소성재료역학 (metal plasticity) chapter 12: yield function 8... · 2019. 9. 5. · 446.631a...

45
446.631A 소성재료역학 (Metal Plasticity) Chapter 12: Yield Function Myoung-Gyu Lee Office: Eng building 33-309 Tel. 02-880-1711 [email protected] TA: Chanyang Kim (30-522)

Upload: others

Post on 26-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 446.631A

    소성재료역학(Metal Plasticity)

    Chapter 12: Yield Function

    Myoung-Gyu Lee

    Office: Eng building 33-309

    Tel. 02-880-1711

    [email protected]

    TA: Chanyang Kim (30-522)

    mailto:[email protected]

  • Three-dimensional plasticity

    1-D constitutive law Stresses and strains in 3-D

    General state : multiple components existTensionCompressionBending….

    ε

    σ

    σxx σyy

  • Three-dimensional plasticity

    Stress and Strain tensorTensor : mathematical notation of physical quantities

    Stress : symmetric 2nd order tensor

    • 0 th order Tensor : scalar value – energy, etc• 1st order Tensor : vector - force, displacement, velocity, etc• 2nd order Tensor : linear transformation from vector to the other vector

    - stress, strain, etc.

    xx yx zx

    xy yy zy

    xz yz zz

    σ

  • Three-dimensional plasticity

    1-D : point 2-D : line 3-D : surface

    I

    II

    ( ,0,0)ST Y

    2 or 2(2 , ,0)PS PLS K K

    ( , ,0)BB B B

    3 or 3( , ,0)PS PLS K K

    ε

    σ

    For isotropic case,

  • Basic features of the yield surface

    Concept of material coordinates

    (or materially embedded coordinates)

    𝑥′

    𝑦′ 𝑦

    𝑥

    p

    Global coordinates system

    (or laboratory coordinates system)

    𝑥

    𝑦

    Material coordinates system

    • Since the constitutive law describes material properties, components of

    vector or tensor quantities are defined with respect to material coordinates

  • Basic features of the yield surface

    Convexity of yield surface

    (a) (b)

    Convex Non-convex

    • The yield surface is considered to be convex

    • In other words, yield surface should be bulged out

    • Or, any straight line connecting two points located inside the surface stays

    inside the surface

  • Basic features of the yield surface

    • For the simplicity, consider a 2-D imaginary yield surface

    ( ) ( , ) xx yyf f constant C

    • Size of yield function f(σ) is defined by constant C

    • For the isotropic case, yield function can be assumed as a circle

    • For the anisotropic case, ellipse can be an yield function

    2 2 1/2

    1

    2 2 2 2

    2

    ( ) ( ) c

    ( ) ( ) c

    xx yy

    xx yy

    f

    f

    1

    2 2 21 1

    1

    2 2 22 2

    2 2 2

    3

    2 2 2

    4

    ( ) ( ) ( ( ) )

    ( ) ( ) (( ) )

    ( ) ( ( ) )

    ( ) (( ) )

    yy

    xx

    xxyy

    yy

    xx

    xxyy

    af a

    b

    bf b

    a

    af a

    b

    bf b

    a

  • Basic features of the yield surface

    n-th order homogeneous function

    ( ) ( )nf f x x Bold : vector or tensor

    Two properties of n-th order homogeneous function

    i) (n-1)-th order homogeneous function

    or

    ii)

    f

    x

    ( ) ( )i ij

    i ij

    f f fx or x nf

    x x

    x x

    x

    1 1 1

    1 1

    1 1 1

    ( )and ( )

    ( )

    n n nn n

    n n n

    nx n x nxf

    ny n y ny

    g g gxx

  • Basic features of the yield surface

    Proof (1)

    ( ) ( ) nf fx x

    ( ) ( ) ( ) ( )( )

    ( ) ( )

    ( x )( x )

    x

    f x f f

    fwhere

    g

    g

    x x xI x

    x x x x

    Left hand side

    Right hand side

    ( )( )n n

    f

    g

    xx

    x

    1( ) ( ) ng gx x

  • Basic features of the yield surface

    Proof (2)

    ( ) ( ) nf fx x

    ( ) ( ) ( ) ( )( )

    ( ) ( )

    f x f f

    g

    x x xx x x

    x x

    Left hand side

    Right hand side

    1

    ( )( )

    n

    nf

    n f

    xx

    ( )( )

    fnf

    xx x

    x

  • Basic features of the yield surface

    • Linear transformation of isotropic yield surface into anisotropic yield

    surface – preserve the convexity

    / 0

    0 /

    xx xx

    yy yy

    c a

    c b

    • Effective stress or equivalent stress –

    the yield function of the first order homogeneous function

  • Basic features of the yield surface

    Expansion, translation, shape change of yield surface

    Expansion Translation Shape change(distortion)

  • Appendix

    Principal stress and invariants

    Coordinates transformation Principal

    axis

    Generalcoordinates

  • Appendix

    Principal values and directions of symmetric tensor

    = Eigenvalues and eigenvectors

    ( ) 0

    ,

    det 0

    ij ij ior n

    for the non trivial solution

    σn n σ I n 0

    σ I

    Where λ : principal values (or eigenvalues) of tensorn : principal directions(or eigenvectors) of tensor

  • Appendix

    Principal values & vectors and Invariants

    = Do not change with any coordinates system

    3 2 2

    1 2 3

    1 2 3

    1

    2 2

    2

    3

    det 0,charactoristicequation is

    0

    where , , areinvariants of tensor

    ( )

    1( ) ( )

    2

    det( )

    from

    I I I

    I I I

    I trace

    I trace trace

    I

    σ I

    σ

    σ σ

    σ

  • Yield function - IsotropyIsotropic generalization

    1 2 3

    ( )

    ( , , , , , )

    ( , , )

    = ( , , )

    ij

    I II III I II III

    I II III

    f

    f

    f as a symmetric function

    f I I I

    n n n

    General case

    Isotropic case

    Denote with invariants

    1 2 3

    where , , :

    , , :

    , , : the threeinvariants of

    I II III

    I II III

    pricipal stresses

    principal directions

    I I I

    n n n

  • Yield function - Incompressibility

    Hydrostatic & deviatoric stresses

    • Decomposition of the stress into two components: the hydrostatic

    and deviatoric components

    11 22 33

    1 where

    3

    1( )

    3

    :deviatric stress

    ij ij kk ij kkS

    trace

    S I

    S

    11 22 33

    12 1311 22 33

    22 33 11

    21 23

    11 22 33

    33 11 22

    31 32

    11 22 33

    2

    0 03

    2 1

    0 03 3

    2

    3 0 0

    ij

  • Yield function - Incompressibility

    Deviatoric strains

    Similarly,1

    ( )3

    : ( )

    : ( )

    ( ) 0 ( )

    p p p

    p

    p

    p p

    kk

    d d trace d

    d plastic strain increment

    d deviatoric plastic strain increment

    trace d de for crystaline materials

    e I

    e

    e

  • Yield function - IncompressibilityHydrostatic & deviatoric stresses - example

    III 33,

    I 11,

    II 22,

    P

    O

    H

    HL(Hydrostatic Line) (1, 1, 1)

    H

    S

    Deviatoric plane(Octahedral plane) (1, 1, 1)

    11 12 13 11 12 13

    21 22 23 21 22 23

    31 32 33 31 32 33

    23 23 3211 11

    22 22 31 31 13

    33 33 12 12 21

    1 0 0

    0 1 0

    0 0 1

    1

    1 with

    1

    S S S

    S S S A

    S S S

    S SS

    S A S S

    S S S

    , , S HNow from the figure

    T

    1 11 1

    1 13 3

    1 1

    H

    1 1

    1 13

    1 1

    ii A

    1

    3A trace [111]H

    11 22 33 11

    11 22 33 22

    11 22 33 33

    21

    23

    2

    S

    S

    S

    S H

    T

    11 22 33

    1

    0 1 0

    1

    SS S S

    [111]S

  • Yield function - Incompressibility

    Yield surface for incompressible case

    • For crystal materials, plastic deformation is incompressible and

    the hydrostatic stress does not affect the plastic deformation

    since the plastic deformation is incurred by shear stress.

    0

    ( ) is independent of

    ( ) ( , ) ( )

    p

    kk kk

    p p

    ij ij

    ij kk

    ij ij kk ij

    d for arbitrary

    dW S de

    f f

    f f f S f f S

  • Isotropic & Incompressible yield surface

    1 2 3

    2 3

    ( )

    ( )

    ( , , , , , )

    = ( , , ) as a symmetric function

    = ( , , )

    = ( , )

    ij

    ij

    S S S

    I II III I II III

    I II III

    f

    f S

    f S S S n n n

    f S S S

    f J J J

    f J J

    General case

    Isotropic case

    Denote with invariants

    incompressible case

    Since J1 = 0

    1 2 3

    1

    2 2

    2

    3

    where , , areinvariantsof deviatoric tensor

    ( ) 0

    1( ) ( )

    2

    det( )

    J J J

    J trace

    J trace trace

    J

    S

    S S

    S

  • Incompressibility

    π-diagram

    I II

    III

    A

    BB

    A

    I( )Pd II( )

    Pd

    III( )Pd

    O

  • Incompressibility

    π-diagram

    A way to find the deviatoric stress component: S1, S2 and S3 (with the condition

    Sii=0):3,III 3,III( )S

    2,II 2,II( )S1,I 1,I( )S

    (2,1,0)

    '(3,2,1)

    (1,0, 1)SThey all share the same position on the

    deviatoric plane (therefore, in the

    diagram), but with different

    hydrostatic component

  • Von Mises isotropic yield function

    2 2 2 2

    2 3 2

    1 1 1( ) ( ) ( , ) ( ) .

    2 2 2 ij ij I II IIIf f f J J J S S S S S ConstS S

    (or J2 plasticity)

    From above, yield function can be defined like in below

    ( ) ( ) ( ) ij ijf S S c S

    Where 𝜎 : equivalent(or effective) stress

  • Reference stress state

    ( ) ( ) ( ) ij ijf S S cS

    How can we define the size of yield function c? From reference state

    I

    II

    ( ,0,0)ST Y

    2 or 2(2 , ,0)PS PLS K K

    ( , ,0)BB B B

    3 or 3( , ,0)PS PLS K K

  • Reference stress state

    I II

    III

    2: ( , , )

    3 3 3

    Y Y YS

    Y

    : ( ,0,0)Y

    I II

    III

    B

    B

    2: ( , , )

    3 3 3

    B B BS

    : ( , ,0)B B

    I II

    III

    K

    : ( , ,0)S K K

    : ( , ,0)K K

    I II

    III

    : ( ,0, )S K K

    K

    : (2 , ,0)K K

    Simple tension Pure shear(PS2)

    Pure shear(PS3) Balanced biaxial

    I

    II

    ( ,0,0)ST Y

    2 or 2(2 , ,0)PS PLS K K

    ( , ,0)BB B B

    3 or 3( , ,0)PS PLS K K

  • Reference stress state

    ( ) ij ijf S S

    Reference state : simple tension case

    For the reference state to calibrate the yield criterion is the simple tension,

    1

    3

    0 0 2 3 0 0 3 0 0

    0 0 0 0 3 0 0 3 0

    0 0 0 0 0 3 0 0 3

    ( yield stress of the simple tension)

    ij ij kk ijS

    Y Y Y

    Y Y

    Y Y

    f Y

    2 2 24 1 1

    9 9 9

    3

    2

    f Y Y Y Y

    3

    2

    ij ijS S Y

  • Reference stress state

    ( ) ij ijf S S

    Reference state : pure shear case

    For the reference state to calibrate the yield criterion is the pure shear,

    1

    3

    0 0 0 0 0 0 0

    0 0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0

    ( yield stress of the pure shear)

    ij ij kk ijS

    K K

    K K

    f K

    2 2

    1

    2

    f K K K

    1 1

    2 3ij ijS S K Y

  • Reference stress state

    ( ) ij ijf S S

    Reference state : balanced biaxial case

    For the reference state to calibrate the yield criterion is the balanced biaxial,

    1

    3

    0 0 3 0 0 2 3 0 0

    0 0 0 3 0 0 2 3 0

    0 0 0 0 0 2 3 0 0 2 3

    ( yield stress of balanced biaxial tension)

    ij ij kk ijS

    B B B

    B B B

    B B

    f B

    2 2 21 1 4

    9 9 9

    3

    2

    f B B B B

    3

    32

    ij ijS S B Y K

  • Von Mises yield criterion

    2 22 2 2 2

    11 22 22 33 33 11 12 23 31

    1 6 6 62

    Y

    22 2 2 2 2 2

    11 22 33 12 23 31 11 22 33

    2 2 2 2 2

    11 22 22 33 33 11 12 23

    ( )=

    3 =

    2

    3 3 1 1 ( )( )2 2 3 3

    3 1 2 3

    3 2 2 2 1 32

    1 6 6

    2

    ij ij

    ij ij

    ij ij ij kk ij ij pp ij

    ij ij kk pp

    f f f S

    f S S

    f S S

    2316

    In summary,

  • Tresca isotropic yield function

    (or maximum shear criterion)

    max min max min( ) ( ) ( , , )2 2

    I II III

    S Sf f S S S KS

    2

    2

    2

    I II I II

    II III II III

    I III I III

    S S K

    S S K

    S S K

    3 2 2 2 4 6

    2 3 2 2

    1 27 9 3J - J - 0

    16 64 16 2 or K J K J K

  • Tresca yield function

    max min max min

    2 2

    S Sf A A

    Different reference state cases

    I II

    III

    Y

    2: ( , , )

    3 3 3

    Y Y YS

    : ( ,0,0)Y

    I II

    III

    B

    B

    2: ( , , )

    3 3 3

    B B BS

    : ( , ,0)B B

    I II

    III

    K

    : ( , ,0)S K K

    : ( , ,0)K K

    I II

    III

    : ( ,0, )S K K

    K

    : (2 , ,0)K K

    Pure shear(PS3) Pure shear(PS2)

    Simple tension Balanced biaxial

  • Tresca yield functionReference state : pure shear case

    For the reference state to calibrate the yield criterion is the pure shear,

    max min max min

    2 2

    S Sf A A

    max min .2

    f A

    0 0 0 0

    0 0 0 0

    0 0 0 0 0 0

    K K

    K K

    ( yield stress of the pure shear)K

    ( )

    2

    1

    K Kf A K

    A

    max min 2 2

    YK

  • Tresca yield functionReference state : simple tension case

    For the reference state to calibrate the yield criterion is the simple tension,

    max min max min

    2 2

    S Sf A A

    0 0

    0 0 0

    0 0 0

    Y

    0

    2

    2

    Yf A Y

    A

    max min ( )Y

  • Tresca yield functionReference state : balanced biaxial

    max min max min

    2 2

    S Sf A A

    max min 2

    f A B

    0 0

    0 0

    0 0 0

    B

    B

    0

    2

    2

    Bf A B

    A

    max min B

  • Drucker isotropic yield function

    26 3 63

    2 3 2 3 2 3

    2

    ( ) ( ) ( , ) ( , ) (1 )J

    f f f J J J J J KJ

    S

    • Incompressible, isotropic, and symmetric for tension and compression,

    • If ξ=0 von Mises yield criterion

    • So, Drucker yield criterion is extension of von Mises yield criterion, which

    modifies the shape of yield surface from the von Mises yield surface by

    material constant ξ

  • Drucker isotropic yield function2

    6 3 632 3 2 3 2 3

    2

    ( ) ( ) ( , ) ( , ) (1 )J

    f f f J J J J J KJ

    S

    • 𝐽32/𝐽2

    2 from 𝛼 = −1(pure shear) to 𝛼 = 0(simple tension)

    22

    2

    3

    3

    22

    3

    332

    2

    13

    2 2 1 127

    2 2 1 1

    27 1

    I

    I

    J

    J

    J

    J

    • Let 𝜎1, 𝜎2, 0 → 𝜎1 1, 𝛼, 0where 𝛼 = 𝜎2/𝜎1 (−1 ≤ 𝛼 ≤ 0)

  • Drucker isotropic yield function

    26 3 63

    2 3 2 3 2 3

    2

    ( ) ( ) ( , ) ( , ) (1 )J

    f f f J J J J J KJ

    S

    22

    2

    3

    3

    22

    3

    332

    2

    13

    2 2 1 127

    2 2 1 1

    27 1

    I

    I

    J

    J

    J

    J

    1

    62

    32

    32

    2 2 1 1( , ) 3 1 1

    27 1I K

    • Principal stress σI can be derived as follows

    ( 0, ) ( )I Y B • Since and , ( 1, )I K

    6 6 62 2

    27 4 27 4

    27 27K Y B

  • Drucker isotropic yield function

    ( , )I • By normalizing with which is von Mises yield function case, ( , 0)I

    11

    2 62 63

    3 32

    2

    2 2 1 1( , )1 1

    ( , 0) 27 1

    I

    I

    J

    J

    • From convexity condition, 27 9

    8 4

  • Drucker isotropic yield function

    • From previously driven equations, Drucker isotropic yield function can be plotted

    In plane stress condition In π diagram

  • Non-quadratic isotropic yield functiongeneralized from von Mises yield function

    1

    2 2 2 2

    I II II III III I S S S S S S

    Von Mises yield function

    generalization

    1

    I II II III III I

    M M M MS S S S S S

    Hosford non-quadratic isotropic yield function

  • Non-quadratic isotropic yield functiongeneralized from von Mises yield function

    1

    I II II III III I

    M M M MS S S S S S

    Hosford non-quadratic isotropic yield function in plane stress condition

    Case 1 : 1 ≤ M ≤ 2 Case 2 : 2 ≤ M ≤ ∞

  • Hill 1948 quadratic anisotropic yield function

    2 2 2 2

    2 2 2

    ( ) F( ) G( ) H( )

    2L 2M 2N

    yy zz zz xx xx yy

    yz zx xy

    f

    • Anisotropic expansion of von Mises yield criterion• This will be further discussed in Chapter 14

    Von Mises

  • Drucker-Prager compressibleisotropic yield function

    Deviatoric plane

    oII

    III

    I

    Hydrostatic Line (1, 1, 1)

    oII

    III

    I

    Hydrostatic Line (1, 1, 1)

    Deviatoric plane

    1 2 3 1 2 3 2 1( , , ) ( , , ) 2 +I I I I J I J I

    • Drucker-Prager yield function can be utilized for Soil, Concrete, or other hydrostatic stress dependent materials

    Case 1 : β>0 Case 2 : β

  • Drucker-Prager compressibleisotropic yield function• Variation of Drucker-Prager yield criterion

    2 12 +J I

    Double cone shape

    Deviatoric plane

    o

    III

    I

    Hydrostatic Line (1, 1, 1)

    II

    Ellipsoid shape

    2

    2 12 +J I

    Deviatoric plane

    o

    III

    I

    Hydrostatic Line (1, 1, 1)

    II