og schramm aachen 07.02.2012

Upload: godediu

Post on 04-Apr-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    1/28

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    2/28

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    3/28

    Introduction to polymer-based drugdelivery systems

    micells dendrimers star -shaped polymers

    4- and 6-arm starPCL- p PEGMAs synthesis characterization core degradation encapsulation properties

    Conclusions

    Acknowledgements

    Outline

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    4/28

    Introduction drug-delivery systems

    Polymer therapeutics term coined by Helmut Ringsdorf and Ruth Duncan

    Angew. Chem. Int. Ed. 1981 , 20 , 305-325, Nat. Rev.Drug Discovery 2003 , 2 , 347-360.

    Most of clinically used drugs are small hydrophobic moleculeswith molecular weights < 500 g/ mol.

    rapid diffusion into healthy tissues small amounts of drugs reach the target sites therapeutics is associated with side effects

    Major goal: improving the therapeutic index!(defined as ratio of the toxic dose to the therapeutic dose)

    protein -polymer conjugates drug -polymer conjugates supramolecular drug -delivery systems

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    5/28

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    6/28

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    7/28

    Micelles

    Single polymer chain

    hydrophilicchain

    Hydrophobicchain

    weakly water-soluble drug

    micelle

    cmc

    Drawbacks:unstable under differentenviromental conditions: high dilution pH temperauture pressure

    sterilization

    Dendrimers

    weakly water-soluble drug

    Drawbacks: low loading capacity high costs (multisteps

    synthesis) not suitable for large

    scale applications

    DdS: Properties (II)

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    8/28

    Star-shaped polymers: General conceptStar-shaped polymers can effciently combine the properties of self-assembled micelles and dendrimers

    core -shell structure

    unimolecular micellar behavior high loading capacity

    .. and they circumvent the main drawbacks of these systems: low stability high synthesis costs

    guest molecules

    6-hydroxycaproic acid

    p PEGMA

    (bio)degradation

    biocompatiblehydrophilic shell

    degradablebiocompatible

    hydrophobic core

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    9/28

    hydrophobichydrophilic

    Br

    OBr

    O

    O

    O

    O

    Br n

    OR2

    RO

    R2O

    HO

    OO

    OR1

    RO

    R1O

    n

    O

    O

    O

    O

    Br n

    OR3

    RO

    R3O

    O O

    PEG

    p

    O

    OOH

    OHRO

    OH

    OH

    OHOH

    OOR 1

    OR1R

    1O

    O

    OR 2

    OR2R

    2O

    OOR3

    OR 3R3O

    O

    OOPEG

    NEt 3 , THF24-72 h, RT

    CuBr/PMDETAtoluene, 90 C

    Tin(II)-octoate

    130 C, 4 h+

    R = H or R = R 1 or

    R = R 2 or R = R 3 or

    R 1

    R 2 R 3

    Star-shaped Polymers: Synthesis

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    10/28

    Polymer Conversion

    14-arm Star-PCL

    Mw 3200~ 100%

    24arm Star-PCL

    Mw 5600~ 100%

    3

    4-arm Star-PCLMw 7200 ~ 100%

    46-arm Star-PCL

    Mw 9800~ 100%

    Br

    OBr

    O

    O

    O

    O

    Br n

    OR2R

    2

    O

    R2OHO

    O

    O

    OR 1R

    1O

    R1O

    nNEt 3, THF

    24-72 h, RT

    1.21.41.61.82.02.22.42.62.83.03.23.43.63.84.04.24.4

    1.21.41.61.82.02.22.42.62.83.03.23.43.63.84.04.24.4

    d , ppm

    Quantitative fuctionalization of star PCL

    2000 3000 4000 5000 6000 7000 8000 9000 10000

    m/z

    *

    f

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    11/28

    O

    O

    O

    O

    Br n

    OR2

    R2O

    R2O

    OO

    PEG

    O

    O

    O

    O

    Br n

    OR3

    R3O

    R3O

    O O

    PEG

    p

    CuBr/PMDETAtoluene, 90 C

    14 16 18 20

    0.0

    0.4

    0.8

    1.2 Temp. 70oC, [M]/[I] = 200:1

    n o r m a l i z e d R I r e s p o n s e

    , a . u

    elution volume, mL

    10 min30 min1 h2 h3 h4 h5 hStarPCL

    14 15 16 17 18 19 20

    0.00

    0.08

    0.16

    0.24

    0.32

    0.40 Temp. 90oC , [M]/[I] = 200:1

    R I r e s p o n s e

    elution volume, mL

    10 min30 min1 h2 h3 h4 hStar-PCL

    0 50 100 150 200 2500.0

    0.4

    0.8

    1.2

    l n ( [ M

    0 ] / [ M ] )

    time, minutes

    0 50 100 150 200 250 3000.0

    0.4

    0.8

    1.2

    l n ( [ M

    0 ] / [ M

    ] )

    time, minutes

    8.5 9.0 9.5 10.0 10.5 11.0 11.5

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Temp. 70 o C, [M]/[I] = 20:1

    n o r m a l i z e d R I r e s p o n s e , a

    . u

    elution volume, mL

    10 min20 min40 min

    70 min2 h3 h4 h

    4-arms StarPCL-Br

    14 15 16 17 18 19 20

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Temp. 90 o C, [M]/[I] = 20:1

    n o r m a l i z e d R I r e s p o n s e

    , a . u

    .

    elution volume, mL

    10 min2 h4 hStarPCL-Br

    ATRP of PEGMA

    ATRP f PEGMA 1H NMR

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    12/28

    ATRP of PEGMA 1H NMR

    star-initiator

    10 minutes

    30 minutes

    60 minutes

    O

    O

    O

    O

    Br n

    OR 2RO

    R2O O

    O

    O

    O

    Br n

    OR3

    RO

    R3O

    O O

    PEG

    p

    OR2

    OR 2R2O

    O OR3

    OR3

    R3O

    O

    OOPEG

    CuBr/PMDETAtoluene, 90 C

    R = R 2 or R = R 3 or

    ppm

    All arms initiated the polymerization of PEGMA

    S PCL PEGMA

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    13/28

    Upscaling of polymer P4, after precipitation: 17 g, PDI = 1.13

    polymer P1 P2 P3 P4 P5 P6 P7 P8

    M/I 40:1 40:1 200:1 200:1 60:1 60:1 240:1 240:1

    no. of arms 4 4 4 4 6 6 6 6PEGMA Mw (Da) 475 1100 475 475 475 1100 475 1,100

    Mn (Da)(GPC) 12,600 24,900 25,000 26,600 20,700 39,600 35,000 41,000

    Mn (Da)(1H NMR) 21,400 48,000 51,800 59,400 32,100 65,400 83,400 170,000

    Conversion 80% 85% 48% 56% 80% 85% 70% 60%

    no. of PEGMA/arm 8 8.5 24 28 8 9 26 24

    PDI (GPC) 1.3 1.24 1.16 1.13 1.29 1.3 1.18 1.15

    Dh (nm)

    (DLS, H2O)6 7.6 9.2 9.8 7.2 11.8 13.6 17.4

    Dh (nm)(DLS, CH3Cl)

    nd 6.4 nd 8.2 5.8 9.2 11.8 13.4

    All starPCL- p PEGMA present unimolecular micellar behavior

    Star PCL p PEGMAs

    ATRP f PEGMA

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    14/28

    8 12 16 20

    7.0, 1.176-arm starPCL-Br

    (P5 ) 32.1, 1.29(P6 ) 65.4, 1.3

    (P7 ) 83.4, 1.18(P8 ) 170, 1.15

    Mn

    (kg/mol), PDI

    elution volume/mL

    8 12 16 20

    4.6, 1.17

    (P1 ) 21.4, 1.30(P2 ) 48.0, 1.24

    (P3 ) 52.8, 1.16(P4 ) 59.4, 1.13

    4-arm starPCL-Br

    Mn

    (kg/mol), PDI

    elution volume/mL

    ATRP of acrylates using star macroinitiators is still a challenge due to star -star coupling reactions not all of the bromine end -capped sites act as initiators for ATRP

    Consequences: broad polydispersity indices and unsymmetrical GPC profiles

    Our optimized procedure allows the synthesis of well-defined4- and 6-arm starPCL- p PEGMA (PDI

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    15/28

    Selective PCL degradation

    O

    O

    O

    Br

    O

    OPEG

    n O

    O

    O

    O

    Br

    O

    OPEG

    n

    O

    O

    O

    OO

    Br O

    OPEG

    n O

    O

    O

    O

    Br

    O

    OPEG

    n

    O

    O

    O

    O

    Br O

    OPEG

    n O O

    O

    O O

    Br

    O

    OPEG

    n

    O

    Br

    OO

    PEG

    OH

    OOH

    OH

    OH

    OH

    OH

    OH

    OHO

    OH

    p

    p

    p+

    p

    p

    p

    p

    6

    6n

    acid or base catalyzed degradation enzymatic degradation

    For enzymatic degradation of PCL see i.e. Eur. J. Sci. 2007 , 31 , 119-128.

    aq. HCl,dioxane, RT

    A id t l d d g d ti

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    16/28

    0.51.01.52.02.53.03.54.04.55.0

    0.51.01.52.02.53.03.54.04.55.0

    0.51.01.52.02.53.03.54.04.55.0

    (a)

    (b)

    (c)

    d , ppm

    1 H NMR spectra of (a) p (PEGMA) from the

    hydrolysis

    of 6-arm starPCL- p PEGMA,(b) 6-arm star-PCL- p PEGMA,(c) 6-arm starPCL-Br.

    8 12 16 20 24

    PDI 1.17

    PDI 1.15

    PEGP8 after hydrolysis at 60 oC

    P8 after hydrolysis at R.T.

    P8

    6arm starPCL-Br

    Elution volume, mL

    room temperature selective hydrolysisof the PCL-core

    H2O

    Acid catalyzed degradation

    Enzymatic degradation of PCL core

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    17/28

    Enzymatic degradation of PCL core

    14 16 18 20

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    R I r e s p o n s e ,

    a . u .

    Elution volume, mL

    P9 - t 0P9 - 1 dayP9 - 2 daysP9 - 4 days

    Lipase from Rhizopus arrhizus

    Conditions: lipase/polymer 1:5, in phosphate buffer solution (pH=7), at 37 C

    in vitro biodegradable core

    D l ti di 3

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    18/28

    Dye encapsulation disperse orange 3

    polymer

    disperse orange 3

    N NN

    O

    O NH2

    water insoluble dye

    300 400 500 600 700 800

    0.0

    0.4

    0.8

    1.2 20:1

    16:112:1

    10:1

    8:1

    4:1

    1:1

    0

    [dye]/[P4],[P4] = 25 M

    a b s o r p t i o n / a

    . u .

    wavelength/ nm

    20:118:116:1

    14:112:110:19:18:17:16:15:14:13:12:11:10.5 mM dye,0 mM P4

    Dye encapsulation (II)

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    19/28

    300 400 500 600

    0.0

    0.4

    0.8

    1.2

    [dye]/[polymer]

    A b s o r p

    t i o n

    / a . u .

    wavelength/ nm

    20:1

    18:116:114:112:110:19:18:17:16:15:14:13:12:11:1

    300 400 500 600 700

    0.0

    0.4

    0.8

    1.2

    [dye]/[polymer]

    a b s o r p

    t i o n

    / a . u .

    wavelength/ nm

    26:124:122:120:118:116:114:112:1

    0 5 10 15 20

    0.4

    0.8

    1.2

    a b s o r p

    t i o n a

    t 4 4 2 n m

    / a . u .

    no. of encapsulted molecules of guest 1 per molecule of P4

    4-arm starPCL- p PEGMA, P4 6-arm starPCL- p PEGMA, P7

    12 16 20 24 28

    0.6

    0.8

    1.0

    1.2

    a b s o r p

    t i o n a

    t 4 4 3 n m

    / a . u .

    no. of encapsulated molecules of guest 1 per molecule of P7

    Dye encapsulation (II)

    Dye encapsulation (III)

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    20/28

    Dye encapsulation (III)

    Unloaded polymer ( P4 ) Polymer ( P4 ) loaded with disperse orange 3Dh (DLS, H2O) 9.8 nm 11.6 nm

    DLS measurements strongly support the formation of unimolecular host-guest architectures.

    Simple PEGylation is not sufficient to build up stable unimolecular core-shell systems!

    our systems: encapsulation inside the polymer

    R. Haag et al., Angew.Chem. Int. Ed. 2007 , 46 , 1265.R. Haag et al., Macromol. Rapid Commun. 2008 , 29 , 172.

    in the literature: encapsulation by polymer aggregation

    Drug encapsulation: Furosemide

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    21/28

    8 6 4 2 0

    f d+e cba

    DMF

    DMFH2O

    P4 + guest 2

    P3 + guest 2

    P2 + guest 2

    guest 2 + DMFin D 2O

    P1 + guest 2

    / ppm

    8 6 4 2 0

    f d+e cba

    DMF

    H2O DMF

    guest 2 + DMFin D 2O

    P8 + guest 2

    P7 + guest 2

    P6 + guest 2

    P5 + guest 2

    / ppm

    polymer P1 P2 P3 P4 P5 P6 P7 P8

    guest 2 4 5 7 7 6 5 10 10

    S

    Cl

    NH

    OO

    O

    NH2

    OHO

    a

    bc

    d e

    f antihypertensive and antidiuretic activity for the treatmentof excessive fluid accumulation and swelling (edema) of the

    body caused by heart failure, cirrhosis, chronic kidney failure,and nephrotic syndrome

    Drug encapsulation: Furosemide

    Drug encapsulation: Hydrochlorothiazide

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    22/28

    Drug encapsulation: Hydrochlorothiazide

    8 6 4 2 0

    ba

    H2ODMF DMF

    P4 + guest 3

    P3 + guest 3

    P2 + guest 3

    P1 + guest 3

    guest 3 +DMFin D2O

    / ppm

    polymer P1 P2 P3 P4 P5 P6 P7 P8

    guest 3 22 18 24 24 34 18 36 36

    NH

    NHSS

    O

    O

    NH2

    Cl

    OOa

    b

    antihypertensive and antidiuretic activity for the treatmentof heart failure, cirrhosis, chronic kidney failure, also effectivefor nephrogenic diabetic insipidus and hypercalciuria

    8 6 4 2 0

    guest 3 + DMFin H2O

    P8 + guest 3

    P7 + guest 3

    P6 + guest 3

    P5 + guest 3

    H2O DMFDMF

    ba

    / ppm

    in D2O

    Conclusions

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    23/28

    New water-soluble, well-defined 4- and 6-arm star-shaped polymers as

    unimolecular micelles have been successfully synthesized;

    High loading encapsulation capacities of different hydrophobic drugs and

    other hydrophobic guests;

    Room temperature selective degradation of the PCL core has proven the

    homogeneous distribution of the PEGMA units over the arms;

    Enzymatic degradation experiments using lipase from Rhizopus arrhizus

    have demonstrated that the PCL core of the starPCL p PEGMAs is in vitro

    biodegradabile;

    Potential nanocarriers for parenteral drug administration.

    Conclusions

    Acknowledgement Infos under

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    24/28

    Acknowledgement http://www.schubert-group.com

    Dr. Richard Hoogenboom, Dr. Michael Meier,Prof. Jean-Franois Gohy (CMAT, Belgium), Prof. Dr. Ulrich S. Schubert

    3rd Generation: Higher hydrophlicity

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    25/28

    3 Generation: Higher hydrophlicity

    O

    OH

    OH

    OH

    O

    OH

    O

    O

    O

    O

    Br

    Br

    Br

    OBr

    O

    Cl

    O

    O

    O

    O

    Br

    Br

    PCl 5

    Synthesis of homo-branching agents

    O

    O

    O

    O

    n

    OR1

    R1O

    R1O

    O

    O

    O

    O

    Br

    Br

    R 2

    Property screening

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    26/28

    Property screening

    J. Am. Chem. Soc. 2004 , 126 , 11517.

    0,000 0,005 0,010 0,0150,00

    0,01

    0,02

    0,03

    0,04

    4 6

    [ m e t h y l o r a n g e ] / ( m o l / L )

    [polymer] /( mol/L)

    Methylorange: pH-Indicator

    NN

    SN O

    O

    O

    Na+

    NN

    SN

    + O

    O

    OH Na

    +

    +H+basic form; yellow color

    acidic form; red color

    Maximal loading: 6.6 7.2 MO/micelle

    INI: approx. 0.5 MO/micelle

    Transport of guest-molecules: AUC

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    27/28

    Transport of guest molecules: AUC

    unloaded micelles:

    Non UV absorbing

    loaded micelles:

    Guest is UV absorbing300 400 500 600 700

    0.00

    0.25

    0.50

    0.75

    1.00

    1.25

    1.50

    1.75

    2.00

    loaded micellesunloaded micelles

    A b s o r b a n c e

    (nm)0 1000 2000 3000 4000 5000 6000

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    P1P2P3P4P5P6

    N o r m a

    l i z e

    d c (

    M )

    Meff

    (g/mol)0 3 6 9 12 15 18

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    M e

    f f ( g / m o

    l )

    DP PCL block

  • 7/31/2019 Og Schramm Aachen 07.02.2012

    28/28