plamen koev - pennsylvania state university

63
Accurate Eigenvalues of Sign Regular Matrices Plamen Koev M.I.T. joint work with Froil´ an Dopico IWASEP 6 PennState, May, 2006

Upload: others

Post on 19-Oct-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Plamen Koev - Pennsylvania State University

Accurate Eigenvalues of Sign Regular Matrices

Plamen KoevM.I.T.

joint work with Froilan Dopico

IWASEP 6

PennState, May, 2006

Page 2: Plamen Koev - Pennsylvania State University

Recall: Totally Positive Means All Minors > 0

• Examples:1 1 1 11 2 22 23

1 3 32 33

1 4 42 43

1 1/21/3

1/41/2

1/31/4

1/51/3

1/41/5

1/61/4

1/51/6

1/7

1 1 1 11 2 3 41 3 6 101 4 10 20

Vandermonde Hilbert Pascal

• Eigenvalues

71.5987 1.5002 26.30473.6199 0.1691 2.20340.7168 0.0067 0.45380.0646 0.0001 0.0380

• Note: Despite possible nonsymmetry: λi > 0, real!

• Virtually all linear algebra possible accurately (2 papers in SIMAX)

Page 3: Plamen Koev - Pennsylvania State University

This Talk: Sign Regular Matrices

• Consider

(Totally positive) ×

1

11

1

—called Sign Regular, meaning

All minors of order k have the same sign ρk ∈ {−1, +1}

• In our case (ρ1, ρ2, . . .) = (+1, −1, −1, +1, . . .)

• Generally unsymmetric; NOT similar to TP

Page 4: Plamen Koev - Pennsylvania State University

Eigenproblem for Sign Regular (SR) Matrices

• Examples of SR matrices1 4 42 43

1 3 32 33

1 2 22 23

1 1 1 1

1/41/5

1/61/7

1/31/4

1/51/6

1/21/3

1/41/5

1 1/21/3

1/4

1 4 10 201 3 6 101 2 3 41 1 1 1

• Eigenvalues:

15.4897 1.1194 11.2006−7.7063 − 0.1261 −3.7655

1.2942 0.0068 0.6041−0.0777 − 0.0002 −0.0392

• Note: Despite nonsymmetry, λk are real; sign(λk) = (−1)k−1

• Notoriously ill conditioned, just like TP

Page 5: Plamen Koev - Pennsylvania State University

Eigenvalues of a 40 × 40 Sign Regular Vandermonde

0 10 20 30 40

10−20

10−10

100

1010

Eigenvalue index

|λi| λ

max * macheps

Accurate

eig

V =[xj−1

i

]40

i,j=1, x = (4.0, 3.9, 3.8, . . . , 0.1)

Page 6: Plamen Koev - Pennsylvania State University

New Result: Accurate Eigenvalue Algorithm for SR Matrices

• Takes O(n3) time

• Uses only working precision

• Accuracy unaffected by angle between left and right eigenvectors

• All eigenvalues computed to high relative accuracy:

|λi − λi| = O(ε)|λi|

as opposed to

|λi − λi| = O(ε)|λmax|1

yTi xi

• First example of negative eigenvalues of a nonsymmetric matrix computedaccurately

Page 7: Plamen Koev - Pennsylvania State University

Outline

• (Almost) any matrix is similar to a symmetric anti-bidiagonal

(eig of latter then easy)+ + + ++ + + ++ + + ++ + + +

−→

+ +

+ ++ ++

• Trick: no subtractions in above reduction

• We need a structure revealing representation—product of bidiagonals

Page 8: Plamen Koev - Pennsylvania State University

Outline

• (Almost) any matrix is similar to a symmetric anti-bidiagonal

(eig of latter then easy)+ + + ++ + + ++ + + ++ + + +

−→

+ +

+ ++ ++

• Trick: no subtractions in above reduction

• We need a structure revealing representation—product of bidiagonals

Page 9: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal

• Goal: + + + ++ + + ++ + + ++ + + +

−→

+ +

+ ++ ++

Sign regular −→ anti-bidiagonal

• Equivalently:+ + + ++ + + ++ + + ++ + + +

·

1

11

1

−→

+ +

+ ++ +

+

·

1

11

1

Totally Positive · J −→ Bidiagonal · J

(Prefer TP ·J since we know how to do TP linear algebra accurately)

Page 10: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal

+ + + ++ + + ++ + + ++ + + +

·

1

11

1

−→

+ +

+ ++ +

+

·

1

11

1

Totally Positive · J −→ Bidiagonal · J

• Nevermind the possible instability; it won’t be an issue

• Only 2 operations required; both performed on the TP factor:

– Subtract a multiple of row from next to make a zero

– Add a positive multiple of a column to next/previous

• Both operations preserve the TP structure of the left factor

⇒ SR structure preserved at every step!

• We know how to perform both operations accurately (later)

Page 11: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal

• First reduce to (Upper Triangular) ×J

+ + + ++ + + ++ + + ++ + + +

11

11

Page 12: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 2

• First reduce to (Upper Triangular) ×J

1

11− 1

+ + + ++ + + ++ + + ++ + + +

11

11

Page 13: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 3

• First reduce to (Upper Triangular) ×J

1

11− 1

+ + + ++ + + ++ + + ++ + + +

11

11

11

1+ 1

Page 14: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 4

• First reduce to (Upper Triangular) ×J

1

11− 1

+ + + ++ + + ++ + + ++ + + +

11

11

11

1+ 1

Page 15: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 5

• First reduce to (Upper Triangular) ×J

+ + + ++ + + ++ + + +0 + + +

11

11

11

1+ 1

Page 16: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 6

• First reduce to (Upper Triangular) ×J

+ + + ++ + + ++ + + +0 + + +

11

11

11

1+ 1

11

11

11

11

Page 17: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 7

• First reduce to (Upper Triangular) ×J

+ + + ++ + + ++ + + +0 + + +

11

11

11

1+ 1

11

11

11

11

Page 18: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 8

• First reduce to (Upper Triangular) ×J

+ + + ++ + + ++ + + +0 + + +

1 +1

11

11

11

Page 19: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 9

• First reduce to (Upper Triangular) ×J

+ + + ++ + + ++ + + +0 + + +

1 +1

11

11

11

Page 20: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 10

• First reduce to (Upper Triangular) ×J

+ + + ++ + + ++ + + +0 + + +

1 +1

11

11

11

Page 21: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 11

• First reduce to (Upper Triangular) ×J

+ + + ++ + + ++ + + +0 + + +

11

11

Page 22: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 12

• Making more zeros analogous

+ + + ++ + + ++ + + +0 + + +

11

11

Page 23: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 13

• Making more zeros analogous

1

1− 1

1

+ + + ++ + + ++ + + +0 + + +

11

11

11+ 1

1

11

11

11

11

Page 24: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 14

• Making more zeros analogous

1

1− 1

1

+ + + ++ + + ++ + + +0 + + +

11

11

11+ 1

1

11

11

11

11

+ + + ++ + + +0 + + +0 + + +

11 +

11

11

11

Page 25: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 15

• Making more zeros analogous

1

1− 1

1

+ + + ++ + + ++ + + +0 + + +

11

11

11+ 1

1

11

11

11

11

+ + + ++ + + +0 + + +0 + + +

11 +

11

11

11

+ + + ++ + + +0 + + +0 + + +

11

11

Page 26: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 16

• Making more zeros analogous

1

1− 1

1

+ + + ++ + + ++ + + +0 + + +

11

11

11+ 1

1

11

11

11

11

+ + + ++ + + +0 + + +0 + + +

11 +

11

11

11

+ + + ++ + + +0 + + +0 + + +

11

11

Page 27: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 17

• Making more zeros analogous

1

1− 1

1

+ + + ++ + + ++ + + +0 + + +

11

11

11+ 1

1

11

11

11

11

+ + + ++ + + +0 + + +0 + + +

11 +

11

11

11

+ + + +0 + + +0 + + +0 + + +

11

11

Page 28: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 18

• Making more zeros analogous

1

1− 1

1

+ + + ++ + + ++ + + +0 + + +

11

11

11+ 1

1

11

11

11

11

+ + + ++ + + +0 + + +0 + + +

11 +

11

11

11

+ + + +0 + + +0 + + +0 0 + +

11

11

Page 29: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 19

• Making more zeros analogous

1

1− 1

1

+ + + ++ + + ++ + + +0 + + +

11

11

11+ 1

1

11

11

11

11

+ + + ++ + + +0 + + +0 + + +

11 +

11

11

11

+ + + +0 + + +0 0 + +0 0 + +

11

11

Page 30: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 20

• Making more zeros analogous

1

1− 1

1

+ + + ++ + + ++ + + +0 + + +

11

11

11+ 1

1

11

11

11

11

+ + + ++ + + +0 + + +0 + + +

11 +

11

11

11

+ + + +0 + + +0 0 + +0 0 0 +

11

11

Page 31: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 21

• (Upper Triangular)×J → (Upper bidiagonal) × J

+ + + +0 + + +0 0 + +0 0 0 +

11

11

Page 32: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 22

• (Upper Triangular)×J → (Upper bidiagonal) × J

1 −

11

1

+ + + +0 + + +0 0 + +0 0 0 +

11

11

1 +1

11

11

11

11

11

Page 33: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 23

• (Upper Triangular)×J → (Upper bidiagonal) × J

1 −

11

1

+ + + +0 + + +0 0 + +0 0 0 +

11

11

1 +1

11

11

11

11

11

+ + + 00 + + +0 0 + +0 0 0 +

11

1+ 1

11

11

Page 34: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 24

• (Upper Triangular)×J → (Upper bidiagonal) × J

1 −

11

1

+ + + +0 + + +0 0 + +0 0 0 +

11

11

1 +1

11

11

11

11

11

+ + + 00 + + +0 0 + +0 0 0 +

11

1+ 1

11

11

+ + + 00 + + +0 0 + +0 0 + +

11

11

Page 35: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 25

• (Upper Triangular)×J → (Upper bidiagonal) × J

1 −

11

1

+ + + +0 + + +0 0 + +0 0 0 +

11

11

1 +1

11

11

11

11

11

+ + + 00 + + +0 0 + +0 0 0 +

11

1+ 1

11

11

11

1− 1

+ + + 00 + + +0 0 + +0 0 + +

11

11

11

1+ 1

11

11

11

11

Page 36: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 26

• (Upper Triangular)×J → (Upper bidiagonal) × J

1 −

11

1

+ + + +0 + + +0 0 + +0 0 0 +

11

11

1 +1

11

11

11

11

11

+ + + 00 + + +0 0 + +0 0 0 +

11

1+ 1

11

11

+ + + 00 + + +0 0 + +0 0 0 +

1 +1

11

11

11

Page 37: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 27

• (Upper Triangular)×J → (Upper bidiagonal) × J

1 −

11

1

+ + + +0 + + +0 0 + +0 0 0 +

11

11

1 +1

11

11

11

11

11

+ + + 00 + + +0 0 + +0 0 0 +

11

1+ 1

11

11

+ + + 00 + + +0 0 + +0 0 0 +

11

11

Page 38: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 28

• (Upper Triangular)×J → (Upper bidiagonal) × J

1 −

11

1

+ + + +0 + + +0 0 + +0 0 0 +

11

11

1 +1

11

11

11

11

11

+ + + 00 + + +0 0 + +0 0 0 +

11

1+ 1

11

11

+ + + 00 + + +0 0 + +0 0 0 +

11

11

Page 39: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 29

• (Upper Triangular)×J → (Upper bidiagonal) × J

1 −

11

1

+ + + +0 + + +0 0 + +0 0 0 +

11

11

1 +1

11

11

11

11

11

+ + + 00 + + +0 0 + +0 0 0 +

11

1+ 1

11

11

+ + + 00 + + 00 0 + +0 0 0 +

11

11

Page 40: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 30

• (Upper Triangular)×J → (Upper bidiagonal) × J

1 −

11

1

+ + + +0 + + +0 0 + +0 0 0 +

11

11

1 +1

11

11

11

11

11

+ + + 00 + + +0 0 + +0 0 0 +

11

1+ 1

11

11

+ + 0 00 + + 00 0 + +0 0 0 +

11

11

Page 41: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 31

• (Upper Triangular)×J → (Upper bidiagonal) × J

1 −

11

1

+ + + +0 + + +0 0 + +0 0 0 +

11

11

1 +1

11

11

11

11

11

+ + + 00 + + +0 0 + +0 0 0 +

11

1+ 1

11

11

+ + 0 00 + + 00 0 + +0 0 0 +

11

11

=

+ +

+ ++ ++

Page 42: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 32

• Finally, symmetrizing

d1

d2

d3

d4

b1 a1

b2 a2

b3 a3

a4

d1

d2

d3

d4

−1

Page 43: Plamen Koev - Pennsylvania State University

Similarity Reduction to an Anti-Bidiagonal 32

• Finally, symmetrizing

d1

d2

d3

d4

b1 a1

b2 a2

b3 a3

a4

d1

d2

d3

d4

−1

=

b1b3√

a1a4

b2√

a2a3√b1b3

√a2a3√

a1a4

Page 44: Plamen Koev - Pennsylvania State University

Eigenvalues of a Sign Regular Matrix

eig(Sign Regular) = eig

b1 a1

b2 a2

b2 a3

b1 a2

a1

• The latter is symmetric, thus |λi| = σ2i

• sign λi = (−1)i−1 (from theory)

• Thus suffices to compute

svd

b1 a1

b2 a2

b2 a3

b1 a2

a1

= svd

a1 b1

a1 b2

a3 b2

a2 b1

a1

—the latter solved by Demmel and Kahan 1990

Page 45: Plamen Koev - Pennsylvania State University

Outline

• (Almost) any matrix is similar to a symmetric anti-bidiagonal

(eig of latter then easy)+ + + ++ + + ++ + + ++ + + +

−→

+ +

+ ++ ++

• Trick: no subtractions in above reduction

• We need a structure revealing representation—product of bidiagonals

Page 46: Plamen Koev - Pennsylvania State University

No Subtractive Cancellation

• Relative accuracy preserved in ×, +, /

Proof: (1 + δ) factors accumulate multiplicatively

• Subtractions of approximate quantities dangerous:

.123456789xxx− .123456789yyy

.000000000zzz

• Initial data is OK to subtract: (xi − yj)

• Reduction to anti-bidiagonal involves no subtractions

Page 47: Plamen Koev - Pennsylvania State University

Outline

• (Almost) any matrix is similar to a symmetric anti-bidiagonal

(eig of latter then easy)+ + + ++ + + ++ + + ++ + + +

−→

+ +

+ ++ ++

• Trick: no subtractions in above reduction

• We need a structure revealing representation—product of bidiagonals

Page 48: Plamen Koev - Pennsylvania State University

The Need for a Structure Revealing Representation

• Matrix entries are poor choice of parameters

• An ε perturbation in (1, 2) entry of the SR matrix

[1 1 + ε1 1

]λ1 ≈ 1, λ2 ≈ −ε

↓[1 1 + 2ε1 1

]λ1 ≈ 1, λ2 ≈ −2ε

results in a 100% perturbation in λ2

• Better idea: product of bidiagonals

Page 49: Plamen Koev - Pennsylvania State University

Bidiagonal Decomposition of Totally Positive Matrices

1 1 1 11 2 4 81 3 9 271 4 16 64

=

1

111 1

111 1

1 1

11 1

1 11 1

︸ ︷︷ ︸

L

1

12

6

︸ ︷︷ ︸

D

1 1

1 21 3

1

11 1

1 21

11

1 11

︸ ︷︷ ︸

U

• Any TP matrixa11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a43 a34

a41 a42 a43 a44

=

1

11b411

11b31 1

b421

1b21 1

b32 1b431

︸ ︷︷ ︸

L

b11

b22

b33

b44

︸ ︷︷ ︸

D

1 b12

1 b23

1 b34

1

11 b13

1 b24

1

11

1 b14

1

︸ ︷︷ ︸

U

• bij = multiplier used to make zero in position (i, j)

Page 50: Plamen Koev - Pennsylvania State University

Representation of Sign Regular Matrices

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a43 a34

a41 a42 a43 a44

=

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a43 a34

a41 a42 a43 a44

11

11

=

1

11b411

11b31 1

b421

1b21 1

b32 1b431

b11

b22

b33

b44

1 b12

1 b23

1 b34

1

11 b13

1 b24

1

11

1 b14

1

11

11

• Any bij > 0 yield a SR matrix ⇒ SR = octant in n2 space

• For most famous SR matrices, bij computable accurately

• We choose bij as inputs:

– bij reveal SR structure

– bij determine λi accurately

Page 51: Plamen Koev - Pennsylvania State University

Representation of Sign Regular Matrices

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c43 c34

c41 c42 c43 c44

=

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a43 a34

a41 a42 a43 a44

11

11

=

1

11b411

11b31 1

b421

1b21 1

b32 1b431

b11

b22

b33

b44

1 b12

1 b23

1 b34

1

11 b13

1 b24

1

11

1 b14

1

11

11

• Any bij > 0 yield a SR matrix ⇒ SR = octant in n2 space

• For most famous SR matrices, bij computable accurately

• We choose bij as inputs:

– bij reveal SR structure

– bij determine λi accurately

Rationale: λi, as rational functions of bij, likely contain no subtractions

Page 52: Plamen Koev - Pennsylvania State University

How we avoid subtractions

• Recall: We only need to apply 2 operations to TP:

– Subtract a multiple of row from next to make a zero

– Add a positive multiple of a row to next/previous

• Both preserve TP structure

• When applied implicitly, no subtractions are required 11

b31 1

1b21 1

b32 1

b11

b22

b33

1 b12

1 b23

1

11 b13

1

11

b′31 1

1b′21 1

b′32 1

b′11

b′22

b′33

1 b′121 b′

231

11 b′

131

Page 53: Plamen Koev - Pennsylvania State University

Conclusions

• New O(n3) algorithm

• Computes all eigenvalues of a SR matrix to high relative accuracy

• First example of negative eigenvalues of a nonsymmetric matrix computedto high relative accuracy

Open problems

• Sign regular matrices with other signatures—no parameterization known,let alone algorithms

• Eigenvectors: Products of accurate factors, but what does accuracy mean?

Other work

• Eliptic PDEs with tetrahedral finite elements (with Demmel and Vavasis)

• This talk, papers, software: http://math.mit.edu/~plamen

Page 54: Plamen Koev - Pennsylvania State University

Perturbation Theory

C =

1

11b411

11b31 1

b421

1b21 1

b32 1b431

b11

b22

b33

b44

1 b12

1 b23

1 b34

1

11 b13

1 b24

1

11

1 b14

1

11

11

• Fact: Any minor of C is a linear function in any bij with coefficients of

same sign

⇒ All minors are accurately determined by bij

• In particular, cij are accurately determined, and in turn, the Perron root,λ1, is accurately determined

• Next, consider the second compound matrix, C2, —the(n2

(n2

)matrix

with entries all 2 × 2 minors of C

• The entries of C2 are negative and accurately determined by bij

• The Perron root of C2, λ1λ2, is also accurately determined

• Thus, λ2 is accurately determined

Page 55: Plamen Koev - Pennsylvania State University

Accurate BD of Vandermonde and Cauchy

• V =[xj−1

i

]n

i,j=1(TP if 0 < x1 < x2 < · · · < xn)

Dii =

i−1∏j=1

(xi − xj), L(k)i+1,i =

i−1∏j=n−k

xi+1 − xj+1

xi − xj

, U(k)i,i+1 = xi+n−k

• C =

[1

xi + yj

]n

i,j=1

(TP if 0 < x1 < · · · < xn, 0 < y1 < · · · < yn)

Dii =

i−1∏k=1

(xi − xk)(yi − yk)

(xi + yk)(yi + xk)

L(k)i,i+1 =

xn−k + yi−n+k+1

xi + yi−n+k+1

i−1∏l=n−k

xi+1 − xl+1

xi − xl

·i−n+k−1∏

l=1

xi + yl

xi+1 + yl

U(k)i+1,i =

yn−k + xi−n+k+1

yi + xi−n+k+1

i−1∏l=n−k

yi+1 − yl+1

yi − yl

·i−n+k−1∏

l=1

yi + xl

yi+1 + xl

• Similar formulas for Cauchy–Vandermonde, confluent

(Jose Javier Martınez)

• No subtractive cancellation ⇒ accurate

Page 56: Plamen Koev - Pennsylvania State University

Applying EETs on BD(A) – I

• Subtracting a row from next to make a zero 1 2 63 10 5021 102 615

=

117 1

13 1

8 1

14

9

1 21 5

1

11 3

1

Page 57: Plamen Koev - Pennsylvania State University

Applying EETs on BD(A) – II

• Subtracting a row from next to make a zero 11

−7 1

1 2 63 10 5021 102 615

=

11

−7 1

117 1

13 1

8 1

14

9

1 21 5

1

11 3

1

Page 58: Plamen Koev - Pennsylvania State University

Applying EETs on BD(A) – III

• Subtracting a row from next to make a zero 11

−7 1

1 2 63 10 5021 102 615

=

11

−7 1

117 1

13 1

8 1

14

9

1 21 5

1

11 3

1

=

110 1

13 1

8 1

14

9

1 21 5

1

11 3

1

• Is equivalent to setting an entry of BD(A) to zero and performing no

arithmetic.

Page 59: Plamen Koev - Pennsylvania State University

Adding a multiple of a column to previous – I 11a 1

1b 1

c 1

de

f

1 g1 h

1

11 k

1

1yx z

Page 60: Plamen Koev - Pennsylvania State University

Adding a multiple of a column to previous – II 11a 1

1b 1

c 1

de

f

1 g1 h

1

11 k

1

1yx z

=

11a 1

1b 1

c 1

de

f

1 g1 h

1

1y′

x′ z′

11 k′

1

x′ = x

y′ = y + kx

z′ = 1/y′

k′ = kz/y1

... it’s all qd recurrences

Page 61: Plamen Koev - Pennsylvania State University

Adding a multiple of a column to previous – III 11a 1

1b 1

c 1

de

f

1 g1 h

1

11 k

1

1yx z

=

11a 1

1b 1

c 1

de

f

1 g1 h

1

1y′

x′ z′

11 k′

1

=

11a 1

1b 1

c 1

de

f

1y′′

x′′ z′′

1 g′

1 h′

1

11 k′

1

Page 62: Plamen Koev - Pennsylvania State University

Adding a multiple of a column to previous – IV 11a 1

1b 1

c 1

de

f

1 g1 h

1

11 k

1

1yx z

=

11a 1

1b 1

c 1

de

f

1 g1 h

1

1y′

x′ z′

11 k′

1

=

11a 1

1b 1

c 1

de

f

1y′′

x′′ z′′

1 g′

1 h′

1

11 k′

1

=

11a 1

1b 1

c 1

11

x′′′ 1

de′

f ′

1 g′

1 h′

1

11 k′

1

Page 63: Plamen Koev - Pennsylvania State University

Adding a multiple of a column to previous – V 11a 1

1b 1

c 1

de

f

1 g1 h

1

11 k

1

1yx z

=

11a 1

1b 1

c 1

de

f

1 g1 h

1

1y′

x′ z′

11 k′

1

=

11a 1

1b 1

c 1

de

f

1y′′

x′′ z′′

1 g′

1 h′

1

11 k′

1

=

11a 1

1b 1

c 1

11

x′′′ 1

de′

f ′

1 g′

1 h′

1

11 k′

1

=

11a 1

1b 1

c + x′′′ 1

de′

f ′

1 g′

1 h′

1

11 k′

1

Done.