqnq−µnq) =∑{nq}

    ∏q

    (Xq)nq =

    ∏q

    ∑{nq}

    Xnqq

    (4.2.1)ìpou Xq = e−βEq+βµ kai µ to qhmikì dunamikì, to opoÐo prokÔptei apì tonpollaplassiast  Lagrange, λN = −µ/kT .

    Pardeigma

    'Estw èna fermionikì sÔsthma me 2 katastseic (p.q. spin ↑, ↓).

    Ja qrhsimopoi soume th sqèsh (4.2.1), qrhsimopoi¸ntac q = 1, 2 kai nq =0, 1.

    ZG =∑{nq}

    ∏q

    Xnqq (4.2.2)

    =

    1∑n1=0

    1∑n2=0

    X n11 Xn2

    2 (4.2.3)

    = X 01 X0

    2 +X0

    1 X1

    2 +X1

    1 X0

    2 +X1

    1 X1

    2 (4.2.4)

    = = (X 01 +X1

    1 )(X0

    2 +X1

    2 ) (4.2.5)

    =∏q=1,2

    (X 0q +X1

    q ) (4.2.6)

    =∏q=1,2

    1∑nq=0

    (X

    nqq

    )(4.2.7)

    Blèpoume ìti epibebai¸netai pl rwc h sqèsh (4.2.1).H megalo-kanonik  sunrthsh epimerismoÔ, enìc mpozonikoÔ aerÐou, dÐnetaiapì th sqèsh:

    ZG =∏q

    ∑nq=0,1,2,...∞

    Xnq

    q

    =∏q

    1

    1− e−β(Eq−µ)(4.2.8)

  • 46 Keflaio 4. Kbantik Sust mata Tautìshmwn SwmatidÐwn

    H megalo-kanonik  sunrthsh epimerismoÔ, enìc fermionikoÔ aerÐou, dÐnetaiapì th sqèsh:

    ZG =∏q

    ∑nq=0,1

    Xnq

    q

    =∏q

    (X 0q +X

    1q

    )=∏q

    (1 +Xq) =∏q

    (1 + e−β(Eq−µ)

    )(4.2.9)

    Suntelest c Katlhyhc fq

    Ex orismoÔ fq = ⟨n̂k⟩.

    fq = Tr {ρ̂qn̂q} = −1

    β

    ∂EqlnZG (4.2.10)

    fq = −1

    β

    ∂Eq

    ∑q

    ln(1± e−β(Eq−µ)

    )±1(4.2.11)

    Katanom  Bose-Einstein:

    f BEq =1

    eβ(Eq−µ) − 1(4.2.12)

    Katanom  Fermi-Dirac:

    f FDq =1

    eβ(Eq−µ) + 1(4.2.13)

    To meglo dunamikì Ω:

    Ω = − 1βlnZG = ±

    1

    β

    ∑q

    ln (1± fq) (4.2.14)

    Gia fermiìnia - kai gia mpozìnia +.

    Mèsoc arijmìc swmatidÐwn:

    N = ⟨N⟩ =∑q

    fq (4.2.15)

    Eswterik  Enèrgeia:

    U =∑q

    Eqfq = ⟨Ĥ⟩ (4.2.16)

  • 4.2. Megalo-Kanonikèc Sunart seic Katanom c twn Kbantik¸n AerÐwn 47

    EntropÐa:

    S = −k∑q

    [fq ln fq ± (1− (∓)fq) ln(1∓ fq)] (4.2.17)

    To pnw eÐnai gia fermiìnia kai to ktw gia mpozìnia.

    'Orio meglwn ìgkwn:

    ∑q

    ϕ(Eq) = limV→∞

    ∫dED(E)ϕ(E)

    D(E) eÐnai h puknìthta katastsewn kai ϕ(E) o arijmìc katastsewnsto disthma E ≤ Eq ≤ E + dE.

    Arijmìc SwmatidÐwn:

    N =

    ∫f(E)D(E)dE (4.2.18)

    Eswterik  Enèrgeia:

    U =

    ∫f(E)ED(E)dE (4.2.19)

    Meglo Dunamikì:

    Ω = ± 1β

    ∫ln(1± f(E))D(E)dE (4.2.20)

    Pardeigma

    EleÔjera swmatÐdia se koutÐ ìgkou V . Parabolikèc energeiakèc z¸nec. Seaut n thn perÐptwsh, h puknìthta katastsewn èqei th morf :

    D(E) =V

    (4π)2(2m)3/2

    ~3E1/2 (4.2.21)

    JewroÔme èna aèrio eleÔjerwn hlektronÐwn se èna alkalikì mètallo. Kjeiìn suneisfèrei èna eleÔjero hlektrìnio. Wc gnwstìn to spin tou hlektronÐoueÐnai 1/2.Mèsw thc sqèshcN = ⟨N̂⟩ =

    ∑q fq, mporoÔme na upologÐsoume th jermokrasÐ-

    a Fermi tou metllou.

  • 48 Keflaio 4. Kbantik Sust mata Tautìshmwn SwmatidÐwn

    TFermi = TF =µ0k

    =~2

    2mk

    (3π2

    V

    N

    )2/3(4.2.22)

    'Opou µ0 ≡ Enèrgeia Fermi se mhdenik  jermokrasÐa. H taqÔthta Fermi,dÐnetai apì th sqèsh:

    vF =

    (2kTFm

    )1/2∼ 106m/sec gia ta perissìtera mètalla (4.2.23)

    fq = Θ(µ− Eq)−π2

    6(kT )2δ(Eq − µ) . . . (4.2.24)

    N =2V

    (2π)3

    ∫d3qfq =

    3

    V

    (2π)31

    ~3(2m)3/2µ3/2 +

    π

    3

    V

    ~3(2m)3/2(kT )2µ−1/2

    (4.2.25)

    µ = kTF

    [1− π

    2

    12

    (T

    TF

    )2+ . . .

    ](4.2.26)

    E = 35NEF

    [1 +

    5π2

    12

    (T

    TF

    )2+ . . .

    ](4.2.27)

    Ω =8π

    3

    V

    m(2π)3

    ∫ ∞0

    d3q(~q)4fq (4.2.28)

    = −16π15

    V

    ~3(2m)3/2µ5/2 − 2π

    3

    3

    V

    ~3(2m)3/2(kT )2µ1/2 (4.2.29)

    S = −∂Ω∂T

    ≃ 4π3

    3

    V

    ~3(2m)3/2k(kTF )

    1/2kT (4.2.30)

    U = Ω+ µN + TS = −3Ω/2 (4.2.31)

    CV = T

    (∂S∂T

    )N

    ∼ V mk2

    3~2

    (3π2

    N

    V

    )1/3T (4.2.32)

    CV = γT (4.2.33)

  • 4.2. Megalo-Kanonikèc Sunart seic Katanom c twn Kbantik¸n AerÐwn 49

    γ = k2D(EF )/3 (4.2.34)

    H stajer γ onomzetai stajer Sommerfeld. H qarakthristik  idiìth-ta enìc metllou, eÐnai h grammik  exrthsh thc jermoqwrhtikìthtac me thjermokrasÐa. Dhlad : T ↑→ CV ↑.

  • 50 Keflaio 4. Kbantik Sust mata Tautìshmwn SwmatidÐwn

  • Parrthma aþ

    Pollaplassiastèc Lagrange

    'Estw ìti èqoume mÐa sunrthsh 2 metablht¸n f(x, y). jèloume na broÔme taakrìtata aut c thc sunrthshc. To diaforikì aut c thc sunrthshc, dÐnetaiapì th sqèsh:

    df =∂f

    ∂xdx+

    ∂f

    ∂ydy. (aþ.0.1)

    Sthn perÐptwsh pou oi metablhtèc x, y eÐnai anexrthtec metaxÔ touc, h eÔreshtwn akrottwn èggutai ston tautìqrono mhdenismì twn parag¸gwn:

    ∂f

    ∂x= 0

    ∂f

    ∂y= 0 (aþ.0.2)

    Sthn perÐptwsh pou epijum¸ na brw ta akrìtata thc f(x, y), pnw se kpoiakampÔlh Γ, oi metablhtèc x kai y den eÐnai anexrthtec. Sugkekrimèna, up-ìkeintai se ènan periorismì g(x, y) = C (C stajer), pou proèrqetai apì thmorf  thc Γ. Sth sugkekrimènh perÐptwsh, h eÔresh twn akrottwn, sthrÐze-tai stic dÔo akìloujec sqèseic:

    df =∂f

    ∂xdx+

    ∂f

    ∂ydy = 0 (aþ.0.3)

    dg =∂g

    ∂xdx+

    ∂g

    ∂ydy = 0 (aþ.0.4)

    H pr¸th proèrqetai apì to mhdenismì tou diaforikoÔ thc f sta akrìtata,en¸ h deÔterh apeujeÐac apì th sqèsh g(x, y) = C. H mèjodoc gia na broÔmeta akrìtata se aut n thn perÐptwsh, eÐnai h mèjodoc twn Pollaplassiast¸nLagrange.

    51

  • 52 Parrthma aþ. Pollaplassiastèc Lagrange

    aþ.1 MejodologÐa Pollaplassiast¸n Lagrange

    IsqÔoun:

    df = 0 (aþ.1.1)

    dg = 0 (aþ.1.2)

    MporoÔme na pollaplassisoume th sqèsh (aþ.1.2) me ènan pragmatikì arijmìλ, ¸ste na isqÔei:

    λdg = 0 (aþ.1.3)

    Prosjètwntac tic sqèseic (aþ.1.1) kai (aþ.1.3), prokÔptei h sqèsh:

    df + λdg = 0 (aþ.1.4)

      analutik (∂f

    ∂x+ λ

    ∂g

    ∂x

    )dx+

    (∂f

    ∂y+ λ

    ∂g

    ∂y

    )dy = 0 (aþ.1.5)

    O λ eÐnai o Pollaplassiast c Lagrangekai h eisagwg  tou aposkopeÐ sthnaposÔzeuxh twn metablht¸n x kai y. Gia na eÐnai oi metablhtèc x kai yanexrthtec, prèpei na isqÔoun tautìqrona oi sqeseic:

    ∂f

    ∂x+ λ

    ∂g

    ∂x= 0 (aþ.1.6)

    kai

    ∂f

    ∂y+ λ

    ∂g

    ∂y= 0 (aþ.1.7)

    en¸ isqÔei pntote h exÐswsh periorismoÔ

    g(x, y) = C (aþ.1.8)

    Apì tic treic parapnw sqèseic, mporoÔme na upologÐsoume tic akrìtatectimèc x0 kai y0 kaj¸c kai ton Pollaplassiast  Lagrange λ.

  • aþ.1. MejodologÐa Pollaplassiast¸n Lagrange 53

    Pardeigma 1

    H jermokrasÐa enìc shmeÐou (x, y), dÐnetai apì th sqèsh T (x, y) = xy. NabreÐte th jermokrasÐa twn dÔo jermìterwn shmeÐwn pnw sto monadiaÐo kÔklo.H exÐswsh tou monadiaÐou kÔklou, dÐnetai apì th sqèsh:

    x2 + y2 = 1 (aþ.1.9)

    apì thn parapnw sqèsh, prokÔptei o periorismìc g gia tic metablhtèc x kaiy. Dhlad :

    g(x, y) = x2 + y2 = 1 (aþ.1.10)

    IsqÔoun epiplèon oi sqèseic:

    dT =∂T

    ∂xdx+

    ∂T

    ∂ydy = ydx+ xdy (aþ.1.11)

    kai

    dg =∂g

    ∂xdx+

    ∂g

    ∂ydy = 2xdx+ 2ydy (aþ.1.12)

    Eisgwntac ton Pollaplassiast  Lagrange, λ, prokÔptei to sÔsthma:

    ∂T

    ∂x+ λ

    ∂g

    ∂x= 0 (aþ.1.13)

    ∂T

    ∂y+ λ

    ∂g

    ∂y= 0 (aþ.1.14)

    x2 + y2 = 1 (aþ.1.15)

    Analutik

    y + λx = 0 (aþ.1.16)

    x+ λy = 0 (aþ.1.17)

    x2 + y2 = 1 (aþ.1.18)

    y = −2λx (aþ.1.19)

    x+ 2λ(−2λx) = x(1− 4λ2) = 0 ⇒ (aþ.1.20)

  • 54 Parrthma aþ. Pollaplassiastèc Lagrange

    λ = ±4 (aþ.1.21)

    xmax = ymax = ±1√2

    (aþ.1.22)

    Telik, brÐskoume ìti Tmax =12 , xmax = ymax = ±

    1√2, λ = ±12 . H mèjodoc

    twn Pollaplassiast¸n Lagrange, efarmìzetai kai se peript¸seic me pollècmetablhtèc kai pollèc exis¸seic periorismoÔ, arkeÐ o arijmìc twn exis¸sewnperiorimoÔ na eÐnai mikrìteroc apì ton arijmì twn metablht¸n.

    Pardeigma 2

    JewroÔme thn sunrthsh f(x, y, z), h opoÐa upìkeitai stouc periorismoÔc:

    g(x, y, z) = C1 (aþ.1.23)

    kai

    h(x, y, z) = C2. (aþ.1.24)

    se aut n thn perÐptwsh,orÐzoume dÔo pollaplassiastèc Lagrange, ¸ste naisqÔei:

    df + λ1dg + λ2dh = 0 (aþ.1.25)

    ProkÔptei to sÔsthma:

    ∂f

    ∂x+ λ1

    ∂g

    ∂x+ λ2

    ∂h

    ∂x= 0 (aþ.1.26)

    ∂f

    ∂y+ λ1

    ∂g

    ∂y+ λ2

    ∂h

    ∂y= 0 (aþ.1.27)

    ∂f

    ∂z+ λ1

    ∂g

    ∂z+ λ2

    ∂h

    ∂z= 0 (aþ.1.28)

    g(x, y, z) = C1 (aþ.1.29)

    h(x, y, z) = C2 (aþ.1.30)

  • aþ.1. MejodologÐa Pollaplassiast¸n Lagrange 55

    Pardeigma 3

    JewroÔme èna sÔsthma pou apoteleÐtai apì N swmatÐdia. Kje swmatÐdio,mporeÐ na rÐsketai se èna apì ta R epÐpeda enèrgeiac. Kje epÐpedo enèrgeiacèqei enèrgeia Ei, ìpou i = 1, . . . , R. Kje energeiakì epÐpedo mporeÐ nakatalhfjeÐ apì perissìtera tou enìc swmatÐdia. Jètoume ni ton arijmì twnswmatidÐwn pou brÐskontai sto i-ostì energeiakì epÐpedo. H olik  enèrgeia,E, tou sust matoc eÐnai stajer . Poi eÐnai h katanom  twn swmatidÐwnsenergeiak epÐpeda, h opoÐa megistopoieÐ th sunrthsh:

    P =N !

    n1!n2! · · ·nR!. (aþ.1.31)

    Oi gnwstoi tou probl matoc eÐnai ta ni, upì touc periorismoÔc:{ ∑Ri niEi = E = stajer∑Ri ni = N = stajer

    (aþ.1.32)

    Lìgw thc morf c thc sunrthshc P , arkeÐ na elaqistopoi soume ton parono-mast  thc P . MporeÐ na deiqjeÐ, ìti o paronomast c n1!n2! · · ·nR èqei to Ðdioelqisto me th logarijmik  sunrthsh ln(n1!n2! · · ·nR). Sunep¸c, mporoÔmena melet soume thn antÐstoiqh logarijmik  sunrthsh, antÐ thc n1!n2! · · ·nR,¸ste na broÔme ta zhtoÔmena elqista. QrhsimopoioÔme th logarijmik  sunrthsh,diìti mporoÔme na spsoume to ginìmeno twn paragontik¸n, se ajroÐsmata.'Eqoume loipìn:

    f(n1, n2, . . . , nR) = ln (n1!n2! · · ·nR) = ln(n1!) + ln(n2!) + · · ·+ ln(nR!)(aþ.1.33)

    Epeid  o arijmìc twn swmatidÐwn eÐnai megloc, kat sunèpeia kai ta ni, m-poroÔme na proseggÐsoume touc logarÐjmouc me bsh thn prosèggish Stirling:

    ln(n!) = n lnn− n (aþ.1.34)

    Qrhsimopoi¸ntac thn parapnw prosèggish, prokÔptei:

    f(n1, n2, . . . , nR) =∑i

    ni ln(ni)−N (aþ.1.35)

    Prèpei na elaqistopoi soume thn f , lambnontac upìyh touc periorismoÔc(aþ.1.32). Akolouj¸ntac th mèjodo twn Pollaplassiast¸n Lagrange, eisgoumetouc pollaplassiastèc λ1 kai λ2. ProkÔptei to sÔsthma:

  • 56 Parrthma aþ. Pollaplassiastèc Lagrange

    ∂f∂n1

    + λ1∂g∂n1

    + λ2∂h∂n1

    = 0

    ∂f∂n2

    + λ1∂g∂n2

    + λ2∂h∂n2

    = 0

    ∂f∂n3

    + λ1∂g∂n3

    + λ2∂h∂n3

    = 0

    · · ·

    ∂f∂nR

    + λ1∂g∂nR

    + λ2∂h∂nR

    = 0

    ∑Ri ni = N∑Ri niEi = E

    (aþ.1.36)

    Oi pr¸tec R exis¸seic, mporoÔn na grafoÔn sth genik  morf :

    ∂f

    ∂nk+ λ1

    ∂g

    ∂nk+ λ2

    ∂h

    ∂nk= 0 ìpou k = 1, . . . , R (aþ.1.37)

    Antikajist¸ntac ta f, g, h, prokÔptei h sqèsh:

    ln(nk) + 1 + λ1Ek + λ2 = 0 → (aþ.1.38)

    nk = Ce−λ1Ek (aþ.1.39)

    ìpou oi stajerèc C kai λ1, prosdiorÐzontai apì touc periorismoÔc:

    R∑i

    ni = CR∑i

    e−λ1Ei = N (aþ.1.40)

    kai

    R∑i

    niEi = C

    R∑i

    e−λ1EiEi = E (aþ.1.41)

  • Parrthma bþ

    Armonikìc Talantwt c

    bþ.1 Monodistatoc Kbantikìc Armonikìc Ta-lantwt c (Algebrik  Mèjodoc)

    Grfoume th Qamiltonian  tou armonikoÔ talantwt  (??), wc ex c:

    Ĥ0 =P̂ 2

    2m+

    1

    2mω2X̂2 (bþ.1.1)

    OrÐzoume touc adistatouc telestèc:

    x̂ =

    √mω

    ~X̂ (bþ.1.2)

    p̂ =1√mω~

    P̂ (bþ.1.3)

    Ĥ =1

    ~ωĤ0 (bþ.1.4)

    Qrhsimopoi¸ntac touc parapnw telestèc, h Qamiltonian  grfetai:

    Ĥ =1

    2

    (x̂2 + p̂2

    )̸= 1

    2(x̂+ ip̂) (x̂− ip̂) (bþ.1.5)

    Gia touc telestèc x̂ kai p̂, isqÔei:

    [x̂, p̂] = i~ (bþ.1.6)

    OrÐzoume dÔo nèouc telestèc:

    57

  • 58 Parrthma bþ. Armonikìc Talantwt c

    â =1√2(x̂+ ip̂) (bþ.1.7)

    ↠=1√2(x̂− ip̂) (bþ.1.8)

    Gia touc telestèc â kai â†, isqÔei:[â, â†

    ]= 1 (bþ.1.9)

    H Qamiltonian  grfetai:

    Ĥ = â†â+1

    2(bþ.1.10)

    Se autì to shmeÐo, orÐzoume ton telest , N̂ , o opoÐoc onomzetai telest carÐjmhshc kai dÐnetai apì th sqèsh:

    N̂ = â†â (bþ.1.11)

    O telest c N̂ , eÐnai ermitianìc, dhlad  gi�autìn isqÔei:

    N̂ † = N̂ (bþ.1.12)

    Oi telestèc â kai ↠den eÐnai ermitianoÐ kai epomènwc den antistoiqoÔn sefusikèc posìthtec. O telest c N̂ eÐnai ermitianìc. Sunep¸c, paristnei mÐafusik  posìthta.

    H Qamiltonian  mkporeÐ na grafeÐ wc ex c:

    Ĥ = N̂ +1

    2(bþ.1.13)

    Epiplèon, isqÔoun oi sqèseic:

    [N̂ , â

    ]= −â (bþ.1.14)[

    N̂ , â†]

    = ↠(bþ.1.15)[Ĥ, N̂

    ]= 0 (bþ.1.16)

    'Epeid  oi telestèc Ĥ kai N̂ metatÐjentai, èqoun koinèc idiosunart seic.

  • bþ.1. Monodistatoc Kbantikìc Armonikìc Talantwt c (Algebrik  Mèjodoc)59

    N̂ | ψn⟩ = n | ψn⟩ (bþ.1.17)Ĥ | ψn⟩ = (n+ 12) | ψn⟩ (bþ.1.18)

    Oi idiotimèc tou telest  N̂ eÐnai tètoiec, ¸ste na isqÔoun:

    â | ψn⟩ = c− | ψn−1⟩ (n > 0) (bþ.1.19)↠| ψn⟩ = c+ | ψn+1⟩ (bþ.1.20)

    Mac endiafèrei h drsh tou telest  â, sthn idiokatstash | ψ0⟩.

    â | ψ0⟩ = 0 (bþ.1.21)

    ↠→ Telest c DhmiourgÐac (bþ.1.22)â → Telest c Katastrof c (bþ.1.23)

    Me ton telest  â†, pernme apì thn idiotim  thc enèrgeiac En sthn idiotim En+~ω ⇒ DhmiourgoÔme èna kbnto enèrgeiac. Me ton telest  â, katastrè-foume èna kbnto enèrgeiac ~ω, pern¸ntac apì thn idiotim  En sthn idiotim En − ~ω.Ta energeiak epÐpeda tou armonikoÔ talantwt  den eÐnai ekfulismèna. Kjeidiotim  thc Qamiltonian c eÐnai diaforetik . Sunep¸c, oi idiokatastseic thcQamiltonian c, mporoÔn na apotelèsoun bsh tou q¸rou Hilbert. Gia autèctic idiosunart seic, isqÔoun:

    â | ψ0⟩ = 0| ψ1⟩ = c1↠| ψ0⟩

    ⟨ψ1 | ψ1⟩ = 1

    ⇒| ψ1⟩ = ↠| ψ0⟩ (bþ.1.24)| ψ2⟩ = c2↠| ψ1⟩ = c2â†â† | ψ0⟩ = c2

    (â†)2

    | ψ0⟩ (bþ.1.25)

    Qrhsimopoi¸ntac th sqèsh kanonikopoÐhshc

    ⟨ψ2 | ψ2⟩ = 1 (bþ.1.26)

    prokÔptei:

    | ψ2⟩ =1√2

    [â†]| ψ0⟩ (bþ.1.27)

  • 60 Parrthma bþ. Armonikìc Talantwt c

    H genik  morf , dÐnetai apì th sqèsh:

    | ψn⟩ =1√n↠| ψn−1⟩ =

    1√n!

    [â†]n

    | ψ0⟩ (bþ.1.28)

    H drsh twn telest¸n â kai ↠stic idiokatastseic | ψn⟩, eÐnai h akìloujh:

    ↠| ψn⟩ =√n+ 1 | ψn+1⟩ (bþ.1.29)

    â | ψn⟩ =√n | ψn−1⟩ (bþ.1.30)

    Gia to fusikì telest  jèshc X̂, èqoume:

    X̂ | ψn⟩ =√

    ~2mω

    [√n+ 1 | ψn+1⟩+

    √n | ψn−1⟩

    ](bþ.1.31)

    Gia to fusikì telest  orm c P̂ , èqoume:

    P̂ | ψn⟩ = i√m~ω/2

    [√n+ 1 | ψn+1⟩ −

    √n | ψn−1⟩

    ](bþ.1.32)

    To apotèlesma eÐnai ìti se kje mètrhsh èqoume upèrjesh twn katastsewn| ψn+1⟩ kai | ψn−1⟩.

    Sthn anaparstash jèshc:

    ψn(x) = ⟨x | ψn⟩ (bþ.1.33)

    ⟨x | â | ψ0⟩ = 0 ⇒ (bþ.1.34)(mω

    ~x+

    d

    dx

    )ψ0(x) = 0 (bþ.1.35)

    ψ0(x) =(mωπ~

    )1/4e−

    mω2~ x

    2(bþ.1.36)

    ψn(x) =

    [1

    2nn!

    (~mω

    )n]1/2 (mωπ~

    )[mω~x− d

    dx

    ]e−

    mω2~ x

    2(bþ.1.37)

    Polu¸numa Hermite.

    Gia pardeigma:

    ψ1(x) =

    [4

    π

    (mω~

    )3]1/4xe−

    mω2~ x

    2(bþ.1.38)

    ψ2(x) =(mω4π~

    )1/4 (2mω

    ~x2 − 1

    )e−

    mω2~ x

    2(bþ.1.39)

  • bþ.2. Isotropikìc tridiastatoc kbantikìc armonikìc talantwt c 61

    bþ.2 Isotropikìc tridiastatoc kbantikìc armonikìctalantwt c

    Ĥ =ˆ⃗p 2

    2m+

    1

    2mω ˆ⃗r 2 (bþ.2.1)

    Sthn perÐptwsh anisotropikoÔ talantwt , to dunamikì ja eÐqe th morf :

    V̂(ˆ⃗r)=m

    2

    (ω 2x x̂

    2 + ω 2y ŷ2 + ω 2z ẑ

    2)

    (bþ.2.2)

    Sthn perÐptwsh pou exetzoume, h Qamiltonian  èqei thn akìloujh morf :

    Ĥ =1

    2m

    (p̂ 2x + p̂

    2y + p̂

    2z

    )+

    1

    2mω

    (x̂ 2 + ŷ 2 + ẑ 2

    )(bþ.2.3)

    Ĥx =p̂ 2x2m

    +1

    2mωx̂ 2 (bþ.2.4)

    O q¸roc Hilbert tou tridistatou armonikoÔ talantwt , Er⃗, prokÔptei apìto exwterikì ginìmeno twn q¸rwn Hilbert twn monodistatwn armonik¸n ta-lantwt¸n twn axìnwn x, y, z.

    Er⃗ = Ex ⊗ Ey ⊗ Ez (bþ.2.5)

    O Ĥx, eÐnai mÐa epèktash ston Er⃗ enìc telest  pou dr mìno sto q¸ro Ex.Apì to prohgoÔmeno keflaio, isqÔoun:

    Ĥx | ψnx⟩ =(nx +

    1

    2

    )~ω | ψnx⟩ ìpou | ψnx⟩ ∈ Ex (bþ.2.6)

    Ĥy | ψny⟩ =(ny +

    1

    2

    )~ω | ψny⟩ ìpou | ψny⟩ ∈ Ey (bþ.2.7)

    Ĥz | ψnz⟩ =(nz +

    1

    2

    )~ω | ψnz⟩ ìpou | ψnz⟩ ∈ Ez (bþ.2.8)

    nx, ny, nz = 0, 1, . . . (bþ.2.9)

    Oi idiosunart seic tou Ĥ, eÐnai thc morf c:

    | Ψnx,ny ,nz⟩ =| ψnx⟩ | ψny⟩ | ψnz⟩ =| ψnx⟩⊗ | ψny⟩⊗ | ψnz⟩ (bþ.2.10)

    Ĥ | Ψnx,ny ,nz⟩ =(nx + ny + nz +

    3

    2

    )~ω | Ψnx,ny ,nz⟩ (bþ.2.11)

  • 62 Parrthma bþ. Armonikìc Talantwt c

    Oi idiosunart seic (idiodianÔsmata) thc Ĥ eÐnai exwterik ginìmena twn idio-sunart sewn twn Ĥx, Ĥy kai Ĥz.

    Ta energeiak epÐpeda tou isotropikoÔ armonikoÔ tridistatou talantwt ,eÐnai thc morf c:

    En =

    (n+

    3

    2

    )~ω n = 0, 1, . . . (bþ.2.12)

    Telestèc Katastrof c Telestèc DhmiourgÐac

    âx =√

    mω2~ x̂+

    i√2m~ω

    p̂x â†x =

    √mω2~ x̂−

    i√2m~ω

    p̂x

    ây =√

    mω2~ ŷ +

    i√2m~ω

    p̂y â†y =

    √mω2~ ŷ −

    i√2m~ω

    p̂y

    âz =√

    mω2~ ẑ +

    i√2m~ω

    p̂z â†z =

    √mω2~ ẑ −

    i√2m~ω

    p̂z

    Profan¸c:

    [p̂x, p̂y] = [p̂x, p̂z] = [p̂z, p̂y] = 0 (bþ.2.13)

    [ x̂, ŷ ] = [ x̂, ẑ ] = [ ẑ, ŷ ] = 0 (bþ.2.14)

    Kat sunèpeia, oi monadikoÐ mh mhdenikoÐ metajètec, metaxÔ twn âi kai â†i eÐnai

    oi akìloujoi: [âx, â

    †x

    ]=[ây, â

    †y

    ]=[âz, â

    †z

    ]= 1 (bþ.2.15)

    DÔo telestèc me diaforetikoÔc deÐktec x, y, z metatÐjentai, diìti droun sediaforetikoÔc q¸rouc.

    IsqÔei:

  • bþ.2. Isotropikìc tridiastatoc kbantikìc armonikìc talantwt c 63

    âx | Ψnx,ny ,nz⟩ = [âx | ψnx⟩]⊗ | ψny⟩⊗ | ψnz⟩ (bþ.2.16)=

    √nx | Ψnx,ny ,nz⟩ (bþ.2.17)

    | Ψnx,ny ,nz⟩ =1√

    nx!ny!nz!

    (â †x

    )nx (â †y

    )ny (â †z

    )nz| Ψ0,0,0⟩ (bþ.2.18)

    âx | Ψ0,0,0⟩ = ây | Ψ0,0,0⟩ = âz | Ψ0,0,0⟩ = 0 (bþ.2.19)

    ⟨r⃗ | Ψnx,ny ,nz⟩ = ⟨x | ψnx⟩⟨y | ψny⟩⟨z | ψnz⟩ = ψnx(x)ψny(y)ψnz(z)(bþ.2.20)

    ⟨r⃗ | Ψ0,0,0⟩ =(mωπ~

    )3/4e−

    mω2~ (x

    2+y2+z2) (bþ.2.21)

    Oi idiotimèc En = (n+ 3/2) ~ω thc Qamiltonian c eÐnai ekfulismènec giatÐìla ta kets thc bshc

    {| Ψnx,ny ,ny⟩

    }pou eÐnai tètoia ¸ste na ikanopoioÔn th

    sqèsh n = nx + ny + nz, eÐnai idiodianÔsmata thc Ĥ me thn idiotim  En =(n+ 3/2)~ω.O bajmìc ekfulismoÔ gn thc En, eÐnai Ðsoc me ton arijmì twn sunìlwn{nx, ny, nz}, pou eÐnai tètoia ¸ste n = nx + ny + nz. Sugkekrimèna:

    gn =(n+ 1)(n+ 2)

    2(bþ.2.22)

    Mìno to epÐpedo E0 = 3~ω/2 den eÐnai ekfulismèno.

  • Χρηματοδότηση  •  Το  παρόν  εκπαιδευτικό  υλικό  έχει  αναπτυχθεί  

    στα  πλαίσια  του  εκπαιδευτικόυ  έργου  του  διδάσκοντα  

    •  Το  έργο  «Ανοικτά  Ακαδημαϊκά  Μαθήματα  Ε.Μ.Π.»  έχει  χρηματοδοτήσει  μόνο  την  αναδιαμόρφωση  του  εκπαιδευτικού  υλικού.  

    •  Το  έργο  υλοποιείται  στο  πλαίσιο  του  Επιχειρησιακού  Προγράμματος  «Εκπαίδευση  και  Δια  Βίου  Μάθηση»  και  συγχρηματοδοτείται  από  την  Ευρωπαϊκή  Ένωση  (Ευρωπαϊκό  Κοινωνικό  Ταμείο)  και  από  εθνικού  πόρους.