pharmaceutical cocrystals

38
Pharmaceutical Cocrystals 杜杜杜 杜杜杜 杜杜杜 2012/9/26

Upload: buckminster-dixon

Post on 03-Jan-2016

117 views

Category:

Documents


23 download

DESCRIPTION

Pharmaceutical Cocrystals. 杜新莹 黄箫喃 王倩倩 2012/9/26. Preparation. Review. Characterization. Contents. Pharmaceutical Cocrystals. Reviews. Definition. Molecule. Reviews. Definition. Bonding form. Bonding form. Reviews. Definition. Molecular recognition. T hermodynamics. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Pharmaceutical Cocrystals

Pharmaceutical Cocrystals

杜新莹 黄箫喃 王倩倩 2012/9/26

Page 2: Pharmaceutical Cocrystals

Contents

Pharmaceutical Cocrystals

Review

Preparation Characterization

Page 3: Pharmaceutical Cocrystals

Definition Reviews

Page 4: Pharmaceutical Cocrystals

Bonding form

Definition Reviews

Bonding form

Molecule

Page 5: Pharmaceutical Cocrystals

Definition Reviews

Page 6: Pharmaceutical Cocrystals

Supermolecular synthon

Intermolecularinteraction

Balance

Thermodynamics

Kinetics Molecular recognition

Hydrogen bondHalogen bond

π stackingVander Waals forces

Formation Mechanism Reviews

Page 7: Pharmaceutical Cocrystals

Formation Mechanism Reviews

the most important

O-H…X(X= O, N) C-H…X(X= O, N, π) N-H…N

carboxylic acid - carboxylic acid carboxylic acid - pyridine carboxylic acid - amide alcohol – pyridinealcohol - amine

Hydrogen bond

Page 8: Pharmaceutical Cocrystals

Formation Mechanism Reviews

Heteroatom with lone pair electron(N, O, S)

Halogen bond

Lewis acid halogen atom ( Cl,Br,I )

Lewis acid halogen atom ( Cl,Br,I ) non-covalent

bond

Page 9: Pharmaceutical Cocrystals

Formation Mechanism Reviews

π stacking

Parallel superposition Parallel displacement

Page 10: Pharmaceutical Cocrystals

Formation Mechanism Reviews

Vander Waals forces

WeakDirectivitysaturability No

Page 11: Pharmaceutical Cocrystals

Advantages

Melting point

Solubility

Dissolution rate

Stability Bioavailability

Pharmaceuticalcocrystals

Page 12: Pharmaceutical Cocrystals

Advantages Melting pointMelting point

51%39%6%4%

Drug processing

MP Change

Cocrystallization

thermal decompositioncrystal form transformation

thermodynamics behavior

Intermolecular forceCrystalline form

accumulation

Page 13: Pharmaceutical Cocrystals

Advantages

•hydrolysis •oxidation •chemical reaction

•decomposition in high temperature•drying•tabletting

StabilityStability

Equilibrium solubilitykinetic solubilityForm changesBasic media

StabilityStability

Page 14: Pharmaceutical Cocrystals

Advantages SolubilityDissolution rate

SolubilityDissolution rate

Solid form

Disintegrationdissolve Solution

for low solubility

even saturation

no effect

absorption rate

dissolution rate

dissolution ratetoo low

intenseHigh dissolution velocity danger

Page 15: Pharmaceutical Cocrystals

Advantages BioavailabilityBioavailability

Solubility

Disslutionrate

Bioavailability

circulatory system

Page 16: Pharmaceutical Cocrystals

SolubilityAMG517 + sorbic acid

Better solubilitypharmacokineticsCmax: 30 mg/kg

500 mg/kg AUC: 1/2

Bioavailability

carbamazepine + saccharin

Good chemical stability;

Better physical stability than

solvate & anhydrous,

polymorphism

Advantages

Stability2-[4-(4-chloro-2-fluorphenoxy)-phenyl]pyrimidine-4-carboxamide

+glutaric acid

dissolution rate: 18Bioavailability: 3

ExamplesExamples

Page 17: Pharmaceutical Cocrystals

Design Reviews

Page 18: Pharmaceutical Cocrystals

Design Reviews

Structural Analysis

molecular conformationCBD:Pharmaceutics molecular arrangement functional group

Molecular associationSupramolecular structure formationMolecular interaction strength

Page 19: Pharmaceutical Cocrystals

Design Reviews

Ligand Screening

Page 20: Pharmaceutical Cocrystals

Design Reviews

Structure Prediction

molecular interaction

Cocrystalstructure

Page 21: Pharmaceutical Cocrystals

Design Reviews

Bonding Effects

Competition sites

Molecular Conformation

Steric effects

Competitive dipole effect

Page 22: Pharmaceutical Cocrystals

Methods

reactive crystallization

reactive crystallization

neat grinding

solvent-drop grindingcooling

crystallization cooling

crystallization

evaporative crystallizationevaporative

crystallization

slurry crystallization

slurry crystallization

spray crystallization

spray crystallization

DSC

Kofler

Preparation

Page 23: Pharmaceutical Cocrystals

GrindingGrinding

Preparation

wide applicationhigher yieldhigher crystallinitypolymorphismgreen process

neat grindingsolvent-drop grinding

Page 24: Pharmaceutical Cocrystals

SublimationSublimation

Preparation

Thermodynamic advantage

Similar solubility

Polymorphism

evaporative crystallizationevaporative

crystallization

cooling crystallization

cooling crystallization

slurry crystallization

slurry crystallization

Stability

Separate precipitation

Ligand screening

Simple opration

Page 25: Pharmaceutical Cocrystals

Preparation

Growth from the meltGrowth from the melt

Kofler

DSCsimpleefficient

Page 26: Pharmaceutical Cocrystals

XRD

microscope SS-NMR

thermal analysis

Pharmaceutical cocrystals

characterization

Spectrum

Characterization

Page 27: Pharmaceutical Cocrystals

Characterization XRD

powder diffraction

single crystal diffraction

• Decide whether there is something New New

Page 28: Pharmaceutical Cocrystals

Characterization

Hot stage microscopy

polarization microscope

Scanning electron microscope(SEM)• Detect the crystal form of the cocrystrals

Microscope

Page 29: Pharmaceutical Cocrystals

Characterization

differential thermal analysis (DTA)

thermogravimetric analysis(TGA)

differential scanning calorimetry(DSC)

Thermal Analysis

•Determine thermodynamic parameter&kinetics parameter

Page 30: Pharmaceutical Cocrystals

Characterization Spectrum

infrared spectrum

raman spectroscopy

•Detect the Structure of cocrystals

•Functional group

Page 31: Pharmaceutical Cocrystals

ExperimentsExperimentsAPI 的选取非那雄胺( finasteride )水中难溶,属于 BCS Ⅱ类药物 (低溶解度、高渗透度)

已有方法: 包合物、固体分散体( PEG6000 、 Kollidon K25 与非

那雄胺固体分散体和非那雄胺与 β- 环糊精包合物)

目标:提高该药物的溶解度,进而提高该药物的溶出速率及其生物利用度

Page 32: Pharmaceutical Cocrystals

CCF 的选取

苯甲酸 水杨酰胺 烟酰胺

nicotinamide (NCT)

Page 33: Pharmaceutical Cocrystals

Preparation and Chracterization

API 与 CCF 的配比

2

Cocrystal?

Page 34: Pharmaceutical Cocrystals

干磨

1mmol API+1mmol SLC 室温下研磨 30min    XRD

结果分析: 8 、 23 附近特征峰得到明显增强,可能有新的物质形成

Page 35: Pharmaceutical Cocrystals

溶剂挥发法0.5mmol API + 0.5mmol SLC 2mL 乙醇溶解挥发1天     XRD    DSC    FT-IR

0.5mmol API + 1mmol SLC 2mL 乙醇溶解挥发1天     XRD    DSC    FT-IR

现象:溶液变粘稠XRD 图分析:两者几乎在相同位置处有新的特征峰出现

,可能产生新的物质DSC 图分析:1:1时发现有 API 的熔点峰出现,1 :

2时则没有FT-IR 图谱结果表明: API 与 SLC 的完全反应配比应为1 : 2,但

是1 : 1时也会产生新的晶体

Page 36: Pharmaceutical Cocrystals

0.5mmol API + 1mmol NCT 2mL 乙醇溶解挥发2天

     XRD   DSC   FT-IR

XRD 图谱分析:某些位置处的峰强度增强DSC 图谱分析:新的熔点峰(大约12 4℃ )出

现FT-IR 图谱

结果表明: API 与 NCT 可以以1 : 2的比例形成新的物质

Page 37: Pharmaceutical Cocrystals

溶剂滴加辅助法( solvent-drop grinding )0.5mmol API + 1mmol SLC 100μL 乙醇 边滴加边研磨 XRD 图  DSC 图谱

现象:固体粉末黏在一起

结果分析:1 : 2时 API 与 SLC 确实可以形成新的晶体,但是由于研磨时间、力度等的影响,与溶剂挥发法所制得的晶体仍有一定差距,可以改进。但是,此时 API 与 SLC 所形成的晶体会涉及到晶型的转变。

Page 38: Pharmaceutical Cocrystals

溶析结晶法( solvent-out crystallization ) 0.25mmol API+0.5mmol BEN 0.8mL 乙醇 待溶解后,加入 4mL 水静置冷却

其余可行方法:熔融结晶法

其余表征方法: TGA 、 1HNMR