plant inro 7

Upload: clostridia-taeniosporum

Post on 06-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Plant Inro 7

    1/12

    Biochimie (1996) 78, 518-529 Soci~t~franqaise de biochim ie et biologie mol6culaire Elsevier, Paris

    Edit ing and import : S trateg ies for prov id ing p lant mitochondr iawith a complete se t o f funct iona l transfer RNAsA D i e t r i c h a , I S m a l l b , A C o s s e t a , J H W e l l a , L M a r 6 c h a l - D r o u a r d a

    alnstitut de Biolbogie M ol6culaire des Plantes du CNRS, Universitd Louis-Pastelo; 12, rue du G~n~ral-Zimmo; F-67084 Strasbourg cedex;Station d e Gdn~tique et d'Amdlioration des Plantes. INRA, Route de St-CyJ; 78026 Versailles cedex, France(Received 24 April 1996; accepted 7 August 1996)

    Su m m ary - - The recombinations and mutations that p lant mitochondr ial DNA has undergone dur ing evolution have led to the inactivationor complete loss o f a num ber of the 'nat ive ' t ransfer RNA genes der iv ing f rom the genom e o f the ancestral endosymbiont. Following sequencedivergence in their genes, some native mitochondr ial tRNAs are ' rescued ' by edit ing , a post-transcrip t ional p . rocess whic h changes the RNAl"Ne 111Spr imary sequence. According to in vitro s tudies with the native mitochondr ial tR N A from potato and tR N A from larch , ed it ing is required

    f o r eff icient processing . Som e of the native tRN A genes which have been inactivated or lost have been replaced by tRN A genes present inplastid DNA sequences acquired by the mitochondrial genome during evolution, which raises the problem of the transcriptional regulationof tRNA genes in p lant mitochondr ia. Finally , tRNAs for which no gene is present in the mitochondr ial genome are im por ted f rom the cytosolThis process is highly specific for certain tRN As, and it has bee n suggested that the cognate am inoacyl-tRN As]tnthetases may be responsiblefor this specificity. Indeed, a mutation w hich blocks reco gnition of the cytosolic Arabidopsis thaliana tRNA"*"*by the corresponding alanyl-tRNA synthetase also prevents mitochondrial import of this tRNA in transgenic plants. Conversely, no significant mitochondrial co-importof the norm ally cytosol-specific tRNAasp was detected in transgenic plants expressing the yea st cytosolic aspartyl-tRNA synthetase fused toa mitochon driai targeting sequence, suggesting that, although necessary, recognition by a cogna te aminoacyl-tRN A synthetase might not besuff icient to al low tR NA impor t in to p lant mitochondr ia.a m i n o a c y l - t R N A s y n t h e t a s e / c h l o r o p l a s t / e d i t i n g / e v o l u t i o n / i m p o r t / m i t o c h o n d r i a / p l a n t / t r a n s f e r R N A

    I n t r o d u c t i o nA l t h o u g h r e c e n t d a t a s u g g e s t t h a t m i t o c h o n d r i a h a v e am o n o p h y l e t i c e n d o s y m b i o t i c o r i g i n I l l , t h e m i t o c h o n d r i a lg e n o m e o f h i g h e r p l a n t s i s e x c e p t i o n a l l y l a r ge c o m p a r e d t ot h a t o f o t h e r e u k a r y o t e s [ 2] , I t e x h i b i t s s t r u c t u r a l i n s t a b i l i t ya n d c o n s is t s o f s u b g e n o m i c m o l e c u l e s u s u a l l y a b l e t o r e -c o m b i n e v ia r e p e a t e d s e q u e n c e s [ 3 , 4 ] . T h e l a r g e s i z e o fp l an t m i t o c h o n d r i a l g e n o m e s i s a p p a r e n t ly o n l y p a r t ly d u et o a g r e a t e r g e n e c o n t e n t a n d m a i n l y d u e t o i n t e r s p e r s e dn o n - c o d i n g s e q u e n c e s o f v a r i e d a n d m o s t l y u n k n o w no r i g i n , a s w e l l a s t o i n s e r t i o n o f l a r g e a m o u n t s o f f o r e i g nD N A o f p l a s t i d a n d n u c l e a r o r i g i n [ 5 , 6 1. A l t h o u g h m o s tm i t o c h o n d r i a l p o ly p e p t i d e s a r e n u c l e a r l y e n c o d e d a n d i m -p o r e d , s o m e r i b o s o m a l p r o t e i n s a n d k e y p o l y p e p t i d e s i n -v o l : e d i n t h e e n z y m a t i c c o m p l e x e s o f t h e r e s p i r a to r y c h a i na r e s y n t h e s i z e d b y t h e o r g a n e l l e t r a n s l a t i o n m a c h i n e r y .H e n c e , p l a n t m i t o c h o n d r i a r e q u i r e a f u l l s e t o f f u n c t i o n a l

    Abbreviations: AlaRS, alanyl-tRNA synthetase; A spRS, aspar ty l-tRNA syn thetase; LysR S, lysyl-tRNA synthetase; R T-PCR, reversetranscription-polymerase chain reaction.Note: Larix x leptoeuropaea results from the crossing of Lari.:kaempferi and Larix decidua.

    t r a n sf e r R N A s ( t R N A s ) . G e n e r a l l y , m i t o c h o n d r i a l g e n o m e sc o n t a i n b e t w e e n 2 2 a n d 2 9 t R N A g e n e s I 7 - 1 0 ] , s u f f i c i e n tt o d e c o d e a l l c o d o n s g i v e n r e l a x e d b a s e - p a i r i n g r u l e s ( U : Nw o b b l e ) . I n c o n t r a s t , m i t o c h o n d r i a l g e n o m e s o f v a s c u l a rh i g h e r p la n t s c o n t a i n o n l y 1 0 - ! 2 ' n a t i v e ' ( ie d e r i v i n g f r o mt h e g e n o m e o f t h e a n c e s t r a l e n d o s y m b i o t i c b a c t e r i u m )t R N A g e n e s [ 1 1 - 1 3 ] . T h i s i s m a n i f e s t l y i n s u f f i c i e n t t o p r o -v i d e f o r t h e n e e d s o f t h e m i t o c h o n d r i a l t r a n s l a t i o n s ~ ,s te m ,a n d t h u s p l a n t m i t o c h o n d r i a r e l y o n a l t e r n a t i v e s o u r c e s o ft R N A s . S o m e o f t h e m i s s i n g n a t i v e g e n e s h a v e b e e n r e -p l a c e d b y f u n c t i o n a l t R N A g e n e s c a r r i e d b y c h l o r o p l a s tD N A f r a g m e n t s i n s e r t e d i n t o t h e m i t o c h o n d r i a l g e n o m ed u r i n g t h e c o u r s e o f e v o l u t io n (eg [ 14 - -16 ]) . Ta ken to ge the r ,t h e n a t i v e t R N A s a n d t h e s e s o - c a l l e d ' c h l o r o p l a s t - l i k e 't R N A s s t il l d o n o t a c c o u n t f o r t h e 2 0 a m i n o a c i d s fo u n d i np r o t e i n s. T h u s , a n u m b e r o f h i g h e r p l a n t m i t o c h o n d r i a lt R N A s a r e n o l o n g e r e n c o d e d b y t h e o r g a n e l l a r g e n o m e , b u ta r e e n c o d e d i n t h e n u c l e u s a n d i m p o r t e d f r o m t h e c y t o s o l[ 1 7 , 1 8 1 . F i n a l l y , a s a f u r t h e r p e c u l i a r f e a t u r e , i t r e c e n t l ya p p e a r e d t h a t , t o b e f u n c t i o n a l , s o m e o f t h e h i g h e r p l a n tn a t iv e m i t o c h o n d r i a l t R N A s n e e d t o b e m o d i f i e d b y e d it i n g ,a p o s t - t r a n s c r i p t i o n a l p r o c e s s w h i c h i n t r o d u c e s c h a n g e si n t o t h e R N A s e q u e n c e [ 1 9 , 2 0 ] .

    T h e s e p r o c e s s e s , w h i c h t o g e t h e r p r o v id e p l a n t m i t o c h o n -d r i a w i th a c o m p l e t e s e t o f n o n - r e d u n d a n t f u n c t i o n a l tR N A s

  • 8/3/2019 Plant Inro 7

    2/12

    ( th e c h l o r o p la s t - l ik e a n d n u c l e u s - e n c o d e d s p e c i e s d o n o th a v e n a t iv e c o u n t e r p a r t s r e c o g n i z i n g t h e s a m e c o d o n ) , r a i s ei n t r i g u i n g q u e s t i o n s r e g a r d i n g e v o l u t i o n , a n d re l y o n s o f a rp o o r l y u n d e r s t o o d f u n d a m e n t a l c e l l u l a r m e c h a n i s m s : s p e -c i fi c R N A s e q u e n c e c o n v e r s i o n , t r a n s f e r o f g e n e t ic i n f o r-m a t i o n b e t w e e n d i f f e r en t c o m p a r t m e n t s , r e g u la t io n o fm i t o c h o n d r i a l g e n e e x p r e s s i o n , t r a n s p o r t o f n u c l e i c a c i d st h r o u g h t h e d o u b l e m i t o c h o n d r i a l e n v e l o p e . T h e p r e s e n t a r-t ic l e re v i e w s t h e p r o g r e s s m a d e b y o u r g r o u p s d u r i n g t h el a st f e w y e a r s i n a d d r e s s i n g t h e s e p r o b l e m s . I t a l s o i n c l u d e so u r m o s t r e c e n t e x p e r i m e n t s u s i n g t r a n s g e n ic p la n ~s to a n a -l y z e m i t o c h o n d r i a i t R N A i m p o r t . O u r s t u d i e s o n t h e th r e ep l a n t m i t o c h o n d r i a l t R N A c l a s s e s ( n a t i v e , c h lo r o p l a s t -l i k e ,n u c l e u s - e n c o d e d ) a i m a t a b e t t e r u n d e r s t a n d in g o f b o the v o l u t i o n a r y e v e n t s a n d f u n c t i o n a l p r o c e s s e s a n d m a yp o t e n t i a l l y h a v e p r a c t i c a l a p p l i c a t i o n s .

    Materials and methodsIsolation o f ~ytoplasmic tRNAs and aminoacylatimt assaysF o r a mi n o a c y l a t i o n s t u d i e s, to t al c y t o p l a s m i c t RNA wa s e x t r a c t e df r o m p o t a t o t u b e r s b y p h e n o l e x t r a c t i o n a n d r e c o v e r e d b y e t h a n o lp r e c i p i ta t i o n 1 2 1 ] . La r g e RN As we r e e l i mi n a t e d i n t h e p r e s e n c e o fl M Na C! a n d t RNAs we r e f u r t h e r p u r i f i e d b y DEAE- c e l l u l o s ec h r o m a t o g r a p h y 1 2 2 1. Th e p r o p o r t i o n o f m i t o c h o n d r i a l ma t e r i a l i ns u c h p r e p a r a t i o n s u s u a l l y d o e s n o t e x c e e d 0 . 5 %.Am i n o a c y l a t i o n o f to t al p o t a t o c y t o p l a s m i c t RNA w a s c o n d u c t e da t 3 7 C i n t h e p r e s e n c e o f p u ri fi e d y e a s t a s p a r t y l - tRN A s y n t h e t a s e(Asp RS ) . Th e aminoacyla t ion reac t ion mixture conta ined 50 m MTris-HCl buffe r (pH 7 .5) , 10 mM ATP, 15 m M MgCI_,, 0 .4 m M glu-ta th ione , 0 .1 m g/m L bovin e serum a lbumin and 25 ~tM L-I 3H laspar-l ic ac id ( I so topchim , France) a t 6 .5 Ci /mm ole . Pure yeas t AspR S 1231wa s a g i l i f r o m J e a n Ga n g l o f f a n d G i l b e r t E r ia n i. E n z y me a c t i v it ycont ro l tes ts involved commercia l yeas t to tal IRNA .DNA co nstrm'tsTh e c o d i n g s e q u e n c e t o r t he y e a s t c y t o s o l i c As p RS I i 'o m t h e p l a s -mi d p TG 9 0 8 A 7 0 1 2 41 Ca g i l t f r o m J e a n G a n g lo f f~ wa s c l o n e d i n at ransla tional fus ion behind a sequen ce encod ing the f ir s t 90 am inoa c i d s o f t h e l ~ -s u b u ni t o f t h e mi t o c h o n d r i a l ATP s y n t h a s e f r o mNicotiana plumbaginifidia 125 I . This region inc ludes the mi toc hon -d r ia l t a r g et in g s e q u e n c e . Th e e x p r e s s i o n o f t h e f u si o n g e n e w a sc o n t r o l l e d b y t h e p r o m o t e r f r o m t h e c l a s s I p at a ti n g e n e B 3 3 1 2 6 1a n d t h e p o l y A s i g n a l f r o m c a u l i f l o we r mo s a i c v i r u s , t a k e n f r o mt h e p l a s mi d p A BD I 1 2 7 1 , Th e v e c t o r u s e d f o r th e s e e x p e r i me n t swas Bluescr ip t KS+ (St ra tagene) .Plant transformationS i x t y la g o f t h e p l a s mi d c o n t a i n i n g t h e A s p R S f u s i o n g e n e a n d 5 0l ag o f p A BD ! ( c on t ai n in g a n e o m y c i n p h o s p h o t r a n s f e r a s e g e n e[ 2 7 ] ) we r e u s e d t o t r a n s f o ml 2 x 1 0 " p o t a t o p r o t o p l a s t s ( p o t a t oc l o n e 2 i 7 , a c r o s s o f Solanum tuberosum a n d Solamtm chacoense).Protop las t prepara t ion , e lec t ropo ra t ion and regenera t ion of trans-g e n i c p l a n t s w a s a s d e s c r i b e d b y M a s s o n et al 1281. An t ib io t icr e s i s t a n t p l a n t s we r e s c r e e n e d f o r t r a n s c r i p t s f r o m t h e As p RS f u -

    5 1 9s ion gene by R Na se prolec t ion to ident ify those p lants '~ hM~ hadintegra ted the A spR S fus ion gen e as wel l as the res is tance marker .Isolation d'mitochondria fi'mn transgenic planLsMflochondr ia f rom t ransgenic pota to tubers and leaves were i so-la ted on P ercol l gradients [291 and sub mit ted to an osmot ic shockt o d is r u p t t h e o u t e r me m b r a n e . F o r t h a t p u r p o s e , m i t oc h o n d ri a we r eresuspended in 50 la l i so tonic buf fer and subsequent ly d i lu ted in650 ~1 s te r i le water . Af ter 30 s , the osm ot ic pressu re was readjus tedus ing 650 ta l of two t imes concent ra ted buffer . To remove res idualp r o te in c o n t a mi n a t i o n , m i t o p l a s t s we r e i n c u b a t e d f o r 3 0 mi n o n i c ei n th e p r e s e n c e o f 0 . 2 5 mg / m L p r o t e i n a s e K a n d f i n al ly r e c o v e r e db y c e n t r i f u g a t i o n ( 3 mi n a t 8 0 0 0 g ) a f t e r a d d i t i o n o f i mM p h e -n y l me t h y l s u l f o n y l f l u o r i d e a s a p r o t e a s e i n h ib i to r . To r e m o v e r e s i d -ua l RNA contam inat ion , m i toplas ts w ere incubated for 5 min a t2 3 C i n t h e p r e s e n c e o f a n RNa s e mi x t u r e ( 4 0 p . g / mL RNa s e A ,4 0 0 u n i t s / mL RNa s e T I , I u n i t / mL p h o s p h o d i e s t e r a s e ) a n d r e -c o v e r e d b y c e n t r i f u g a t io n .Western blot analysisFor Western b lo t ana lys is , pro te inase K- t rea ted mi toplas ts werel y s e d in a [ 0 m M Tr i s - HCl ( p H 7 . 5 ), ! mM EDTA. 2 % ( v / v ) T r it o nX-10 0 buffer . Af ter addi tion of I volu m e of denaturing buffer 1301s a mp l e s we r e c e n t r i f u g e d f o r 1 5 mi n a t 5 0 0 0 0 g a n d t he s u p e m a -r a nt wa s l o a d e d o n 1 2 % ( w/ v ) d e n at u ri n g p o l y a c r y l a mi d e g e l s [ 3 0 ].P u r e y e a s t As p RS wa s a l s o l o a d e d o n t h e g e l s a s a c o n tr o l, a s we l las molecular mass prote in markers (Sigma) . Af ter migra t ion , ge lswe r e e l e c t ro t r a n s f e r r e d o n t o n y l o n m e mb r a n e s ( l mmo b i lo n - P , Mi l -l ipore) for 90 ra in a t 500 m A in 25 mM Tr is , 192 mM glycine , 15%( v / v ) me t h a n o l . No n - s p e c i f i c b i n d i n g wa s b l o c k e d b y i n c u b a t i o nIbr 2 h a t 37C in 10 mM Tr is -HCI (pH 7 .5) , 150 mM NaCI , 0 .05%( v / v ) Twe e n - 2 0 , 5 % ( w/ v ) d r y mi l k a n d 5 % ( v / v ) n o r ma l g o a tserum. Incubat ion wi th t i le polyc lonal rabbi t an t i serum agains ty e a s t As p RS 1 3 1 1 ( a g i ft f r o m J e a n G a n g l o f f ) w a s f o r 2 h a t r o o mtempera ture wi th a 1 /10 000 (v /v) f ina l d i lu t ion in the b lockingme d i u m . B i n d i n g o f t h e p r ima r y a n t i b o d y w a s re v e al ed b y c h e m i -ca l luminescence us ing a peroxidase-conjugated ant i serum agains lr a b b i t l g Gs a n d ECL r e a g e n t s ( Ame r s h a m) .I so la t ion o f m i tochondr ia l tRNAsTo t al m i t o c h o n d r i a l t RN A w a s e x t ra c t e d f r o m RN a s e - d i g e s t e d mi -toplas ts by phenol ext rac tion and recov ered by e thanol prec ip i ta -t i o n a s p r e v i o u s l y d e s c r i b e d [ 2 1 J . F o r N o r t h e r n b l o t t i n g ,mi t o c h o n d r i a l t RN As w e r e f ra c t i o n a t e d b y e l e c t r o p h o r e s is o n 1 5 %( w / v ) p o l y a c r y l a m i d e g e l s u n d e r d e n a t u r i n g c o n d i t i o n s [ 3 2 1 .Nor thern analy s is wa s as descr ib ed [33 I .

    Results and discussionW e h a v e a d d r e s s e d d i f fe r e n t q u e s t i o n s r a i s e d b y th e c o m -p l e x g e n e t i c o r i g i n o f p l a n t m i t o c h o n d r i a l t R N A s , i n c l u d i n ge v o l u t i o n o f tR N A g e n e s i n t h e p la n t m i t o c h o n d r i a lg e n o l n e s , e d i t i n g a n ti t R N A f u n c t i o n , r e g u l a t i o n o f th e e x -p r e s s io n o f b o t h n a t iv e a n d c h l o r o p l a s t- l ik e t R N A g e n e s i np l a n t m i t o c h o n d r i a , a s w e ll a s t R N A t a rg e t in g a n d i m p o r ti n to p l a n t m i t o c h o n d r i a . A s a l r e a d y o b v i o u s f r o m p r e v i o u s

  • 8/3/2019 Plant Inro 7

    3/12

    520reports (e g [11,18]) and fur the r shown by our recent work[34], important differences in the chloroplast-l ike and im-ported tRNA spec ies appear be tween and wi th in p lant l i -neages. Thus , tRN A gene evolut ion jus t i f ie s the choice ofthe piant/tRNA system s studied and is present as a backd ropto mo re func t iona l aspec ts throughout the p resent work. Themain sec t ions a re organized a round the three c lasses of p lantmi tochondria l tRNA s, na t ive , chloroplas t- l ike and nu c leus-e nc ode d , wi t h e mpha s i s on e d i t i ng , c on t ro l o f ge ne e x -pression and import mechanisms, respectively.Edit ing as a strategy to yield f imction al nativemitochondrial tRNAsA firs t s t ra tegy deve loped by p lant m i tochondria to keep acomplete tRNA set is to correct a t the RNA level l imitedsequence d ivergence wh ich has occurred in some of the na-t ive m i tochondria l tRN A genes . This i s achieved by edi t ing ,a w idespread post-transcriptional proc ess first identified inkinetoplast ids from Trypanosoma brucei [35] and whichchanges the pr imary sequence of RNA s, as com pared to tha tof the corresponding DNA templa tes ( for reviews see eg[36--38]). It is mainly ob served in m itocho ndria , to a lesserextent in chloroplasts and in a few cases in transcripts ofnuc lea r genes . In h igher p lant mi tocho ndria and in chloro-plasts , RNA edit ing results general ly in the conversion ofcytidines to uridines. Although edit ing was first found al-most exc lus ive ly in messenger RNA s, w here i t cont r ibutesto the conservation of functional proteins, edit ing eventsaffect ing ribo som al RN A, intron sequen ces and tRNAs hav enow been observed in va r ious organism, , , ( re fe rences in[201). As des cribed below, i t appears in part icular that som ehigher plant nat ive mitochond rial tRN As w ould not be func-t ional in the absen ce of editing.Potato and b ean mitochondrial native tRN A m,,"and larchmimchondrial native tRNAHisBy comparing the sequences of the bean (Phaseolus vul.garis) and pota to (Solanum tuberosum) native mitochon-drial tRNA Ph~ gene s to those o f the corresp ond ing m aturetRNAs, we dem onst ra ted tha t in both d icotyledo nous an-giosperms (flow ering plants) the C enc od ed at posi t ion 4 inthe gene i s conver ted in to a U in the mature tRN A [391. Thisnuc leot ide change correc ts the m ismatched C4:A69 base-pa i r which appears wh en fo ld ing the gene sequ ence in to thec lover lea f s truc ture . A minoacyla t ion of in vitro synthes izedune d i t e d a nd e d i t e d po t a t o t RNAP he t r a nsc r i p t s i n t hepresence of a p lant mi tochondria l enzymat ic ext rac t show edthat edit ing h as no significant influe nce o n tRNA Pae charg-ing with phenylalanine. However, RT-PCR amplificat ionsof na tura l p ota to mi tochon dria l tRNAP~,e precursors andproc e s s i ng a s sa ys wi t h in v i t ro synthes ized precursorsshowed that Ca to U4 edit ing is a prerequisi te for effic ientprocessing o f potato nat ive mitoc hon drial tRNAPhe [20]. In-deed, no unedi ted tRNAPhe has been found in vivo at thede tec t ion leve l of pur i f ica t ion and di rec t sequenc ing [39].

    Based on sequence data , we speculated [20] that a U4:A6,W a t son -Cr i c k ba se -pa i r i ng i s e s se n t i a l t o ma i n t a i n t hec lover lea f fo ld ing of the tRNA part in the pota to mi tochon-dr ia l tRNA Phe precu rsor RNA and to avoid an a l te rna tes tem-loop fo ld ing involving the ups t ream region of the pre -cursor which i s unl ike ly to be recognized by RN Ase E C4to U4 edi t ing a l so occurs in the mi tochondria l tRNA P~e o foenothera (Oenothera berteriana), another d icotyledonousangiosperm, and i s a l so requi red for process ing [19, 40].Similarly, folding the sequence of the nat ive mitochon-drial tRNA His gen e expreszed in larch (Larix x leptoeuro-pae a , a g y m n o s p e r m ; g y m n o s p e r m s c o n s t i t u t e a l e s sevolved group of v ascula r plants than angiosperm s and a remainly represented by con i fe rs ) in to the c lov er lea f s t ruc tureyields three C :A mism atched b ase-pairs (C6:A67, CI2:A23and A29:C41using c lass ica l tRNA nuc lee f ide numbering)Again sequenc ing of tRNA ni~ precursor molecules and invitro process ing assays dem onst ra ted tha t al l three C:A mis-pairings are edited into classical U:A base-pairs and thatuned ited tRNAHi~ precurso rs are not p rocess ed [41].Native m itocho ndria l tRNA Hi~ and tRN A Ph~ are found inl ive rwort (Matz 'hantia polymorpha, a bryo phyte ) [8] . In th i snon-vascula r pr imi t ive p lant , no edi t ing has ever been de-tected and a U, instead of a C, is fou nd at the gen e level inal l the posi t ions mentioned above as edit ing si tes in thelarch tRNAHi.~ and potato tRN A Phe. Edit in g therefore ap-pears to correc t the sequ ence of some n a t ive p lant mi tochon-dr ia l tRNAs fol lowing sequence dr i f t in the i r genes andthereby ' re scues ' these tRNAs which would o therwise benon-func t iona l .Potato mitochondrial nqtive tRNAn,'Original ly , the 1erm 'RNA edi t ing ' re fe rred to pr imary se -quence changes in messeng er RNAs leading to codon modi -ficat ion 1351. To defin e the l im its of w hat sh ould be c al lededi t ing when tKN As a re concerned i s m uch less obvious , asthey un dergo a ,~a r ie ty of posH ranscr ip t iona l m odi f ica tionsin addi tion to pr imary sequence changes . The C to U t ran-s it ions in p lant m i tochondria l RNAs a re l ike ly to occur vi aa s imple deam ina t ion reac t ion [42, 431, a process w hich i scomparable to many other nuc leot ide modi f ica t ion reac-t ions occurr ing in tRNAs. A lso , many n uc leot ide modi f ica -t ions in tRNAs can be considered to be as si te-specific asthe pr imary sequence changes d iscussed above . I t wouldthere fore be conce ivab le to ca l l ' tRN A edi t ing ' a l l nuc leo-t ide modi f ica t ions wi th c lea r func t iona l consequences . Onepos t - t ranscr ip t iona l modi f ica t ion of the pota to mi tochon-drial nat ive tRNAne would obviously fal l into such an ex-t e n d e d v i e w o f e d i t i n g . T h e m i t o c h o n d r i a l g e n ecorresponding to th i s tRNA conta ins a C res idue a t the f irs tpos it ion of the ant icodon and codes the re fore for a meth-ionine-specific (CAU) anticodon. The C is post-transcrip-t i ona l l y mod i f i e d so t ha t t he ma t u re t RNA c on t a i ns aiys id ine- like nuc leot ide (L*, a C res idue m odi f ied wi th anunident i f ied der iva t ive of the amino ac id lys ine) a t tha t po-si t ion and caL, be am inoa cylated w ith isoleu cine but not w ith

  • 8/3/2019 Plant Inro 7

    4/12

    m e t h i o n i n e [ 4 4 ] . A s f o r E. co t i t R N A ne ( L A U ) [ 4 5] t h e a m i -n o a c y l a t i o n a n d c o d o n s p e c i f i c i t y o f t h e p o t a t o m i t o c h o n -d r i a l n a t i v e t R N A n e ( L * A U ) i s li k e l y t o r e l y o n t h e ~ e d i t i n g 'o f C 3 4 in t o L ' 3 4 . T h i s p r o c e s s m i g h t o c c u r i n a ll ' p r o k a r y o -t i c ' s y s t e m s , a s a s i m i t a r t R N A ~le i s n o t o n l y p r e s e n t i n b a c -t er ia a n d m i t o c h o n d r i a o f d i c o t y l e d o n o u s a n g i o s p e r m s , b u tp r o b a b l y a l so i n m i t o c h o n d r i a o f m o n o c o t y l e d o n o u s a n -g i o s p e r m s l i k e w h e a t ( T r i t i c u m a e s t i v u m ) [ 1 5 1 a n d m a i z e( Z e a m a y s ) [ 4 6 ], i n m i t o c h o n d r i a o f t h e g y m n o s p e r m l a rc h[ 3 4 ] a n d i n c h l o r o p l a s t s [ 4 7 ] .R e p l a c e m e n t o f n a t i v e m i to c h o n d r i a l t R N A g e n e s b yc h l o r o p l a s t- d e r i v e d t R N A g e n e sE x p r e s s i o n o f c h l o r o p l a s t - o r i g i n a t i n g g e n e s p r e s e n t o np r o m i s c u o u s p l a s t id D N A f r a g m e n t s i n s e r te d i n t o t h e m i t o -c h o n d r i a l g e n o m e i n t h e c o u r s e o f e v o l u t i o n i s a s e c o n ds t r a t e g y u s e d b y p l a n t m i t o c h o n d r i a t o c o m p l e m e n t t h e i rt R N A s e t. T h e i s o l a ti o n f r o m b e a n m i t o c h o n d r i a o f a m ~ . tu r ec h l o r o p l a s t - l i k e t R N A ' r r p c l e a r l y d i s t i n g u i s h a b l e f r o v ~ i t sb e a n c h l o r o p l a s t c o u n t e r p a r t [ 1 4 ] w a s t h e f i r s t d i r e c t e v i -d e n c e f o r t h e e x p r e s s i o n o f a c h l o r o p l a s t - l i k e t R N A g e n e i nm i t o c h o n d r i a . C h l o r o p l a s t- l ik e t R N A g e n e s h av e b e e nf o u n d i n a n u m b e r o f d i f f e r en t p l a n t s [ 4 8 ] , s h o w i n g th ole h i sp h e n o m e n o n is g e n e ra l ( t a bl e I ). A l t h o u g h s o m e o f t h e s eg e n e s m a y h a v e i n a c t i v a ti n g m u t a t i o n s , m o s t h a v e r e m a i n e di d e n t ic a l o r a l m o s t i d e n t ic a l t o t h e i r a u t h e n t i c c h l o r o p l a s tc o u n t e r p a r t s . O n e o f t h e m a i n p r o b l e m s r a i s ed b y t h i s s i tu -a t i o n i s to u n d e r s t a n d h o w t h e t r a n s c r i p t i o n o f t h e s e p l a st i dg e n e s i s c o n t r o l l e d i n m i t o c h o n d r i a .Chloro plast - l ike tRN A eh,' , tRNACy~~a n d t R N A m ~I n c o n t r a s t t o d i c o t y l e d o n o u r ; p l a n t s l i k e p o t a t o , b e a n o ro e n o t h e r a , t h e n a t i v e t R N A eh~ g e n e i s a p s e u d o g e n e i n m i -t o c h o n d r i a o f t h e m o n o c o t y l e d o n o u s p la n t s w h e a t [ 4 9 ] a n dm a i z e ! 16 1 ( ta b l e I ) . W h e n t h e s e q u e n c e s o f t h e s e p s e u -d o g e n e s a r e l b l d e d i n t o t h e c l o v e r l e a f s t r u c t u r e , a C 4 - G t , 9b a s e - p a i r i s f o u n d i n s te a d o f t h e C4-A69 m i s p a i ri n g d e d u c e df r o m t h e b e a n , p o t a t o a n d o e n o t h e r a g e n e s e q u e n c e s . P r o -c e s s i n g o f p o t a t o p r e c u r s o r t R N A Phe c o n t a i n i n g a C4-G69b a s e - p a i r , i n s t e a d o f t h e U 4 - A 6 9 b a s e - p a i r n o r m a l l y p r o -d u c e d b y e d i t i n g , i s o n l y 4 0 % e f f i c i e n t I 2 0 ]. I t c an t h e r e f o r eb e s p e c u l a t e d t h a t a n A 6 9 t o G69 m u t a t i o n a p p e a r e d i n t h en a t iv e tR N A Ph e g e n e o f m o n o c o t y l e d o n o u s a n g i o s p e r m sa f t e r t h e i r d i v e r g e n c e f r o m d i c o t y l e d o n o u s a n g i o s p e r m s ,g i v i n g r i s e t o a t R N A Phe t r a n s c r i p t w h i c h c o u l d n o l o n g e rb e e d i t e d a n d w a s i n e f f i c i e n t ly p r o c e s s e d . I n a f u r t h e r e v o l -u t i o n a r y s t e p , t h e t r a n s fe r o f t h e c h l o r o p l a s t t R N A ph~ g e n ei n to t h e m i t o c h o n d r i a l g e n o m e o f m o n o c o t y l e d o n o u s p la n t s[ 1 5] m i g h t h a v e e n a b l e d e f f i c i e n t e x p r e s s i o n a n d p r o c e s s i n go f a n a l t e r n a t i v e t R N A P h ~ , l e a d i n g t o f u r t h e r d i v e r g e n c e o ft h e n a t i v e t R N A eh~ g e n e i n t o a p s e u d o g e n e . A s i m i l a r s e -q u e n c e o f e v e n t s m i g h t h a v e h a p p e n e d t o t h e m i t o c h o n d r i a ln a t i v e t R N A C y ~ w h i c h i s s ti l l e x p r e s s e d a n d , a t l e a s t i n o e n o -t h e r a , e d i t e d i n d i c o t y l e d o n o u s p l a n t s I ! 8 , 4 0 ] , b u t h a s b e e nr e p l a c e d b y t h e p l a s t id - d e r i v e d t R N A C y ~ i n t h e m i t o c h o n d r i a

    521Tab le I , The origin o f tRNAs in different plan t groups . N, native;C, chloroplast-like; I, imported; ?, unknown. * indicates IRNAswhich are C-to-U edited. The data in this table are drawn mosllyfrom [8, 85] (liverwort), [! 3, 151 (mon ocotyledonous plants), [11,12, t8] (dicotyled onou s plants ) and [341 ( larch, monocotyle-dono us plants , dicotyledo nous plants ) .IR NA L i ve pw or t La rc h Di co ty l edonous M onoco ty ledonouplants s plantsAla N I I IArg N '~ 1 !A sn N 9 C CA sp N N N NCys N '~ N* CG i n N N N NG l u N N N NGiy N 1 N IHis N N* C C (I~al i e N / I b N / I b N / I b N / ! ~Leu N I I ILys N I N NMet N 9 N/C c N/CcPhe N I N* CPro N I N NSer N l N/Cd (l) e N (C)dThr N/I f 1 I IT r p N C C CT y r N N N NVal N I I (N?) g IaWheat m itochon dria import tRNA His [34]. btRNAtle (L*AU) isa native tR NA in all plants [48] , tRNA 1re (IAU) is imported [1 8,34, 86] . CtRNAnVlet s native and tRNA manet s chlorop)ast-like inm onoco tyledon ous and dicotyledonous plants [48]. UM itochon-dria of wheat and dicotyledonous plants, except sunflow er, expressa chloroplast-like RN Aaer (GG A) 1481 hat is absent from m aize [ 131.eSunflower mitochondria import tRN As~er, unlike .mitoch ond riao fother dicotyledonous ~lants exam ined to date 1341. At least one nu-cleus-encoded tRNA TM is imported into liverwort mitochondria(A ka sh i K, ~,laa~camaK, p ersonal comm unication), gPotatomitochon-drial tRNA s ' hybridize to mitochon drial DN A [18].

    o f m o n o c o t y l e d o n o u s p l a n ts [ 1 5, 1 6] . M o r e o v e r , a c h l o r o -p l a s t - l i k e t R N A C y s p s e u d o g e n e s e e m s t o b e p r e s e n t i n t h ep o t a t o m i t o c h o n d r i a l g e n o m e [ 1 8 ] . F i n a l l y , t h e n a t i v et R N A tti~ p r e s e n t i n t h e b r y o p h y t e l i v e r w o r t [ 8 ] , a n d e x -p r e s s e d a n d e d i t e d i n t h e g y m n o s p e r m l a rc h [ 4 1 ] i s a b s e n tf r o m a n g i o s p e r m s w h e r e i t h a s b e e n r e p l a c e d i n m o s t c a s e sb y a c h l o r o p l a s t - l i k e t R N A r iis [ 1 8 , 5 0 , 5 1 ] . A g a i n , l i v e r w o r ta p p e a r s t o b e t h e s i m p l e s t s y s t e m s t u d i e d s o f a r , a s i t s m i -t o c h o n d r i a c o n t a i n n o p l a s t i d - d e r iv e d t R N A s [ 8] . I t m u s t b es t r e s s e d , h o w e v e r , t h a t f o r o t h e r p l a n t s p e c i e s t h e s i t u a t i o nh a s e v o l v e d d i f f e r e n t l y , a s n u c l e a r l y - e n c o d e d t R N A TM isu s e d i n l a r c h m i t o c h o n d r i a [ 3 4 ] , a n d t R N A H is i s i m p o r t e df r o m t h e c y t o s o l i n t o w h e a t m i t o c h o n d r i a [ 4 1 ] .

  • 8/3/2019 Plant Inro 7

    5/12

    52 2Transcriptional regulation of m itochondrial tRNA genesThe exis tence of both nat ive and chloroplas t- l ike tRNAgenes in p lant mitochondr ia makes their t ranscr ip t ionalregulation interesting. Moreover, whereas the coding se-quences of p las t id-derived tRNA genes have of ten remainedalmost unchanged s ince their in tegrat ion in to the m itochon-drial DNA, variou s rearrangements and/or se quen ce alter-ations have frequently occurred in their f lanking regions(fig 1). No t all of these plastid-derived tRNA gene s are ex -pressed. Alth oug h attempts ha ve been m ade [52], no abso-lu te ru le can be p roposed to p red ic t f rom the genera lsequence features w hether a chloroplas t- l ike tRNA genepresent in mitochon dr ia will be expressed or not . We haveisolated two id entical potato mitoc hond rial chloropla st-liketRNAAs. genes which exhibi t very dif ferent f lanking re-gions in their near vicinity, highly similar to the correspo nd-ing authentic chlo roplast regions in on e case and unrela tedto ch lo rop las t s equences in the o ther case (Mar6cha l -Drouard L, D esprez T, Chavant L, Dietrich A, in prepara-t ion; access ion numbers in the EMB L nucleot ide sequenced a t a b a s e X 9 3 5 7 5 a n d X 9 3 5 7 6 ) . T h e p r e s e n c e o f t h etRNAAshgene cop y s t il l f lanked by sequences of chloroplas ttype seem s to be restricted to som e Solanaceae. Similarly,although the chloroplast-like m itocho ndrial tRN A Hi~ gen eis identical or alm ost identical in pota to (Mar~chal-DrouardL, Desprez I' , Chavant L, Dietrich A, in preparation; ac-cess ion number in the EMBL nucleot ide sequence databaseX93577), oenothera [53], sunflower (Helianthus annuus,another dicotyle don ous plant) [52] and m aize [501, and th eregions flanking th is gene are h ighly s imilar between po-tato, oenothera and sunflower, the chloroplast sequencesm ain ta ined in the v ic in i ty o f the m aize m i tochondr ia ltRNA His gen e are com pletely unrelated. As all these ch loro-plast-like tRNA a,, . and tRNAHi~ gen es are active, it se em sthat their expression in plant mitoc hon dria is not depend entupon their imm ediate flanking sequ ences.In chloroplasts , expression of tRNA genes relies upon'proka ryot ic- l ik e ' -10 and -35 boxes , in ternal promoters , orco-transcription with other gen es (for a review see eg [54]).Knowledge about promoter sequences of tRNA genes inplant mitoch ondria is quite sparse at the present s tage. Thetranscription initiation site of the oeno thera mitochon drialnative tRNAOhe (GA A) g ene, w hich is probably co-tran-scribed w ith tRNA ho (UGG ), has be en the be st s tudied sofar. Th is transcription initiation site , locate d in an upstr eamp u r i n e r i c h r e g i o n c o n t a i n i n g t h e c o n s e n s u s m o t i fCRTAaGaGA found in putat ive mitochondr ial messen gerRNA and r ibosom al RNA prom oter s o f d ico ty ledonousplants [55, 56], was shown to be active in a pea (Pisumsativum) mitochondr ial in vi tro transcription system [ 5 7 1 .How ever , in po ta to m i toc hond r ia , the na t ive tRNA s~(GCU), tRNAPhe (GA A) and tRNA Pro (UG G) are c o-tran-scribed and the above men tioned consensus motif is notpresent at the initiation site of this transcription unit [581.Thus, no clear picture emerges yet and it remains to bedef ined to what extent chloroplast- l ike tRNA genes are ex-

    pressed in plant m itocho ndria thank s to appropriate pro -mo ter sequ ence s or to inse rtion into already transcribed re-gions of the p lant m itochondr ial genom es . In th is contextit is interesting to note that, in all angiospe rm mitoc hond riastudied so far, the chlo roplast-like tRNATq gene is alwaysexpressed; in contras t , a chloroplas t- l ike tRNA Pro gen e,usually loc ated about 150 nt upstream of this tRNArrp gen ehas never been or is no long er expressed [59, 60].Replacement of native mitochondrial tRNAs by import ofnuclearly encoded species from the cytosolThe th ird s trategy used by plant mitochond r ia to comple-m en t the i r tRNA se t i s to share som e nuc leus -encodedspecies with the cy tosolic translation machinery. B eside theinabi li ty to f ind in p lant m itochondr ial genomes the mini-mal set of tRNA genes neede d to suppor t protein synthes is(even taking in to account the chloroplas t- like genes) (e g[11-13]) , evidence for tRNA imp ort f rom the cytosol cam efrom the presence in p lant m itochond r ia of ' cytosol- l iketRNAs hyb ridizin g to the nuclear gen om e [15, 17, 18, 32,61, 62]. I t appeared from sequence analysis that some nu-clearly enc ode d tRN As partition bet we en the cytosol andthe m itochondr ia , as the only dif ference ident i f ied betwee nthe cytosol ic and mitochondr ial forms o f a g iven tRNA wasthe post-transcriptional mo dification of G i8 into Gm ~s intRNAsTM [17, 32, 61, 62]. Most of our efforts aim at un der-standing the sele ction and transport m echa nism s involv edin this still intriguing process.Nuclearly encoded mitochondrial tRNA sDirect proof for mitochondrial import of a nuclearly en-coded tRNA was obtained in t ransgenic p lants . The b eannuclear gene encod ing tRNALeu (C*A A) [32] was in tro-duced into potato. Specific probin g show ed that the corre-sponding heterologous tRNA was expressed and was indeedpar t i t ioning between the cytosol ic and the mitochondr iafractions [331. By m utating the transgen e, a four base-pairinser tion could even be in troduced in to the ant icodon of thetRNA L~" with out c om prom ising mitoch ond rial import [33]Com par ison of the mitochondr ial tRNA populat ions oflarch (gym nosperm), potato and sun f lower (d icotyledonouangiosperms) , as wel l as maize and wheat (monocotyled o n o u s a n g i o s p e r m s ) s h o w e d a n u m b e r o f d i f f e r e n c e swithin or between plant l ineages in the ident i ty of the im-por ted species , sometimes between relat ively closely re-lated plan ts [34]. S om e tRNAs, n am ely tRNAAJa, RNAsLeutRNATM , turned out to be impor ted f rom the cytosol in to themitoc hon dria in all plants tested (table I) . Conversely, othertRNAs sys tematical ly appeared to be enco ded by the mito-chondr ia l DNA : tRNAAsp , tRN A o ln , tR NA ~ lu , tRNA ne(L*AU) and tRNATyr. At leas t some of these have pecu-liarities dating from their prokaryotic origins which mightmake them dif f icul t to replace b y typical ly eukaryotic nu-clearly -enc oded equivalents: tRN AGIn becau se glutam inyltRNACla der ives f rom g lu tam yl - tRN Ao'n (e g [63 ] ) and

  • 8/3/2019 Plant Inro 7

    6/12

    5 2 3

    A trnP trnW

    not expressed expressed

    c p h ig h e r # a n tm t m a i z er a t w h e a tm t s u g a r b e e t

    trnH~ . ~ . ~ . ~ . ~ . ~ . Z . ~ . ~ e . ~ c p h i g h e r p M n t

    i ~ ~ ~ .... ~:, - ' ' l m ~ m m m l l m ~ i . ~ i i i . i . ~ i i . . . i l ra t s u n f lo w erp o t a t o

    C trnN~ . " / ~ Z l ~ ~ , / ' 2 " 2 " 2 ' # ' # ' # ' 2 Z cp m g h e r pJa . t

    trnY~ ~ i i i . . . . i m m ~ ~ l l ~ ~ ........................... W B ~ I I B I B I rnt ~ un flo wer,Oenothera, p o t a t o 1trnDi , . - ...... - ~ ~ i ~ rn t w h e a t~ Z Z 2 , ~ c Z ~ ra t p o ta t o 2

    Fig 1. Evolutionary aspects of chloroplast-like tRNA genes inserted into plant mitochondrial gen omes. A. Organization o f the chloroplast-likePro TrptRNA ( t r nP ) and tRNA ( t r nW ) gene clusters present in the m itochondrial genome of m aize [87], wheat [60] and sugar beet ( B e t a v u l gar i s )[591, a.~ comp ared to the corresponding region o f the chloroplast g enom es. B. Organization of the region containing the chloroplast-liketRNAms gene ( t r nH ) in the mitochondriai ge,aome c,f maize I50], sunflower [52 ] and potato (Mar6chal-Drouard L, Desprez T, Chavant L,Dietrich A , in preparation; accession numb er in the EM BL nucleotide sequence database X93577), as compared to the corresponding regionof the chloroplast genom es. C. Organization o f the region(s) containing the chloroplast-like tRNAAsh gene(s ) ( t r nN ) in the mitochondrialgenome of wheat 188[, sunflower [89 ] and polato (M~ r~chal-Drouard L. Desprez T, Chavant U Dietrich A, in preparation; accession numbersin the EM BL nucleotide sequence database X935 75 and X935 76), as compared to the corresponding region of the ~lorop last genom es, hithe case o f potato m itochondria, two chloroplast-like t r nN genes, nu mbered 1 and 2, h ave been identified. The tRNA lyr gene ( t raY) , locateddownstream o f t r n N in sunflower, oenothera and potato ( t r n N n correspond s to a native tRNA sp ecies [90]. cp refers to the chloroplast genom e,mt to the mitochondrial genome. Black bo xes represent tRNA genes, hatched boxes correspond to chloroplast-like intergenic sequences anddotted boxes to native intergenic sequences. Arrows indicate the direction of transcription.

  • 8/3/2019 Plant Inro 7

    7/12

    52 4tRNA ne (L*A U) bec ause of its pecu liar post-transcriptional~nodification (see above). T he ob servations m ade sug gestthat the ability to im port each tRNA has b een acquired in-dependen t ly a t d i f f e ren t t im es du r ing the evo lu t ion o fhigher plants [34].General considerations on the plan t mitochondrial tRNAimport proces sWe. have isolated a n umber o f bean nuclear tRNA genesczdlng for species presumably impor ted in to mitochon dr ia(tRNATM a n d t R N ATM) or p resen t on ly in the cy toso l(tRNA r~o and tRNASer). Align me nt of th ese tRNA gene se-quences , of previous ly obtained tRNA sequences , as wel l asof sequ ences available in the literature, did n ot reveal anysequence or secondary structure motif which is conservedand character is t ic for the nuclear ly encoded tRNAs im-porte~ into plant mitochondria, eith er in the tRNAs them -selves, or in the ge ne flanking sequen ces. Therefore, thereis no indicatio n that there exist particular characteristics inthese tRNA s, or their precursors, w hich w ould be specificfor mitochondr ial ly impor ted tRNAs (Ramamonjisoa D,Kauffmann S , Choisne N, Green G, Small I , Marfchal-Drouard L, Dietrich A, in preparation; accession numbe rsin the E MBL nuc leo t ide s equence da tabase X98179 toX98184).This lack o f conserve d features, toge ther with the variedpattern o f tRNA s im ported in different plants (eg [341), sug-gests that each impo rted tRNA is recogniz ed by a specificfactor. It is difficu lt to b elieve that the re is a specific im portchann el for each tRNA. A mo re plausible hypothesis is theinvolvem ent of specific protein carriers with m itochondriaitargeting seque nces that would direct the relevant cytosolictRNAs to the protein import channel. The protein importapparatus has bee n implicated in tRN A im port in yeast 1641,and DN A oligo nuc leotides cross-linked to pep tide carrierscan be im por ted in to yeast and m amm alian mitochondr ia[65, 66], The search for natural carriers has centered onproteins capable o f tightly binding to and shie lding tRNAs.Mi tochondr ia l am inoacy l - tRNA syn the tases were sug-gested as ideal candidates for such a role at a very earlystage [67].Recognit ion by a cognate aminoacy l - tRN A syn the taseseems necessary b u t no t su ff ic ien t for tRNA impor t in tomitochondria in transgenic plan tsThe inv olvem ent of am inoacyl- tRNA synthetases in thetRNA import process has been tested, with contradictoryresults, for trypanosomatid and yeast mitochondria. Importof tRNAs into isolated Le i s h m a n ia mitochondr ia does notrequire adde d protein factors [68, 69], and n on-am inoacy-latable tRNAs or precursor tRNAs can be mitochondriallyimported in Le i s h m a n ia an d Tr v p a n o s o m a b r u c e i [70, 711.In contrast, im port o f tRNAt-r , (CU U) into yeast m itochon -dr ia only occurs fo l lowing aminoacylat ion by the cytosol iclysyl-tRNA synthetase (LysRS) and in the presence of the

    precursor to the mitochondrial LysRS, which is a distincenzyme [72] . In Tr y p a n o s o m a b r u c e i , even heterologoutRNAs can be impor ted [73] . This sugges ts loose recognit ion rules of individual tRNAs by the impor t m achinery intrypanosomatids, althou gh binding to receptors in the mitochondr ial mem brane thanks to a def ined sequence in the Dloop has been prop osed [69] . In yeas t , select ion for imporis very strict, as only a single tRNA is imported [74]. Inplants , mitoc hon drial tRNA im port is also selective (e g [1718, 34]), imply ing specific recognitio n of the tRNAs to beimpo rted by o ne or several factors of the transport pathwayTo tes t whether aminoacyl- tRNA synthetases are involvedin the recogni t ion of tRNAs im por ted in to p lant mitochondr ia , we t ransformed plants with a heterologous gene en-coding a tRNA which is no longer recognize d by i ts cognateaminoacyl-tRNA synthetase and look ed at the fate of thecorrespo nding transcript.Expression an d mitochondrial import o f tRNA ata variantsin transgenic plan tsIn a l l h igher p lan t s s tud ied so f a r , the m i tochondr ia ltRNA Ala is a m;~Oearly enc ode d spe cies impo rted from thecytosol. In bacteria [75] and anim als [76], the major identitymo tif in tRNA Ala reco gniz ed by alany l-tRN A synthetase(AlaRS) is the G 3:U70 wo bble pair in the acceptor s tem.Res tor ing normal Watson-Crick base-pair ing by al ter ingUT0 o C70 abolish es bindin g of AIaRS to tR NA Ala and he nc eabol ishes aminoacylat ion. We have shown that the samemutat ion has an ident ical effect on the cytosol ic/mitochondrial tRNA Ala from plants, both by in vitro aminoacylat ionassays, and by am ber suppressor tests in v ivo [77]. The w ild-type (UT0) and the mutated (C70) Arabidops is tha l iana (ad ico ty ledonous ang iosperm ) tRN Aala were expres sed intransgenic tobacco (another d icotyledonous angiosperm)plants . W hereas both form s were present at a norm al levelin the cytosolic fraction, only the wild-type, aminoacylat-able tRNA ARa was recove red in the mitoc hond rial fraction[78]. A four-nucleotide insertion (TCGA) was also intro-duced in to the ant icodon loop of these U70/C70 tRNAA~constructs , with no s ignificant consequ ence on the aminoa-cylat ion proper t ies of the corresponding tRNAs. A gain , re-placement of UT0 with C70 led to the lack of the heterologoustRNAA~a n the mitoc hond rial fraction, wh ereas the insertionin the ant icodon loop had no apparent ef fect on the part i-t ioning between the two f ractions [78] . Com plementary invitro exper imen ts involving wild type or mutated tRNA Alatranscripts a nd toba cco mito cho ndria l extracts suggestedthat the absence of the G3:C70 RNAs in m itochondr ia of thetransgenic plants is unlikely to be due to differential s ta-bility versus the G3:UT0 tRNAs I 7 8 1 .It appears from these expe riments that a s ingle inactivat-ing base change is sufficient to abolish both amino acylationand mitoc hond rial import o f tRNAAI', . This implies that in-teraction with AIaRS is a prerequ isite for tRN A Ala impo rtin to p lant m itochondr ia . The plant tRNA Ala mp ort mecha n-ism is therefore likely to re sem ble that o f tRNALy~ (CUU)

  • 8/3/2019 Plant Inro 7

    8/12

    i n y e a s t [ 7 2 ] , a p a r t f r o m t h e f a c t t h a t t h e p l a n t c y t o s o l i c a n dm i t o c h o n d r i a l A I a R S a r e e n c o d e d b y t h e s a m e g e n e [ 7 9 ].F u r t h e r a t t e m p t s w e r e c a r r i e d o u t i n w h i c h t h e G 3 : U ? 0i d e n t i t y m o t i f o f tR N A A ~ a , a n i m p o r t e d t R N A , w a s i n t r o -d u c e d i n t o c y t o s o l i c I R N A P he , a t R N A w h i c h i s n o t i m p o r t e di n t o t h e m i t o c h o n d r i a o f th e a n g i o s p e r m s s t u d i e d s o f a r. T h ep h e n y l a l a n i n e t o a l a n i n e a m i n o a c y l a t i o n i d e n t i t y s w i t c h

    w o r k e d r e a s o n a b l y w e l l w i t h t h e A th a l i a n a c y t o s o l i ct R N A ph e, a s d e m o n s t r a t e d b y in vitro a m i n o a c y l a t i o n a n d invivo t r a n s i e n t e x p r e s s i o n t e s t s [ 7 7 ] . U n f o r t u n a t e l y , f a i l u r et o d e t e c t e x p r e s si o n o f t h e c o r r e s p o n d i n g g e n e c o n s t r uc t s i nt r a n s g e n i c t o b a c c o p l a n t s h a s p r e v e n t e d u s f r o m e s t a b -l i s h in g w h e t h e r i t s n e w a l a n i n e i d e n t i t y e n a b l e s t h i s m o d i -f i e d t R N A p he t o b e i m p o r t e d i n t o m i t o c h o n d r i a .

    Expression of a chimeric mitochondrial precursor form ofyeost cytosolic aspartyl-tRNA synthetase in transge nic plantsA s a g e n e r a l r u l e , m i t o c h o n d r i a l a m i n o a c y l - t R N A s y n t h e -t a s es a r e a l l n u c l e a r l y e n c o d e d , b u t o n l y t h e i m p o r t e d c y t o -s o l i c t R N A s c a n b e a m i n o a c y l a t e d b y t h e c o r r e s p o n d i n gm i t o c h o n d r i a l e n z y m e s ; n o n - i m p o r t e d c y t o s o l i c t R N A s a r en o t r e c o g n i z e d e f f i c i e n t l y b y t h e m i t o c h o n d r i a l e n z y m e s .W e d e c i d e d t o t r y a n d s e t u p a s i t u a t io n i n w h i c h t r a n s g e n i cp l a n t s w e r e p r o v i d e d w i t h a n a d d i t i o n a l a m i n o a c y l - t R N As y n t h e ta s e a b l e b o t h t o b e i m p o r t e d i n t o m i t o c h o n d r i a a n dt o r e c o g n i z e a n o r m a l l y n o n - i m p o r t e d c y t o s o l i c t R N As p e c i e s . T h e p u r p o s e w a s t o d e t e r m i n e w h e t h e r t h i s w a ss u f f i c ie n t t o d r i v e a n e w t R N A i n t o m i t o c h o n d r i a . W e c h o s ey e a s t a s p a r t y l - t R N A s y n t h e t a s e ( A s p R S ) a n d tR N A A s p f o rt h e s e e x p e r im e n t s , b e c a u s e i n m i t o c h o n d r i a o f b o th m o n o c -o t y l e d o n o u s a n d d i c o t y l e d o n o u s p l a n t s , t R N A A s p i s a n a t i v e ,m i t o c h o n d r i a l l y e n c o d e d s p e c i e s [ 1 8 , 8 0 ] a n d c y t o s o l i c p o -t a t o t R N A A so i s a g o o d s u b s t r a te f o r p u r i f i e d y e a s t c y t o s o l i cA s p R S ( f i g 2 ) .

    A t r a n s l a t i o n a l f u s i o n b e t w e e n t h e f i r s t 9 0 a m i n o a c i d s( i n c l u d i n g t h e m i t o c h o n d r i a l t a r g e t i n g t r a n s it p e p t i d e ) o f t h e13- subunit of the Nic o t ia n a p lu m b a g in i f o l i a m i t o c h o n d r i a lA T P s y n t h a s e [ 2 5 ] a n d y e a s t c y t o s o l i c A s p R S [ 2 4 ] w a s e x -p r e s s e d i n t r a n s g e n i c p o t a t o p l a n t s . M i t o c h o n d r i a l p r o t e i na n d t R N A f r a c t i o n s w e r e p r e p a r e d f r o m b o t h t u b e r s a n dl e a v e s o f t h e t r a n s g e n i c l i n e s . P r o t e i n f r a c t i o n s w e r e t e s t e df o r th e p r e s e n c e o f t h e y e a s t A s p R S b y W e s t e rn b l o t ti n g . As i g n a l c o r r e s p o n d i n g t o a p r o t e i n o f t h e e x p e c t e d s i z e ( f i g3 ) w a s s p e c i f i c a l l y o b t a i n e d w i t h m i t o c h o n d r i a l e x t r a c t sf r o m p l a n t s c a r r y i n g t h e y e a s t t r a n s g e n e , a s c o m p a r e d t oc o n t r o l p l a n t s . T h i s b a n d w a s t a k e n t o b e p r o o f o f b o t he x p r e s s io n a n d m i t o c h o n d r i a l im p o r t o f t h e y e a s t A s p R S i nt r a n s g e n i c p o t a t o . T r a n s f e r R N A f r a c t i o n s p r e p a r e d f r o mt h e s a m e m i t o c h o n d r i a l s a m p l e s w e r e t h e n t e s te d b y N o r t h -e r n b l o~ t in g f o r t h e p r e s e n c e o f t h e c y t o s o l i c t R N A A s p u s i n ga l a b e l e d o l i g o n u c l e o t i d e p r o b e d e r i v e d f r o m t h e s e q u e n c eo f t h e s o y b e a n n u c l e a r g e n e e n c o d i n g t h i s t R N A [8 1 ] . D e s -p i t e t h e r e p r o d u c i b l e p r e s e n c e o f t h e y e a s t A s p R S i n t h em i t o c h o n d r i a l f r a c t io n s , n o s i g n i f i c a n t c o - i m p o r t o f t h e c y -t o s o l i c t R N A A s p w a s e v e r d e t e c t e d .

    525

    Z 0 ,20

    ~ 0 , 1 00

    o ~

    !

    0 , 0 0 ~ ~ . . a - - _ _ , . _ _ _0 10 20 30

    T i m e ( r a i n )Fig 2 . A minoacylat ion k inetics of to tal potato cytoplasmic tRNA(3 mg/m L) in the presence of a saturat ing amount of pur if ied yeasAspRS (20 ~tg /mL).

    mr(kDa) 1 297

    67

    45AspRS

    Fig 3 . In vivo expression and mitochondrial import of yeast cyto-solic As pR S in transgenic po tato p lants . M itochondrial ex tractsfrom control (1) and transgenic (2) potato tubers were fractionatedby polyacrylamide gel electrophoresis and analyzed by Westernblotting with a polycional an tiserum raised against yeast cytosolicAspRS. Samples corresponding to equivalent protein amounts (asdetermined acco rding to [91 ]) were load ed. The migration of pro-tein molecular m ass m arkers is indicated. The position of purifiedyeast cy tosolic A spR S is show n by an ar row. The apparent d if -ference in size betwee n purified yeast AspRS a nd the protein spe-cifically detected by the antiserum against AspR S in mitocho ndrialextracts of ~ransgenic potato is likely to be due to ex tra amino acidresidues located downstream of the processing site. as the miaochondr ial presequence of the N plum baginifolia FbATP synthase[~-subunit corresponds to 55 ou t of the 90 residue s encoded by theupstream plant sequence in the chimer ic transgene [92] and s ixamino acids are encoded by the l inker sequence.

  • 8/3/2019 Plant Inro 7

    9/12

    526The o utcome o f these exper iments implies that recogni-t ion by a mitochondr ial ly impor ted aminoacyl- tRNA syn-the tase i s no t neces sa r i ly enough to p rom ote e f f i c ien timport of a tRNA . Th e yeast mitocho ndrial LysRS precursoralone is not sufficient to drive impo rt of tRNAt-y~ into iso-lated yeast mitochondria [72]. However, i t cannot be ex-

    cluded at the prese nt s tage that the ex pression level of theyeast AspRS construc t in our transgen ic potato plants wastoo low to allow a detectable tRNAAsp import or that, incontrast to the no rma l form ( ' ,f yeast cyto solic AspRS, th echimer ic precursor form o f th is enzym e in troduced in to thetransgenic plants does not e~ficiently recognize the planttRNAAsp.

    Na t iv e t r n Fu 4Liverworl

    ] t r n F ]C 4 - . ~ U 4. ~ e r a , polato

    expression Larch

    Conclus ions and prospectsTh e differe nt orig ins of tRNA 'he, tRN A Hi~ and tRNACy~ invarious plants il lustrate well the strategies develo ped byplant m itochondr ia dur ing evolut ion to maintain a co mpletetRNA set (fig 4). These tRNAs are native mitochondrialspecies needing no editing in the primitive, non-vascularplant liverwort, a bryophyte. In larch (gy mn osperm ) mito-chondria, the n ative tRN A His gen e is still e xpre ssed but s e-quen ce divergenc e mak es it necessary to edit the tRNA. Inboth dicotyledono us and some mo nocotyledon ous angios-perms, th is nat ive g en e has b een lo st an d tR NA HL, is ob-t a i n e d f r o m a p l a s t i d - d e r i v e d g e n e a c q u i r e d b y t h emitochondrial genome. Finally, in the monocotyledonousangiosperm wheat , the m itochondr ial genom e does not codefor a tRNA ais and wheat m itochondr ia impor t th is tRNAfrom the cytosoi. Similarly, following sequenc e divergen ce,the native tRNAPh is maintaine d in m itochon dria of dico-tyledonous plants thanks to editing, but has been replacedby a plastid-de rived species in mo noco tyledo nou s plantsand is imported from the cytosol in larch 1341. In the sam ew a y , d e p e n d i n g o n t h e p l a n t l i n e a g e , m i t o c h o n d r i a ltRNACys correspo nds to e ither an ed ited native, a chloro-plast-like or perhaps a nuclearly encoded species (fig 4).Interestingly. altho ugh liverwort rem ains the root species inall cases, the trees based on the gen etic origin and editingof mitoch ondrial tRNAPhe, tRNAHi~ and tRNACy~ do notcorrespond to the phyiogenet ic t ree of the d if ferent p lantspecies conside red. The phylo gene tic tree wo uld first sep-a ra te gym nosperm s ( l a r ch ) f rom ang iosperm s and sub-sequen t ly sp l i t ang iosperm s in to d ico ty ledo nous p lan t s(bean , oeno thera , po ta to , sun f lower ) and m onoco ty le -donous plants (maize, wheat).

    I t is evident from the available data that the mitochon-drial tRNA species falling into each of the different ca-tegories (native, e dited native, plastid-derived and importedfrom the cytosol) d if fer to some extent w ith in and betweenplant lineages, However, there is a clear evolutionary tend-ency towards loss of nat ive tRNA genes , which drop innum ber from 2 9 in liverwort [8] to 12 in petunia (Pe t tmtahybr ida , ano ther d icotyled onous plant) [111, 11 in sun-

    C 6, e l 2 . C 4 ~ U 6, ILl12,U411Larch

    Na t iv e t r n H - J r - " 1U6, UI2, U41 ~ / .,1,] Cp-l ike t rnH [iv 2 ,,/ e r w or l ~ [ " - . .~ . . . . , , , . ,z , .~ , .s " Pota io , unflower,maize

    Loss o[ nat ive geneexpression Wheal

    Native trnCU28Liverworl

    I t rnC ]I C 2 8 ~ U 2 ~

    Maize,wheat, ~ . 3~"~NucleartrnC?"Loss of hativegene !expression Larch

    Fig 4. Evolution of the gene~ ( trnF, t rnHand m a C ) coding formitochondrial RNAme, tRNA tls and tRNA~-ysas an illustrationofthe strategiesdevelopedby plant mitochondria o keep a com pleteset of functional RNA s. Existenceof editing even ts, expressionofchloroplast-like RN A genes and import of nu cleus-encoded RNAspecies are num bered !, 2 and 3 respectively.Cp-like stands forchloroplast-like. All relevant references are cited in the text or inthe legends o table I and figure I,

    f lower [12] and 10 in maize Ii3 ] for instance. I t is interes-t ing to con s ider the o rder of events invo lved in the replace-m e n t o f n a t i v e t R N A s . A s m i t o c h o n d r i a l g e n o m e s a r e

  • 8/3/2019 Plant Inro 7

    10/12

    pr e se nt in m ul t ip le c op ie s pe r c e l l , inac t iva t ion or lo ss o f at R N A g e n e f r o m a p ro p o r ti o n o f th e g e n o m e s i s n ot i m m e -d ia tely l e tha l to the c e l l , but th i s may subse q ue nt ly c r e a te ase lec t ion p re ssure towards a l te rna t ive mod es o f express ion .Conve r se ly , the mi tochondr ia may f i r s t a cqu i re the a l~ema-f ive tRNA (e i the r impor ted o r ch lorop la s t - l ike ) and on lys u b s e q u e n t l y l o s e e x p r e ss i o n o f t h e n a t i v e t RN A . T h i s l a t t e rs e q u e n c e o f e v e n t s m o r e c l o s e l y r e s e m b l e s t h a t i n fe r re d f o rthe tr ansfe r o f pr o te in -c od ing ge n e s to the nuc le us [82 ] .T he fac t tha t r e p lac e me nt o f na t ive tR N A s by nuc le ar lye nc od e d tR N A s d i f fe r s in d if fe re nt p lant l ine age s r a i se s thep r o b le m o f h o w t h e s e l ec t i v it y o f t h e i n t p o r t p r o c e s s c ; nvar y in th i s w ay . I f am inoac y l - tR N A synthe ta se s ar e the k , 'yc ompone nts for impor t spe c i f i c i ty , the n the mi toc hondr ia lp r e c u r s o r s o f t h e s e e n z y m e s w o u l d b e e x p e c t e d t o d i f f e rb e t w e e n p l a n t s w h i c h i m p o r t a g i v e n c y t o s o f i c t R N A i n t omi toc hondr la and those w hic h do no t . E xte ns ive s tud ie s onp l a n t a m i n o a c y l - t R N A s y n t h e t a s e s , s t i l l a p o o r l y d o -c ume nte d domain , w i l l be o f gr e a t he lp in answ e r ing the seq u e s t i o n s . C l o n e d a m i n o a c y l - t R N A s y n t h e t a s e g e n e sshould a l so pr ov ide too l s for pr oduc ing mi toc hondr ia l pr e -c ur sor for ms o f the se e nz ym e s in lar ge quant i ti e s . Suc h pr e -c ur sor s might be r e quir e d for the r c c onst i tu t ion o f tR N Aimpor t w i th i so la te d mi toc hondr ia .D e c ip he r ing the p lant mi toc hondr ia l tR N A impor t m e c h-a n is m m a y , i n t h e lo n g t e r m , y i e ld k n o w l e d g e a n d m o l e c u l a rtoo l s o f pr ac t ic a l be ne f i t. T h e poss ib i l i ty o f tar ge t ing R N A str ansc ribe d fr om n uc le ar transge ne s to mi toc hondr ia w ou ldbe a w ay o f t r ansfe r ring nove l ge ne t i c in format ion in to the seor gane l l e s . Ge ne t i c t r ansfor mat ion o f p lant mi toc hondr iahas ye t to be ac h ie ve d . D e f in ing the ke y c ompone nts o fmi toc hondr ia l tR N A imp or t in p lants and o the r or gan i smsmay a l so lay the foundat ions for the ge ne t i c t r e a tme nt o fpa t i e nts su f fe r ing fr om c y topath ie s due to po int muta t ionsin mi toc hondr ia l tR N A ge n e s , the r a t iona le be ing nuc le are xpr e ss ion , tar ge ting and mi toc hondr ia l imp or t o f a func -t iona l tR N A . A l though i t i s ge ne r a l ly c ons ide r e d tha t nu-c l e ar ly e nc ode d tR N A spe c ie s ar e no t na tur a l ly impor te dinto mam mal ian , and e spe c ia l ly hu man, m i toc hondr ia , the r ei s s o m e e v i d e n c e f o r t h e i m p o r t o f t h e R N A m o i e t y o f t h em i t o c h o n d r i a l R N A p r o c e s s in g e n d o n u c l e a s e ( M R PR N a s e ) (e g [ 8 3 ] ) a n d o f t h e H I V R N A [ 8 4 ] , s u g g e s t i n g t h a tthe pa thw ay pote nt ia l ly e x i s t s and might be e xp lo i te d bysupple me nt ing human c e l l s w i th the appr opr ia te he te r o lo -gnu s c om pon e nts . In addi t ion , r e ce nt e xpe rime nta l e v id e nc eimpl i e s impor t o f a c y toso l i c tR N A into the mi toc hondr iao f mar supia l s (M 0r l M , P~ iabo S , pe r sona l c om m unic a t ion) .

    A c k n o w l e d g m e n t sT h e a u t h o r s a r e v e r y g r a t e f u l t o J G a n g l o f f ~m d G E r i an i l b r t h e g i f to f t h e y e a s t AspRS g e n e , p u r e y e a s t A s p R S a n d a n a n t i s e r u ma g a i n s t y e a s t A s p R S a n d t o L W i U m i t z e r f o r th e g i f t o f t h e p a t a t inp r o m o t er . W e w i s h t o t h an k o u r c o - w o r k e r s w h o a r e o r h av e b e e ni n v o l v e d i n th e s e s t u d i e s o n p l a n t m i t o c h o n d r i a l t R N A s : L C h a v a n t ,

    527T D e s p r e z , A M D u c h ~ n e - L o u a r n , G G r e e n , S Kauflmann, D R a m a -m o n j i s o a , C R e m a c l e , G S o u c i e t , H W m t z ( S t r a s b o u r g ) a n d KA k a m a , K A k a s h i , V T C C a r n e i r o , N C h o i s n e , R K u m a r , DLance l in , H M ireau (Versa il les ). Tha nks a re a l so due to P Kel tz , PKle th i and R W agn er ( IBMP, S t rasbou rg) fo r ca re o f p lan ts in theg r e e n h o u s e . T h i s w o r k w a s f u n d e d b y t h e t n s t i t u t N a t i o n a l ' d e l aR e c h e r c h e A g r o n o m i q u e ( 1 N R A ) , t h e C e n l r e N a t i o n a l d e l a R e -c h e r c h e S c i e n t i f i q u e ( C N R S ) a n d t h e U n i v e r s i t 6 L o u i s P a s t e u r( U L P , S t r a s b o u r g ) .

    R e f e r e n c e sI Burger G, Lang BE Reith M. Gray M W (1996) Genes encoding thesame three subun its of respiratory c o m p l e x I I are present in the mito-chondrial DNA of two phylogenetically distant eukaryotes. Proc NailAcad Sci USA 93, 2328-23322 Qu6tier F (1995) L os g6no me s des organites: 30 ans de recherche.Bitiaur 146 (June), 12-163 Fauron C, Casper M . Gao Y, Moo re B (1995) The maize mitochondrialgenome: dynamic, yet functional. Trends Genet I 1,228-2354 B one n L, Brown G G (1993) Genetic plasticity and its consequences:perspectives on gone organization and expression in plant mitochon-dria. Can J Bot 71,645--6605 Schuster W, Brennicke A (1987) Plastid, nuclear and reverse transcrip-tase sequences in the mitochondrial genome of Oenothera: is geneticinformation transferred between organdies via RNA? EMBO J 6.2857-28636 Knoop V, Unseld M , M arienfeld J, Braladt P, Sunkel S, Ullrich H, Bren-nicke A (1996) Copia-, gypsy- and LINE-like retrotransposon frag-ments in the mitochondrial genome of Arabidopsis thaliana. Geneti~'s142, 579-5857 A nderson S, Bankier AT, Barrell BG, De Bruijn MH L, Coulson AR,Drouin J, Eperon IC, Nierlich DP. Roe BA . Sanger E Schreir PH, Sm ithAJH, Staden R. You ng IG (198 1) Sequence and organization of thehuman mitochondrial genome. Nature 290, 457--4658 0 d a K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Aka-shi K, Ohyama K (i992) Transfer RNA genes in the mitochonthialgenome from a liverwort, Marchamia polymorpha: The absence ofchloroplast-like transfer RNA s. Nucleic Acids Res 20, 3773-37779 Tzagaloff A, M yers AM (1986) Genetics ~f mitochondrial biogenesis.

    Annu Roy Biochem 55 ,249-28510 Leblanc C, Bo yen C. Richard O, Bonnard G, Grienenberger JM, Kloa-reg B (1995) Complete sequence of the mitochondri:d DNA of theR h o d o p h y t e Chondrus crispus (Gigart inales) . Gone content andgenome organization. J Mol Biol 250, 484-.495I I Web er-Lotfi E Mar6chaI-Drou ard L, Fo lkerts O, Hanson M, Grienen-berger JM (1993) Localization of tRNA genes on the Petunia hvbrida3704 mitochondrial genome. Plant Mol Biol 2 I. 403--40712 Ceci L, Veronico P. Gallerani R (1996 ) Identification and m apping oftRNA genes on the Helianthus ammus mitochondrial genome. DNA

    Sequem'e, in p r e s s13 SangarE A, W ell JH, Grienenberger JM , Fauron C. Lonsdale D (1990)Localization and organization of IRNA genes on the mitochondrialgenomes of fertile and male-sterile lines of maize. Mol Gen Genet 223,

    224-23214 Mar~chal L, G uillemaut P. Grienenberger JM, Jeannin G, W ell JH(1985) Sequence and codon recog~ tic,n of bean mitochondria and chlo-roplast tRNAs'rq': evidence for a high degree of homology. Nm'leicAcids Res 13,4411--441615 Joyt, PBM , Gray M W (198 9) Chh)roplast-like transfer RN ?, genesexpressed i.1 wheat mitochondria. Nt~,1oh A~ ids Rcs t7, 5461--547616 Wintz H, Grienenberger JM , W ell 2H, Lonsdale D Ivl (1988) Locationand nucleotide sequence of two tRNA genes and a tRN A pseudo-gonein the maize mitochondrial genome: evidence for the transcription ofa chloroplast gene in mitochondria. Curt Genet t3, 247-254

  • 8/3/2019 Plant Inro 7

    11/12

    528

    17 Mar+chal-Drouard L, Weil JH, Guillemaut P (1988) Imp ort of severaltRNAs from the cytoplasm into the mitochondria in bean Phaseohtsvulgaris. Nucleic Acids R es 16, 4777--478818 Mar+chaI-Drouard L, Guillemaut P. Cosset A, A rbogast M, W eber EWell JH, D ietrich A (1990) Transfer RNAs o f potato (Solam+m tubero -sum) mitochondria have different genetic origins. Nucleic Acids Res1 8 , 3689--369619 M arehfelder A, B rennicke A, Binder S (1996) RNA editing is requiredfor efficient excision o f tRNA (Phe) from precursors in plant mitochon-dria. J B i o l C h e m 271, 1898-190320 Mar~chaI-Drouard L, Cosset A, Remacle C, Ramamonjisoa D. Die-trich A (1996) A single editing event is a prerequisite for efficientprocessing of potato mitochondrial phenylalanine tRNA . Mol Cel l B io /1 6 , 3504-351121 Mar~chal-Orouard L, Small I , Weil J-H, Dietr ich A (1995) Trans-fe r RNA impor t in to p lan t mi tochondr ia . M e t h o d s E n z y m o l 260.3 1 0 - 3 2 722 Guillemaut P. Weil JH (1990) Purification and identification of higherplant organellar transfer RNAs. In: Transfer RNAs and other solubleRNAs (Cherayil JD, ed) CRC Press. Boca Raton, 55-6723 Eriani G, Pr6vost G, Kern D, Vincendon P, Dirheimer G. Gangloff J(1991) Cytoplasmic aspartyl-tRNA synthetase from Saccharomycescerevisiae: Study of its functional organisation by deletion analysis.Eur J Biochem 200, 337-343

    24 Sellami M, Fasio;o F, Dirheimer G, Ebe l JP, Gangloff J (1986) Nu cle-otide sequence of the gene coding for yeast cytoplasmic aspartyl-tRNAsynthetase CAPS); mapping of the 5 ' and 3 ' termini o f AspRS mRNA .Nucleic Acids Re s 14, 1657-166625 Boutry M, Nagy F. Poulsen C, Aoyagi K, Chua NH (1987) Targetingof bacterial chloramphenicol acetyltransferase to mitochondria intransgenic plants. Natttre 328, 340-34226 Rocha-Sosa M, Sonnewald U, Frommer W . Stratmann M , Schell J ,Willmitzer L (1989) B oth developmental and metabolic signals activatethe promoter of a class I patatin ~c.~. MB O , I 8 , 23-2927 Paszkowski J, Pisan B , Schillito RD, H ohn T, Hohn B . Potrykus I(1984) Direct gene transfer to plants. EMBO J 3 , 2717-272228 Masson J, Lancelin D, Bellini C, Lecerf M. Guerche P, Pelletier G(1989) Selwtion of somatic hybrids between diploid clones of potato(Solanum tuberosum L) transformed by direct gene transfer.TheorApplGenet 78, 153-15929 Neuburger M. Journct EP, Bligny R, Cardc JP. Douce R (1982) Purifi-cation of plant mitochondria by isopycnic centrifugation in densitygradients of Percoll. AJ~'h Bitwhem Biophys 217, 312-32330 Lacntmli U K (1970) Cleavage o f structural proteins during the assem-bly of the head o f bacteriophage T4. Natm'e 227, 680-68531 P~v ost G, Eriani G, Kern D, Dirheimer G, Gangloff J (1989) Study ofthe arrangement of the functional domains along the yeast cytoplasmicaspartyl-tRNA synthetase. Era' J Biochem 180, 351-35832 G reen G, Mar~ch al L, Wci[ JH, Guillemaut P (1987) A Phaseolus vul-garis mitochondrial tRNA cu is identical to its cytoplasmic counter-part: sequencing and in vivo ranscription of the gene corresponding tothe cytoplasmic tRNA Lcu.Plant Mol Biol I0, 13-1933 S ma ll !, Mar~chaI-D rouard L, Masson J, Pelletier G+ Cosset A , WellJH, Dietrich A (1992) In vivo intport of a ~:~rmal or m utagenized he-terologous transfer RNA into the mitochondria of transgenic plants:Towards novel ways of influencing mitochondrial gene expression?

    E M B O J I I, 1291-129634 K um ar R, M ar~chaI-Drouard L, Akama K, Sm all I (19 96) Strikingdifferences in mitochondrial tRNA import antong different plantspecies, M o l G e n G e n e t 251 , in press35 Benne R, Van den B urg J, Brakenh off J, Slo of P, Van Boom JH, TrompMC (1986). M ajor transcript of the frameshift coxll from trypanosomemitochondria contains four nucleotides that are not encoded in theD N A . Cel l 46, 819-82636 Hanson MR, Sutton CA, Lu B (1996) Plant organd ie gene expression:Altered by RNA editing, Trends Plant &'i I , 57-.-6437 Cattaneo R (1991) Different types of messenger RNA editing. AnuuRer Gene t 25, 71-8838 Cattaneo R (1992) RNA editing - In chloroplast and brain. TrendsBh~chem Se t 17, 4--5

    39 Mar~chal-D rouard L, Ramam onjisoa D, Co,~set A, W ell JH, D ietrich A(1993) Editing corrects mispairing in the acceptor stem of bean andpotato mitochondrial phenylalanine tranffer RNAs. Nucleic Acids Res2 I, 4909--491440 Binder S, Marchfelder A, Brennicke A (1994) RNA editing of IRNAPI;and IRNA y~ in mitochondria of Oenothera herteriana i~ initiated inpresursor molecules. Mol Gen Ge,e t 244 . 67-7441 Mar~chal-Drouard L, K umar R, Remacle C, S mall l (1996) RNA edi-ting of larch mitochondrial tRNAH~s precu rsors is a prere quisite f orprocessing, Nucle ic Ac ids Res 24, in press42 Yu W, Schuster W (1995) Evidence f or a site-specific cytidine deami-nation reaction involved in C to U RN A editing o f plant miiochondria.J Biol Chem 270, 18227-1823343 Rajasekhar VK+ Mulligan RM (19 94) RNA editing in plant mitochon-dria: alpha-phosphate is retained during C to U conversion in raRNAs.Plant Cell 5, 1843-185244 We ber E Dietrich A , W ell I l l , Mar~chaI-Drouard L 11990) A potatomitochondrial isoleucine tRNA is coded for by a niilochondrial genepossessing a melhionine anticodon. Nm'leh' At'ids Res 18, 5027-503045 Muramatsu T, Nishikawa K, Nemoto E Kuchino Y, Nishimura A,Miyasaw a I", Yokoh ama S (1988) Codon and aminoacid spccificities ofa transfer RNA are both converted by a single post-transcriptionalmodification. Nature 336, 179-18 I46 Sangar6 A, Lonsdale D , Weil JH, Grienenberger JM (1989) Sequenceanalysis of the tRNA T~+and tRNALYS, enes and evidence for the tran-scription of a chloroplast-like tRNA .... in m aize miiu~.h,mJr~a. C , , ,Genet 16, ! 95- 20 I47 Francis MA, Dudock BS (1982) Nucleotide sequence of a spinach chlo-roplast isoleucine tRNA . J Biol Chem 257, 11195-1119748 Vem nico P, Gallerani R, Ceci LR (1996) Compilation and classificationof higher plant mitochondrial tRN A genes. Nucleic Acids Res 24 ,2199-220349 Gualberto JM, W intz H, Weil JH, Grienenberger JM (1988) The genescoding for subunit 3 of NADH dehydrogenase and for r ibosomal pro-rein S12 are present in the whea t and maize m itochondrial genomesand are co-transcribed. Mol Gen Genet 215, I 18-12750 Irons KP, Heckman JE, S inclair JH (1985) Sequence of histidyl tRNApresent as a chloroplast insert in mtDN A of Z e , m a y s . P h m t M o / B i o l4, 225-23251 Cec i IR . Ambrosini M. Siculella L, Gallerani R (1989) Location of asingle IRNA-His gene tm Ihc master chromosome of sunflower mito-chondrial DNA. Plant Sci 61 ,219-27552 Am brosini M, Ceci LR , Fiorella S, Gallerani R (1992) Comparison ofregions coding fo r I,'ansfer RNA ( i t i s ) genes o f milochondri:d and chlo-rnplasl DNA in sunllower: A proposal concerning the classification ofcp-like transfer RNA genes. Plant Mot Biol 20, I--453 Binder S, S chuster W, Gri.enenberge.r JM, Well JH, BroLnicke A (199.9)(Jl~, tin,, Lys Phc ~t:l lyaGenes fo r tRNA , tRN A , IR NA L tRNA " . tRNA" andtRNAare encoded in Oeuothera mitochondrial DNA . Cm'r Gene t 17, 353-35 854 Mar6chaI-Drou ard L. Weil JH, D ietrich A (1993 ) Transfer RNAs andtransfer RNA genes in plants. Atom Rer P lan t Physhd 44, 13-3255 Binder S, Brennicke A (1993) A tRN A gene transcription initiation siteis similar to nnR NA and rRN A promoters in plant nnitochondria.Nu-cleic Acids R es 21, 5012-501956 B inde r S, Brennicke A (1993 ) Transcription initiation sites in mito-chondria o f Oenothera herteriana. J Biol Chem 268, 7849-785557 Binder S, Hatzack E Brennicke A (1995) A novel pea mitochondrial invitro transcription system recognizes hom ologous and heterologousmRNA and tRNA promoters. J Bhd Chem 270, 22182-2218958 Rem acle C, Mart~chaI-Drouard L (1996) Characterization of the potatomitochondrial transcription u nit containing +nalive' n ' ,S (GCU), troF(GAA) and t r , :e (UGG). Plant Mol Biol 30, 553-56359 Kub o T, Y,mai Y, Kinoshita T. Mikami T (1995) T he chloroplast trnP-truW-petG gene cluster in the mitochondrial genomes o f Beta vulgaris,B trigyna an d B webhiana: Evolutionary aspects. Curt Gene t 27 , 285-28 960 Mar~chal L. Ru neberg-Roos P, Grienenberger JM, Colin J, W eil JH,Lejeune B, Qu6 tieLE Lonsdale DM (1987) H omology in the re,, ioncontaining a tRNA rp gene and a (complete or partial) tRNA P' gene

  • 8/3/2019 Plant Inro 7

    12/12

    in wheat mitochondrial and chloroplast genomes. C,rr Gem't 1 2 . 9 1 -9861 Mar6chaI-Drou ard L, GLfillemaul P (19881 Nuc]eotidc sequence o fbean m itochond rial |RNALCU4 and i ts cyto plasm ic counterpart . R eexamination of the modified nucieotide |y es en t in position 12 in beanmitochondrial and cytoplasmic IRNAt~Ul sequences. Ntwleic AcidsRe.~ 16, 1181262 Mar~chaI-Drouard L, Neuburger M, Gui l lem aut P, Douee R, Wei l JH,Dietrich A (19901 A nuclear-encoded potato (Solanum tuherosum) m i-tochondrial tRNALeu and its cytosol; ~ counterpart have identical nu cle-ot ide sequences. FEBS Lett 262, 170-17263 Rogers KC. $611 D (19951 Divergence of glutamate and glutamineamino acylat ion pathways: Providing t i le evolut ionary rat ionale fo r mis-charging. J Mol Evo140, 476---4864 Tarassov I, Entel is N, M art in RP ( 19951 An intact protein t ran slocat ingmachinery is required for mitochondrial import of a yeast cytoplasmictRNA. J Mol Biol 245, 315-32365 Seihel P, Trappe J, V i llani G, K lopstock T. Papa S, Reichmann H (1995)Transfection of mitochondria: St rategy towards a gene therapy of m i-tochondrial DNA diseases. Nucleic Acids Res 23, 10-1766 Vestweber D, Schatz G (19891 DN A-pro tein conjugates can enter mi-tochondria via the protein import pathway. Nature 338, 170-17267 Suyama Y ( 19861 Two dimensional polya crylam idegel elect ropho resisanalys i s of Tetrahymena mitochondrial tRNA . Curt Getter 10.41 I--42068 Mahapatra S, Ghosh 1", Adhya S (19941 Import of smal l RNAs intoLeishmanhe mitochondria in vitro. Nucleic AcMs Res 22, 3381-338609 Mahapatra S, Adhya S (19961 hnport of RNA into Leishm,nia mi to-chondria occurs through direct interaction with membrane-bound re-ceptors. J Biol Chem, in press70 Chen DT, Shi X, Suyama Y (19941 In vivo expression and mitochon-dr i a l impor t o f normal and muta t ed IRNATM in Leishmania. MoiBiochem Parasitol 64, 121-13371 Schn eider A, Martin J, Agabian N (19941 A nuclear-encoded IRN A ofTo,pamJsoma brm'ei is imported into mitochondria. Mol Cell Biol 14 ,2317-232272 Tarassov IA, Entelis N. Marlin R (19951 Mitochondrial import of acytoplasnfic lysine-tRNA in yeast i s me diated by cooperat ion uf cyto-plasmic and mitochondrial lysyl-lRNA synthetascs. EMBO,I 1 4 . 3 4 6 1 -347 I73 Hauser R, S chn eide r A ( 19951 tRNAs arc imp orted into mitochondria

    o f Trylntnosoma h~m'ei independently of their genomic context aridgenetic origin. EMBO ,I 14, 4212--422(I74 Marl in RP, Schn el ler JM, Stahl A, Dirh eimer G (1979) Impor! of nu-clear deo xyribon ucleic acid coded lysine accept ing t ransle'r ribonucleicacid (anticodon C UU) into yeast mitochondria. Bio~ hemistt3' 18 , 4 6 0 0 -460,'~75 Hou YM, Schimmel P (19881 A sim ple st ructural feature is a majordelemfinant of the identity of a transfel RNA. Nature 333. 140-14576 Hou YM , Schim mel P (19891 Evidence that a major determinant forthe ident i ty of a t ransfer RNA is conserved in evolut ion. Biochemistry28, 6800-680477 Cameiro VTC, Diet rich A, Mar6chaI-Drouard L, Cosset , A, Pel let icrG. Sm all I ( 19941 Characterization of som e ma jor identity elem ents in

    529

    plant alanine and phenylalanine Iransfer RNAs. Phmt Mol Biol 26 .1843-185378 Dietrich A, Mardchal-D rouard L, Carneiro V. ( ~:~sselA. Smal l | (19% )A single b ase cha nge prevents import o f cymsollc tRN A AI~' nto mito 'chondria in transgenic plants. Plant ,J 10. in press79 Mireau H. Lancelin D. Small ID (1996) The same: Arahidopsis geneencodes both cyloso l ic and mitochondrial alanyl-lPNA synthetases.Plant Cell 8, 1027-103980 Joyc e P BM , S12encer D F, Bonen L, Gray. . MW (19881 Gen es fortRNAp'sp. R NA r, tRNA ~yr and two tRNAs 'er in wheal mitochondrialDNA. Plant Mol Biol 10, 251-26281 W aldron C. Wills N, Gesteland RF (19851 Plant tRNA gen es: Putativesoybean genes for tRN A-As p and tRNA-Met . J Mol Appl Genet 3, 7-1782 Brennicke A , Grohmann L Hiesel R, Knoop V, Schuster W ( 19931 Themitochondrial genome on its way to the nucleus: Different stages ofgene transfer in higher plants. FEBS Lett 325, I,~0--14583 Li K, Sm agula CS, Parsons WJ, R ichardson JA, Gonzalez M , HaglerHK, W il l iams RS (19941 Subc el lular parti t ioning of MRP RNA as-sessed by ultrastructural and biochemical analysis. ,t Cell Biol 124,871-88284 Somasundaran M, Zapp ME Beat t ie LK, Pang L, Byron KS, Bassel lG J, Sul l ivan J L. Singer RH ( 19941 Local izat ion of HIV RNA in mito-chondria of infected cells: Potential role in cytopathogenicity. J CellBiol 126, 1353-136085 Akashi K, Sakurai K. Hirayama J, Fukuzawa H, Ohyama K (19961Occurrence of nuclear-encoded IRNA ie in th e mitochondria o f a liver-wort, Morchantia polymoq~ha. Curr Genet, in press86 Glover K, Gray MW (1994) The genet ic origin of t ransfer RNAs inwheat mitochondria. Poster Abstract 135. 4th International Congressql" Plant Molecular Biology, Amsterdam, June 19-2487 L eon P, Walbot V, Bedinger P (19891 Mo lecu lar analysis of the line ar2.3 kb plasm id of maize mitochondria: Apparent capture of IRNAgenes. Nucleic Acids Res 17, 4089-409988 Joyce PB M, G ray MW (19891 Aspartate and asparagine IRNA genesin wheat m itochondrial DNA: A caut ionary note on the isolation oftRNA genes from plants. Nucleic Acids Res 17, 7865-787889 Ceci LR, Am brosini M, Fior el la S, Gal lerani R (19941 Detect ion of aconserved arrangement of three IRNA genes in the sunflower mito-chondrial genome. Ident i ficat ion, mapping and expression of tr, C-trnN-trnY genes. Biochemisn3" attd Molecular BiohJgy International32, 1161-1172q0 Mar6chal L. Gui l lemaut R We ll JII (19851 Sequence of two bean m i-Iochondrial tRNAs%'r which differ in the level of post-transcriptionalmodification and have a prokaryotic-like large extra-loop. Plant MolBiol 5, 347-35 I91 Br:tdford MM (1976) A rapid and sensitive method fo r the quanlilationof microg,'am quantities of protein utilizblg he principle of protein-dyebinding. Anal Biochem 72, 248-25492 C haumont F, de Castro Si lva Fi lho. M, Thoma s D, Lelerme S, BoutryM (1994) Truncated presequences of mitochondrial FI-ATPase []-subunit from Nicotiana plumhagin(folia t ranspor t CAT and GUS pro-t e ins i n to mi tochondr i a of t ransgenic t obacco . Plant Mol Biol 24.631-641