photo-nuclear physics experiments by using an intense photon beam

12
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy Research Institute

Upload: galen

Post on 24-Feb-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Photo-Nuclear Physics Experiments by using an Intense Photon Beam. Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy Research Institute. Nondestructive Isotope Detection. Nuclear resonance fluorescence (NRF). F ingerprint of isotopes. W A N T E D. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Photo-Nuclear Physics Experiments  by using an Intense Photon Beam

Photo-Nuclear Physics Experiments

by using an Intense Photon Beam

Toshiyuki Shizuma

Gamma-ray Nondestructive Detection Research GroupJapan Atomic Energy Research Institute

Page 2: Photo-Nuclear Physics Experiments  by using an Intense Photon Beam

238U243Am0+ 0 0+ 0 0+ 0

1 680

21761+

Absorption

Absorption

Emission

Emission

24101

12245

++

Energy [keV]

Flux of gamma-rays

Tunable

235U7/2-

1733

18152003

239Pu1/2+

21432423

237Np0 0

938

Nondestructive Isotope Detection

Fingerprint of isotopes

W A N T E D

Nuclear resonance fluorescence (NRF)

R.Hajima, et al., J. Nucl. Sci. Tech. 45, 441 (2008).

High energy g rays are used; High penetrability

Applicable for identification of materials such as specific nuclear materials, explosives, etc. shielded by heavy metals

Page 3: Photo-Nuclear Physics Experiments  by using an Intense Photon Beam

Laser Compton Scattering g Rays

LCS g rays can be generated by scattering of high energy electrons with laser light.

Highly monochromatic Highly polarized (linearly/circularly)Energy variableSmall divergent

Electron

Laser light

LCS g ray

Vertical polarization: q=90° E1: Horizontally scattered M1: Vertically scattered

LCS beam

E1

M1

Page 4: Photo-Nuclear Physics Experiments  by using an Intense Photon Beam

Physics with LCS Photon Beams

Nuclear physicsFundamental collective motions via E1 and M1 excitation

Pygmy dipole resonance, spin-flip M1, scissors mode, etc

PNC observation with circularly polarized photons

Long-standing question in nuclear physics

Interference between weak-bosons and nucleons

Nuclear astrophysics

Nucelosynthesis (g process and n process)

Inelastic neutrino scattering cross sections

Reliable nuclear model, e.g, shell model predicting M1 response

0GTBnn

K. Langanke et al., PRL 20501 (2004)

A. I. Titov and M. Fujiwara, J. Phys. G 32, 1097 (2006)

Page 5: Photo-Nuclear Physics Experiments  by using an Intense Photon Beam

Strength Distribution of Dipole Excitation

GDR: Electric giant dipole resonance

PDR: Electric pygmy dipole resonance

M1: Magnetic spin-flip dipole mode

Sc: Magnetic dipole scissors mode (orbital part)

p n

GDR

pnPDR

M1

Sc

p n

p nnp

Eg

Stre

ngth

GDR

0

Eth ~ 8MeV

~ 15MeV

PDRM1Sc

(g,n)(g,g')

En

NRF

Page 6: Photo-Nuclear Physics Experiments  by using an Intense Photon Beam

NRF Measurements with LCS Photon Beam

• Clear difference observed between different polarization setups• Unambiguous determination of multipole orders (E1/M1)• Observation of the detailed level structure below En in 208Pb --- Tensor force

transition 1 for 850transiton 1 for 850

E.M.

.Asym

4.5 5.0 5.5 6.0 6.5 7.0 7.5–1

–0.5

0

0.5

1

Energy (MeV)

Asy

mm

etry

E1

M1

6500 7000 75000

500

1000

0

200

400

= 90

Energy (keV)

Cou

nts

/ 2 k

eV

= 0parallel

perpendicular

M1 transitions

(MeV)6.5 7.0 7.5

Parallel

Perpendicular

M1

E1

T. Shizuma et al., Phys. Rev. C 78 061303(R) (2008)

Obtained by using LCS g rays at AIST, Tsukuba, Japan

Page 7: Photo-Nuclear Physics Experiments  by using an Intense Photon Beam

Measurements above Neutron Emission Energy

Neutron time-of-flight (TOF) method

Duration between g pulses and neutron signals

Neutron

Neutron

Sn=

7194

keV

186W

E1

0+

0 - ,1-

185W3/2-

11/2+ 197

s-wave

Sn=

7395

keV

187Re

E1

5/2+

3/2 - ,5/2- ,7/2-

186Re1-

3+

3- 99

1744-

314

p-wave

s-wave

Sn=

7194

keV

186W

E1

0+

0 - ,1-

185W3/2-

11/2+ 197

s-wave

Sn=

7194

keV

186W

E1

0+

0 - ,1-

185W3/2-

11/2+ 197

s-wave

Sn=

7395

keV

187Re

E1

5/2+

3/2 - ,5/2- ,7/2-

186Re1-

3+

3- 99

1744-

314

p-wave

s-wave

Sn=

7395

keV

187Re

E1

5/2+

3/2 - ,5/2- ,7/2-

186Re1-

3+

3- 99

1744-

314

p-wave

s-wave

Neu

tron

emis

sion

n

Page 8: Photo-Nuclear Physics Experiments  by using an Intense Photon Beam

Neutron TOF Spectrum

Obtained by using LCS g rays at NewSUBARU

2600 2700 2800 2900100

101

102

103

104

105

Coun

tspe

rCha

nnel

Energy

Structures are observedPreli

mina

ry

Time

Neutron energyLCS g

Neu

tronsNeutrons

g

Page 9: Photo-Nuclear Physics Experiments  by using an Intense Photon Beam

Polarization Effects

K. Horikawa et al., JPS meeting, Sep. 2010LCS beam

Neutron

Page 10: Photo-Nuclear Physics Experiments  by using an Intense Photon Beam

Summary

The information on the states above the neutron emission energy can be optained through the neutron TOF measurement.- Dipole strength distribution, parity, excitation energy etc.

• Small DE/E (10-6 ~ 10-4): Selective excitation of levels• Short pulse duration: High resolution measurements• High intensity : Increased flight distance →High resolution measurements Rare isotope measurements Less amount of target materials

Page 11: Photo-Nuclear Physics Experiments  by using an Intense Photon Beam

TOF Energy Resolution

Assuming detector time resolution = 1 ns and distance = 3m

0 0.2 0.4 0.6 0.8 1 1.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

En (MeV)

DE/E %

Page 12: Photo-Nuclear Physics Experiments  by using an Intense Photon Beam

Estimation

Is=1.2x10-22 cm2 eV for Eg=10 MeV and G0=1eV

0

2

0 1212

G

g

Ec

JJIs

Scattering cross section

Production yield

tNIY

Y=3.4x105 /sec for I=106 /sec/eV and Nt=1g/cm2

Counting rateNYR

R ~ 60 cps for ~ 10-5 (3m, 1%) and N=20