report of the working group on future fuels for diesel …·合資1源. rエeネseルarギchー...

57
JAPAN AUTO-OIL PROGRAM JATOP第2回成果発表会 Report of the Working Group on Future fuels for Diesel Vehicles Working Group on Future Fuels for Diesel vehicles Masahiko Sawa March 9, 2012 JATOP Conference 2012

Upload: lynhi

Post on 16-May-2018

213 views

Category:

Documents


1 download

TRANSCRIPT

JAPAN AUTO-OIL PROGRAM

JATOP第2回成果発表会

Report of the Working Groupon Future fuels for Diesel Vehicles

Working Group on Future Fuels for Diesel vehiclesMasahiko Sawa

March 9, 2012

JATOP Conference 2012

ContentsContents1. Research outline

(1) Background and objectives(2) Assumption of quality of future fuels(3) Selection of test vehicles/engines

2. Research results(1) Research fuels: Design, property and composition(2) Topic 1: Impacts on emissions and fuel economy

performance(3) Topic 2: Impacts on cold startability(4) Topic 3: Impacts on low temperature operability(5) Topic 4: Combustion analysis test

3. Summary and future research issues

2

◆ Background・ Globally, a sharp increase has been observed in oil consumption, particularly

in Asian countries, while studies are required on unconventional petroleumresources such as oil sands, as well as synthetic fuels in terms of energy security.

・ In Japan, a significant decline is observed in oil demand, especially in heavyoil demand, consequently, there is an increasing orientation toward so-calledwhite oils, where the production of gasoline and middle distillate is increasedby cracking of heavy oil fractions.

・ Requirements for fuel quality have been tightened to meet the stringentemissions regulations and to improve fuel economy (reduced emissions ofcarbon dioxide) for diesel vehicles.

・ There would be a need for active use of various diesel feedstocks to production of diesel fuels in the future, and thus, it is key to identify future quality of dieselfuels with an eye toward the existing and future vehicle technologies.

◆ Objectives・Based on the above background, study the impact of fuels prepared from various

diesel feedstocks on a range of performance of diesel vehicles, to identify the practical issues and obtain technological knowledge that may contribute to the studyof their market introduction

1. Research outline(1) Background and objectives

3

Introduction ofunconventional

petroleum-deriveddiesel fractions

Outlook for future diesel fractions

Predicted changesin diesel fuel quality

Pending issuePending issue・Changes in oxidation stability

-Higher fuel temperature due tohigher common rail pressure

・Other pending factors‐Nitrogen content/ water content, lubricity improver

‐Contamination by Na・Thermal cracking temperature・ Kinematic viscosity

Impacts on vehicle/engineperformance

Pending issuePending issue・Material compatibility・Deposit formation/retention/ filter plugging

・ Impact of Pre-, Pilot-, After-and Post injection control

Increase inLCO fraction

・Decrease in cetane number・Increase in naphthenes content

・Increase in aromatics content・Increase in density

・Emissions・Fuel economy・Power・Low temperature operability・Startability/ white smoke/ odor

Predicted changes in diesel fuel quality and their Impacts on vehicle/ engine performance

4

Research schedule内容 2010年度 2011年度

研究計画作成

エンジン・車両の選定と調達

試験燃料の選定と準備

試験方法の調査と事前検討

性状調査等

添加剤影響調査

排出ガス・燃費試験

低温始動性試験

低温運転性試験

燃焼解析試験

研究内容

報告

研究準備

5

Research description FY 2008 FY 2009P

repa

ratio

nR

esea

rch

desc

riptio

n

Research planning

Selection and procurementof vehicles/ enginesSelection and preparation of test fuels

Study of test methods and their preliminary discussion

Study on fuel properties

Study of impacts ofadditives

Emissions/ fuel economytest

Cold startability test

Low temperature operabilitytest

Combustion analysis test

Report

総合資源エネルギー調査会石油分科会(第8回:4/9)1. Research outline(2) Assumption of quality of future fuels

◆ Increasing the installation rate of heavy oil cracking units (HOC) to facilitate moreeffective use of petroleum

重質油分解装置の装備率=重質油分解装置の能力(B/D)

Processing capacity of topper (B/D)

6

Processing capacity of HOC (B/D)Installation rate of HOC

<Reference> Schematic of petroleum refining processes

Crude oil

Topper

Light oil

Heavy oil(residue)

Residual oilfraction

LPG

Naphtha

Gasoline

Kerosene

Diesel

LPG

Naphtha

Gasoline

Kerosene

Diesel

Heavy oilCoke, etc.

HOC[RFCC* or coker]

A unit that extracts and produces high value-added light oils from residual oil fraction derived from HOC.

*RFCC = Residue Fluid Catalytic Cracking Unit

Unit component ratio in refineries in Japan, Europe and the US

Source: “Supply and demand analysis on petroleum products and crude oils for Asia and the World”,the Institute of Energy Economics, Japan (IEEJ) (August 2008)

Ratio of secondary cracking units to Toppers

7

Unit/Area USA Europe JapanAtmospheric distillation 17,202 Ratio to 16,004 Ratio to 4,764 Ratio to (topper) topper topper topperVacuum distillation 7,814 45% 5,892 37% 1,734 36%Catalytic reforming 3,636 21% 2,448 15% 777 16%Catalytic cracking 5,823 34% 2,472 15% 983 21%Thermal cracking 2,339 14% 1,937 12% 119 2%Hydrocracking 1,396 8% 709 4% 105 2%

Naphtha 4,148 24% 3,261 20% 996 21%Kerosene/ Diesel fuel 4,503 26% 5,233 33% 3,053 64%Others 3,175 18% 1,668 10% 795 17%Total 11,826 69% 10,162 63% 4,844 102%

Alkylation 1,172 7% 283 2% 95 2%Isomerization 650 4% 682 4% 23 0%

Total of upgrading units(Catalytic cracking + Thermal cracking 9,558 56% 5,118 32% 1,207 25% + Hydrocracking)

8

Assumed unit configuration in 2020

・Ratio of secondary cracking units as of April 2009: 27.5%

・ Total of increased capacity of secondary cracking units: +254000BD(Thermal cracking: + 181000 BD, Catalytic cracking: +25000 BD,

Hydro-cracking: + 48000 BD)

・Topper operating ratio: 80%

Precondition

Assumption results・Topper capacity

4835000BD (April 2009)×80% = 3868000 BD・Secondary cracking unit capacity

1331000 BD (April 2009) + 254000 BD = 1585000 BD

⇒ Ratio of Secondary cracking unit capacity toTopper capacity

1585000 BD / 3868000 BD×100 = 41%

40

45

50

55

60

65

20 30 40 50 60分解装置能力/常圧蒸留装置能力比率(%)

セタ

ン指

48.3

63.8

55.8

47.1

61.4

52.4

60.0

45.5

39.4JPN EU USA

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

20 30 40 5 0 6 0分 解 装 置 能 力 / 常 圧 蒸 留 装 置 能 力 比 率 (% )

芳香

族分

(vo

l%)

15.0

5.1 7.6

20.1

25.7

39.0

26.8

41.8

27.4

0.800

0.820

0.840

0.860

20 30 40 50 60

分解装置能力/常圧蒸留装置能力比率(%)

密度

(g

/c

m3

0.846 0.845

0.867

0.8170.814

0.806

0.8270.835

0.846

Assumption of future fuels (as of year 2020)

・Cetane index 49.8(Deviation ±7)

・Aromatics content 27.0 vol% (Deviation ±6)

・Density 0.839 g/cm3(Deviation ±0.020)

9

Cet

ane

inde

x

Den

sity

(g/c

m3)

Aro

mat

ics

cont

ent (

vol%

)

Ratio of cracking unit capacity to topper capacity (%)

Ratio of cracking unit capacity to topper capacity (%) Ratio of cracking unit capacity to topper capacity (%)

1. Domestic diesel fuel・Commercial diesel fuels with three levels of cetane index (CI) and aromaticscontent are used as test fuels

・Fuel properties: MAX CI: around 63/Aromatics: around 15 vol%AVE CI: around 56/ Aromatics: around 20 vol%MIN CI: around 49 / Aromatics: Values determined in the course of nature

2. Future diesel fuel・Diesel fuels with three levels of cetane index and aromatic content, which

simulate the future diesel fuel properties

・Fuel properties: MAX CI: around 57/ Aromatics around 21 vol%AVE CI: around 50/ Aromatics around 27 vol%MIN CI: around 43/ Aromatics around 33 vol%

Future diesel fuel is prepared by blending of domestic diesel fuel in US diesel fuel.

Target properties of research fuels

10

11

自検協資料より作成(JAMA)

The majority of vehicles on the roads as of year 2020 is inferred to bethe vehicles that meet 2002, 2005 or 2009 regulations.

1. Research outline(3) Selection of test vehicles/ engines

◆ Predicted vehicle type mix as of year 2020

Fig.3 Example of future estimates (Nationwide, 5 – 8 ton GVW diesel MD truck)Made from materials of Automobile Inspection & Registration Information Association (JAMA)

Com

posi

tion

ratio

of v

ehic

le p

opul

atio

nby

em

issi

on re

gula

tions

(5 –

8 to

nG

VW M

D d

iese

l tru

ck) 2009 regulations

2005 regulations2002 regulations1998 regulations1994 regulations

1989 regulations1982 regulations or

earlier regulations

Major specifications of test vehicles/ engines

NA: Natural aspirationTC: TurbochargerCRS: Common rail systemDI: Direct injectionDOC: Diesel oxidation catalystDPF: Diesel particulate filterLNT: Lean NOx trap

12

Vehicle specifications Vehicle A (Truck) Vehicle B (Truck) Vehicle C (Passenger car)Applicable emissions regulations 2002 regulations 2005 regulations 2009 regulations

Engine displacement (L) 4.8 3.0 2.0Fuel feed system CRS, DI CRS, DI CRS, DI

Transmission 5M/T 5M/T 6A/TAir intake method NA TC TCPower (kW/rpm) 96/3100 110/2800 127/3750Torque (Nm/rpm) 333/1500 375/1600 360/2000Compression ratio 18.5 17.5 15.6

Number of cylinders 4 4 4Exhaust aftertreatment system DOC DOC, DPF DOC, LNT, DPF

Engine specifications Engine A (Truck) Engine B (truck)Applicable emissions regulations 2002 regulations 2005 regulations

Engine displacement (L) 4.9 756Fuel feed system CRS, DI CRS, DIAir intake method NA TCPower (kW/rpm) 99/3000 199/2700Torque (Nm/rpm) 343/1600 785/1400Compression ratio 19.2 17.5

Number of cylinders 4 6Exhaust aftertreatment system DOC, DPF DOC, DPF

13

2. Research results(1) Research fuels

1. Test item on general propertiesDensity, kinematic viscosity, cetane number, cetane index, sulfur content,cloud point, cold filter plugging point (CFPP), pour point, 10% carbon residueand lower heating value (LHV)

*1: Following metal species are analyzed:Zn , Fe, P, Al, Pb, Cu, Sn, Na, K, Ca, Mg, CL, Si, Mn,V and Ni

2. Test item on specific propertiesAromatics (1-, 2- and 3-ring), naphthene (1-, 2- and 3-ring), wax content,HFRR, ash content, metallic content*1, nitrogen content, water content, acid number, Rancimat, PetroOXY and △TAN

◆ Test/ analysis item of research fuels

14

Properties of US diesel fuel used as feedstocks for research fuels

Test item US diesel 1 US diesel 2 US diesel 3 US diesel 4 US diesel 5Cetane index 45.8 45.3 46.2 44.1 44.4Cetane number 48.5 47.8 44.7 44.2 42.9Density (g/cm@15˚C) 0.8420 0.8446 0.8489 0.8638 0.8460Distillation characteristics 90 vol% (˚C) 318.5 318.5 333.5 335.5 319.0Cloud point (CP) (˚C) -12 -13 -11 -11 -15Cold filter plugging point (CFPP) (˚C) -12 -14 -12 -10 -14Pour point (PP) (˚C) -22.5 -25 -17.5 -15 -22.5Hydrocarbon Aromatics 30.5 30.8 27.0 27.8 30.6composition (vol%) Naphthenes 23.7 23.2 27.7 35.6 27.5Sulfur (mass ppm) 8 8 7 7 6Nitrogen (mass ppm) 77 82 11 66 3PetroOXY 140˚C (min) 59 59 124 50 88Lower heating value (MJ/L) 36.09 36.17 36.32 36.80 36.22Cetane improver (mass ppm) 1010 1140 N/A 850 N/A

15

Research fuels:Properties of domestic and future diesel fuels

F-Ave 1 & F-Min 1: Prepared for emissions/ fuel economy testingF-Ave 2 & F-Min 2: Prepared for cold startability/ low temperature operability testing

Domestic diesel fuel Future diesel fuel Test item D-Max D-Ave D-Min F-Max F-Ave 1 F-Ave 2 F-Min 1 F-Min 2

(Emission test) (Cold test) (Emission test) (Cold test)Cetane index 60.0 54.6 51.2 55.4 48.0 48.3 44.4 44.4Cetane number 57.7 54.0 51.9 53.6 50.4 46.0 45.7 42.9Density (g/cm@15˚C) 0.8299 0.8369 0.8061 0.8349 0.8454 0.8412 0.8520 0.8460Distillation characteristics 90 vol% (˚C) 334.5 335.0 310.5 333.5 328.0 324.0 326.5 7319Cloud point (CP) (˚C) -2 -4 -14 -5 -8 -15 -13 -15Cold filter plugging point (CFPP) (˚C) -10 -8 -29 -14 -17 -15 -11 -14Pour point (PP) (˚C) -17.5 -15 -37.5 -17.5 -20.0 -22.5 -17.5 -22.5Hydrocarbon Aromatics 18.8 23.9 18.0 21.2 25.6 27.1 29.3 30.6composition (vol%) Naphthenes 24.4 23.7 26.0 25.3 28.1 27.0 29.0 27.5Sulfur (mass ppm) 8 9 5 8 8 7 8 6Nitrogen (mass ppm) <1 6 <1 3 33 2 52 3PetroOXY 140˚C (min) 99 105 99 109 66 92 62 88Lower heating value (MJ/L) 35.69 35.92 34.87 35.85 36.20 36.06 36.41 36.22Cetane improver (mass ppm) N/A N/A N/A N/A 400 N/A 650 N/A

16

Topics 1 – 4: Outlineテ ー マ 供 試 車 両 ・エ ン ジ ン 供 試 燃 料

1.排 出 ガ ス 、燃 費 性 能 へ の 影 響シャシダ イナモ

(トラック2台:新短期、新長期、乗用車1台:ポスト新長期)

現行軽油Ave、Min将来軽油Max、Ave①、Min①

エンジンダイナモ(トラック2台:新短期、新長期)

現行軽油Max、Ave①、Min①将来軽油Max、Ave①、Min①

定 常 排 出 ガ ス 試 験燃 費 試 験

エンジンダイナモ(トラック2台:新短期、新長期)

現行軽油Max、Ave①、Min①将来軽油Max、Ave①、Min①

2.低 温 始 動 性 能 へ の 影 響

低 温 始 動 性 試 験(0℃ 、- 15℃ )

シャシダ イナモ (トラック2台:新短期、新長期、

乗用車1台:ポスト新長期)

①試験温度 0℃ 現行軽油Ave、将来軽油Ave②、Min②②試験温度 -15℃ 現行軽油Min、将来軽油Ave②、Min②

3.低 温 運 転 性 能 へ の 影 響

低 温 運 転 性 試 験(0℃ 、- 15℃ )

シャシダ イナモ (トラック2台:新短期、新長期、

乗用車1台:ポスト新長期)

①試験温度 0℃ 現行軽油Ave、将来軽油Ave②、Min②②試験温度 -15℃ 現行軽油Min、将来軽油Ave②、Min②

4.燃 焼 解 析

燃 焼 解 析 試 験エンジンダイナモ

(トラック1台:新長期)現行軽油Ave、将来軽油Min①

過 渡 排 出 ガ ス 試 験燃 費 試 験

Topic Test vehicle/ engine Test fuel

1. Impacts on emissions/ fuel economy performance

Emissions test in transient mode/Fuel economy test

Emissions test insteady-state mode/Fuel economy test

2. Impacts on cold startability

Cold startability test(0 and -15˚C)

3. Impacts on low temperature operability

4. Combustion analysis

Low temperatureoperability test(0 and -15˚C)

Combustion analysis test

Chassis dynamometer(2 trucks: 2002/2005 regs

1 passenger car: 2009 reg.)

Engine dynamometer(2 trucks: 2002/2005 regs)

Engine dynamometer(2 trucks: 2002/2005 regs)

Chassis dynamometer(2 trucks: 2002/2005 regs

1 passenger car: 2009 regs)

Chassis dynamometer(2 trucks: 2002/2005 regs

1 passenger car: 2009 regs)

Engine dynamometer(1 truck: 2005 regs)

D-Ave/ MinF-Max/ Ave1/ Min1

D-Max/ Ave1/ Min1F-Max/ Ave1/ Min1

D-Max/ Ave1/ Min1F-Max/ Ave1/ Min1

1) Test temperature: 0˚C D-Ave, F-Ave2/ Min2

2) Test temperature: -15˚C D-Min, F-Ave2/ Min2

1) Test temperature: 0˚C D-Ave, F-Ave2/ Min22) Test temperature: -15˚C D-Min, F-Ave2/ Min2

D-Ave, F-Min1

17

2. Research results(2) Topic 1: Impacts on emissions/ fuel economy performance

◆ Evaluation description of emissions and fuel economy performance(1) Emissions test in transient mode

① Test cycle: JE05 (Hot) mode, JC08 (combined) mode② Measurement item: PM, NOx, CO, HC, unregulated emissions

(aldehydes, etc.), mode fuel economy andcombustion noise (Vehicle C)

③ Measuring point: Engine outlet (ex. PM) and catalyst outlet(2) Emissions test in steady-speed mode

① Test cycle: Steady-state mode (a test mode where engine speed is set to a prescribed value, while load is varied)

・ Engine speed (Percentage of rated speed): 40, 60, 80 and 100%・ Load (Percentage of full load): 10 to 100% in increments of 10%

② Measurement item: NOx, CO, HC, smoke, power, toque and fuel consumption rate

③ Measuring point: Engine outlet and catalyst outlet Topic Vehicle/ Applicable emissions D-Max D-Ave D-Min F-Max F-Ave1 F-Ave2 F-Min1 F-Min2

Engine regulationsVehicle A 2002 regulations. O O O O OVehicle B 2005 regulations. O O O O O

Emissions/ Transient Vehicle C 2009 regulations. O O O O OFuel mode Engine A 2002 regulations. O O O O O

economy Engine B 2005 regulations. O O O O O OSteady-state Engine A 2002 regulations. O O O O O

mode Engine B 2005 regulations. O O O O O O

ディーゼル車排出ガス規制値(乗用車)

0.00

0.02

0.04

0.06

0.08

0.0 0.1 0.2 0.3 0.4

NOx(g/km)

PM

(g/km

)

ディーゼル車排出ガス規制値(重量車)

0.00

0.05

0.10

0.15

0.20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

NOx(g/kWh)

PM

(g/kW

h)

2002 regs

2005 regs

2009 regs

2002 regs

2005 regs

2009 regs

2009 regulations・Vehicle C

2002 regulations・Vehicle A・Engine A

2005 regulations・Vehicle B・Engine B

18

Test vehicle/ engine and emission regulations

Emissions limit for diesel vehicles (HDT)

Emissions limit for diesel vehicles (Passenger car)

NOx車両)C(

-0.02-0.010.000.010.02

45 50 55 60

セタン価

ΔN

Ox(

g/km

)@

JC

08

NOx(車両A)

-0.2-0.10.00.10.2

45 50 55 60

セタン価

ΔN

Ox(

g/km

)@

JE05

NOx(車両B)

-0.1

0.0

0.1

45 50 55 60セタン価

ΔN

Ox(

g/km

)@

JE05

19

Emissions test in transient mode: Results

Vehicle A (2002 reg-truck)

Vehicle B (2005 reg-truck)

Vehicle C (2009 reg-passenger car)

◆: Domestic diesel fuel■:Future diesel fuel

*Reference fuel: D-AveΔ

NO

x(g/

km)

@JC

08

45 50 55 60

セタン価

±20% from

the limits

Cetane number

Cetane number

Cetane number

NOxエンジン)A(

-0.8-0.40.00.40.8

45 50 55 60

セタン価

ΔN

Ox(

g/kW

h)

@JE05

NOxエンジン)B(

-0.4-0.20.00.20.4

45 50 55 60

セタン価

ΔN

Ox(

g/kW

h)

@JE05

◆: Domestic diesel fuel■:Future diesel fuel

20

NOX emissions test in transient mode - Results

Engine A (2002 reg-truck)

Engine B (2005 reg-truck)*Reference fuel: D-Ave

±20%from

the limits

Cetane number

Cetane number

PM(車両A)

-0.01

0.00

0.01

45 50 55 60

セタン価

ΔP

M(g

/km

)@

JE05

PM(車両B)

-0.001

0.000

0.001

45 50 55 60

セタン価

ΔP

M(g

/km

)@

JE05

s

PM車両)C(

-0.001

0.000

0.001

45 50 55 60セタン価

ΔPM

(g/k

m)

@JC08

21

PM emissions test in transient mode - Results

Vehicle A (2002 reg-truck)

Vehicle B (2005 reg-truck)

Vehicle C (2009 reg-passenger car)

◆:Domestic diesel fuel■:Future diesel fuel

*Reference fuel: D-Ave

45 50 55 60

セタン価

±20%from limits

ΔP

M(g

/km

)@

JC

08

Cetane number Cetane number

Cetane number

PMエンジン )A (

-0.04-0.020.000.020.04

45 50 55 60

セタン価

ΔP

M(g

/kW

h)

@JE05

PMエンジン )B (

-0.01

0.00

0.01

45 50 55 60

セタン価

ΔP

M(g

/kW

h)

@JE05

22

PM emissions test in transient mode - Results

Engine A (2002 reg-truck)

Engine B (2005 reg-truck)

◆:Domestic diesel fuel■:Future diesel fuel

*Reference fuel: D-Ave

±20%From

the limits

Cetane number

Cetane number

THC 車両A

-0.10-0.050.000.050.10

45 50 55 60

セタン価

ΔTH

C(g

/km

)@

JE05

THC 車両B

-0.01

0.00

0.01

45 50 55 60

セタン価

ΔTH

C(g

/km

)@

JE05

THC車両C

-0.006-0.0030.0000.0030.006

45 50 55 60

セタン価

ΔTHC(g

/km

)

@JC08

23

THC emissions test in transient mode - Results

Vehicle A (2002 reg-truck)

Vehicle B (2005 reg-truck)

Vehicle C (2009 reg-passenger car)

◆:Domestic diesel fuel■:Future diesel fuel

*Reference fuel: D-Ave

45 50 55 60

セタン価

±20%from

the limitsΔ

TH

C(g

/km

)@

JC

08

Cetane number

Cetane number

Cetane number

THCエンジン )A(

-0.20

0.00

0.20

45 50 55 60

セタン価

ΔTH

C(g

/kW

h)

@JE05

THCエンジン )B (

-0.03

0.00

0.03

45 50 55 60

セタン価

ΔTH

C(g

/kW

h)@

JE05

24

THC emissions test in transient mode - Results

Engine A (2002 reg-truck)

Engine B (2005 reg-truck)

◆:Domestic diesel fuel■:Future diesel fuel

*Reference fuel: D-Ave

±20%from

the limit

Cetane number

Cetane number

CO(車両A)

-0.4-0.20.00.20.4

45 50 55 60

セタン価

ΔC

O(g

/km

)@

JE05

CO(車両B)

-0.1

0.0

0.1

45 50 55 60

セタン価

ΔC

O(g

/km

)@

JE05

CO車両)C(

-0.4-0.20.00.20.4

45 50 55 60

セタン価

ΔC

O(g

/km

)@

JC

08

25

CO emissions test in transient mode - Results

Vehicle A (2002 reg-truck)

Vehicle B (2005 reg-truck)

Vehicle C (2009 reg-passenger car)

◆:Domestic diesel fuel■:Future diesel fuel

*Reference fuel: D-Ave

±20%from

the limitΔ

CO

(g/k

m)

@JC

08

Cetane numberCetane number

Cetane number

COエンジン)A(

-0.4-0.20.00.20.4

45 50 55 60

セタン価

ΔC

O(g

/kW

h)@

JE05

COエンジン)B(

-0.4-0.20.00.20.4

45 50 55 60

セタン価

ΔC

O(g

/kW

h)@

JE05

26

CO emissions test in transient mode - Results

Engine A (2002 reg-truck)

Engine B (2005 reg-truck)

◆:Domestic diesel fuel■:Future diesel fuel

*Reference fuel: D-Ave

±20%from

the limit

Cetane number

Cetane number

燃費 車両C

-0.04-0.020.000.020.04

45 50 55 60

セタン価

Δ燃

費(k

m/M

J)

@JC

08

燃費 車両A

-0.03

0.00

0.03

45 50 55 60

セタン価

Δ燃

費(k

m/M

J)

@JE

05

燃費 車両B

-0.03

0.00

0.03

45 50 55 60

セタン価

Δ燃

費(k

m/M

J)

@JE

05

27

Fuel economy test in transient mode - ResultsVehicle A (2002 reg-truck)

Vehicle B (2005 reg-truck)

Vehicle C (2009 reg-passenger car)

◆:Domestic diesel fuel■:Future diesel fuel

*Reference fuel: D-Ave±10%

from thevalues with

D-Ave

Cetane number Cetane number

Cetane number

Fuel

eco

nom

y (k

m/M

J)Fu

el e

cono

my

(km

/MJ)

Fuel

eco

nom

y (k

m/M

J)

燃費(エンジンA (

-1.0

-0.5

0.0

0.5

1.0

45 50 55 60

セタン価

Δ燃

費(M

J/kW

h)

@JE05

燃費(エンジンB (

-1.0

-0.5

0.0

0.5

1.0

45 50 55 60

セタン価

Δ燃

費(M

J/kW

h)

@JE05

28

Fuel economy test in transient mode - Results

Engine A (2002 reg-truck)

Engine B (2005 reg-truck)

◆:Domestic diesel fuel■:Future diesel fuel

*Reference fuel: D-Ave

±10% fromthe values

with D-Ave

Cetane number

Cetane number

Fuel

eco

nom

y (M

J/kW

h)Fu

el e

cono

my

(MJ/

kWh)

触媒アウト NOx (回転 40%)

-4-2024

10 20 30 40 50 60 70 80 90 100

負荷(%)

NO

x(g/

kWh)

触媒アウト NOx (回転 80%)

-4-2024

10 20 30 40 50 60 70 80 90 100

負荷(%)

NO

x(g/

kWh)

29

NOx (at 40% engine speed)

NOx (at 80% engine speed)

NOX emission test in steady-state mode - ResultsEngine A (at catalyst outlet)

*Reference fuel: D-Ave

◆ D-Ave▲ D-Min□ F-Max◇ F-Ave1△ F-Min1

Load (%)

Load (%)

触媒アウト THC(回転 40%)

-4-2024

10 20 30 40 50 60 70 80 90 100

負荷(%)

TH

C(g

/kW

h)

触媒アウト THC(回転 80%)

-4-2024

10 20 30 40 50 60 70 80 90 100

負荷(%)

TH

C(g

/kW

h)

30

THC (at 40% engine speed)

THC (at 80% engine speed)

Engine A (at catalyst outlet)

*Reference fuel: D-Ave

◆ D-Ave▲ D-Min□ F-Max◇ F-Ave1△ F-Min1

THC emission test in steady-state mode - Results

Load (%)

Load (%)

エンジンアウト THC(回転 40%)

-4-2024

10 20 30 40 50 60 70 80 90 100

負荷(%)

TH

C(g

/kW

h)

エンジンアウト THC(回転 80%)

-4

0

4

8

10 20 30 40 50 60 70 80 90 100

負荷(%)

TH

C(g

/kW

h)

31

THC (40% engine speed)

THC (at 80% engine speed)

THC emission test in steady-state mode - ResultsEngine A (at engine outlet)

*Reference fuel: D-Ave

◆ D-Ave▲ D-Min□ F-Max◇ F-Ave1△ F-Min1

Load (%)

Load (%)

触媒アウト NOx (回転 40%)

-4-2024

10 20 30 40 50 60 70 80 90 100

負荷(%)

ΔN

Ox(

g/kW

h)

触媒アウト NOx (回転 80%)

-4-2024

10 20 30 40 50 60 70 80 90 100

負荷(%)

ΔN

Ox(

g/kW

h)

32

NOx (at 40% engine speed)

NOx (at 80% engine speed)

Engine B (at catalyst outlet)

*Reference fuel: D-Ave

■ D-Max◆ D-Ave▲ D-Min□ F-Max◇ F-Ave1△ F-Min1

NOX emission test in steady-state mode - Results

Load (%)

Load (%)

触媒アウト THC(回転 40%)

-4-2024

10 20 30 40 50 60 70 80 90 100

負荷(%)

ΔTH

C(g

/kW

h)

触媒アウト THC(回転 80%)

-4-2024

10 20 30 40 50 60 70 80 90 100

負荷(%)

ΔTH

C(g

/kW

h)

33

THC (at 40% engine speed)

THC (at 80% engine speed)

THC emission test in steady-state mode - ResultsEngine B (at catalyst outlet)

*Reference fuel: D-Ave

■ D-Max◆ D-Ave▲ D-Min□ F-Max◇ F-Ave1△ F-Min1

Load (%)

Load (%)

エンジンアウト THC(回転 40%)

-4-2024

10 20 30 40 50 60 70 80 90 100

負荷(%)

ΔTH

C(g

/kW

h)

エンジンアウト THC(回転 80%)

-4-2024

10 20 30 40 50 60 70 80 90 100

負荷(%)

ΔTH

C(g

/kW

h)

34

THC (at 40% engine speed)

THC (at 80% engine speed)

THC emission test in steady-state mode - ResultsEngine B (at engine outlet)

*Reference fuel: D-Ave

■ D-Max◆ D-Ave▲ D-Min□ F-Max◇ F-Ave1△ F-Min1

Load (%)

Load (%)

触媒アウト エンジンアウトNOx CO THC PM NOx CO THC PM

車両A 新短期 DOC 過渡排出ガス車両B 新長期 DOC DPF 過渡排出ガス車両C ポスト新長期 DOC LNT DPF 過渡排出ガス

過渡排出ガス定常排出ガス過渡排出ガス定常排出ガス

燃費車両・エンジン 適合規制 後処理装置 試験項目

エンジンA 新短期 DOC DPF

エンジンB 新長期 DOC DPF

Cetane number has no impact on emissions/ fuel economyperformance.Cetane number has an impact on emissions/ fuel economyperformance. However, the values with future diesel fuel fallwithin the range of those with domestic diesel fuel.

Topic 1: Impacts on emissions/ fuel economy performance – Wrap up

Cetane number has an impact on emissions/ fuel economyperformance. In some cases, the values with future dieselfuel exceed those with domestic diesel fuel.

Catalyst outlet Engine outlet F/EVehicle/Engine

Applicableemission

regulationsExhaust

aftertreatmentsystem

Test item

Vehicle AVehicle BVehicle C

Engine A

Engine B

2002 regs2005 regs2009 regs

2002 regs

2005 regs

Transient emissions

Transient emissions

Transient emissions

Transient emissionsSteady-state

emissions

Transient emissions

Steady-stateemissions

35

36

2. Research results(3) Topic 2: Impacts on cold startability

◆ Evaluation description of cold startability1. Evaluation item

・ Engine startup time・ THC emissions during engine startup・ THC emissions during engine racing after idling

2. Test temperature0 and - 15˚C

3. Measurement item・ Engine speed・ Time from the beginning of starter operation to the prescribed

engine speed (Engine startup time)・ THC emissions (at engine outlet/ catalyst outlet)・ Temperature of water, oil fuel and exhaust emissions

Topic Vehicle/ Applicable emissions D-Max D-Ave D-Min F-Max F-Ave1 F-Ave2 F-Min1 F-Min2Engine regulations

Vehicle A 2002 regulations. O O O0˚C Vehicle B 2005 regulations. O O O

Cold Vehicle C 2009 regulations. O O Ostartability Vehicle A 2002 regulations. O O O

-15˚C Vehicle B 2005 regulations. O O OVehicle C 2009 regulations. O O O

Evaluation item① Engine startup time② HC emissions during engine racing

37

Cold startability test – Evaluation method

Test duration (hr)

① Enginestartuptime

At full throttle to Achieve maximumengine speed

Number of timesper set → 5

Interval (1 hr)

Number of sets →2

Soak time: 12 hrs and over

←Idle retention time→

Eng

ine

spee

d(r

pm)

Vehicle A: 5 hrsVehicle B: 5 hrsVehicle C:2 hrs

② HC emissions during engine racing

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Engine startup time – Evaluation results

38

40 45 50Cetane number

Engi

ne s

tartu

p tim

e (s

ec)

-15℃0℃

Vehicle AVehicle B

Vehicle C 55/40 45 50 55Cetane number

0

0

◆:Domesticdiesel fuel

■:Future diesel fuel

THC(触媒後) 0℃

0

1000

2000

0 120 240 360 480 600

Time (s)

TH

C (

ppm

)

THC(触媒後) 0℃

0

1000

2000

0 120 240 360 480 600

Time (s)

TH

C (

ppm

)

THC(触媒後) 0℃

0

1000

2000

0 120 240 360 480 600

Time(s)

TH

C(

ppm

Vehicle A (2002 reg-truck)

Vehicle B (2005 reg-truck)

■:D-Ave (54.0)■:F-Ave (46.0)■:F-Min (42.9)

Vehicle C (2009 reg-passenger car)

39

THC emissions during engine startup at low temperatures (0˚C, downstream of catalyst)

THC(触媒後) -15℃

0

1000

2000

3000

0 120 240 360 480 600

Time (s)

TH

C (

ppm

)

THC(触媒後) -15℃

0

1000

2000

3000

0 120 240 360 480 600

Time (s)

TH

C (

ppm

)THC(触媒後) -15℃

0

1000

2000

3000

0 120 240 360 480 600

Time(s)

TH

C(

ppm

■:D-Min (51.9)■:F-Ave (46.0)■:F-Min (42.9)

40

THC emissions during engine startup at low temperatures (-15˚C, downstream of catalyst)

Vehicle A (2002 reg-truck)

Vehicle B (2005 reg-truck)

Vehicle C (2009 reg-passenger car)

41

THC emissions during engine racing (0˚C, downstream of catalyst)

・アイドリング時間車両A,B : 5時間車両C : 2時間

・レーシング5回実施

THC(触媒後) 0℃ レーシング1回目

0

1000

2000

3000

0 20 40 60Time (s)

TH

C (

ppm

)

THC(触媒後) 0℃ レーシング1回目

0

1000

2000

3000

0 20 40 60

Time (s)

TH

C (

ppm

)THC(触媒後) 0℃ レーシング1回目

0

1000

2000

3000

0 20 40 60Time (s)

TH

C (

pp

m)

Vehicle A (2002 reg-truck) Vehicle C (2009 reg-passenger car)

■:D-Ave (54.0)■:F-Ave (46.0)■:F-Min (42.9)

Vehicle B (2005 reg-truck)

▪ Idle timeVehicles A & B: 5hrsVehicle C : 2 hrs

▪ Engine racing : 5 times

42

THC(触媒後) -15℃ レーシング1回目

0

1000

2000

3000

0 20 40 60

Time (s)

TH

C (

ppm

)

THC(触媒後) -15℃ レーシング1回目

0

1000

2000

3000

0 20 40 60

Time (s)

TH

C (

ppm

)THC(触媒後) -15℃ レーシング1回目

0

1000

2000

3000

0 20 40 60

Time (s)

TH

C (

ppm

)

Vehicle A (2002 reg-truck)

Vehicle B (2005 reg-truck)

Vehicle C (2009 reg-passenger car)

THC emissions during engine racing (-15˚C, downstream of catalyst)

■:D-Min (51.9)■:F-Ave (46.0)■:F-Min (42.9)

・Idle timeVehicles A & B: 5 hrsVehicle C : 2 hrs

・Engine racing : 5 times

0

500

1000

1500

2000

2500

0 20 40 60

Time (s)

THC (pp

m)

D-Ave (CN = 54.0) F-Min (CN = 42.9)

Smoke visualization testVehicle A(2002 reg-truck)

■:D-Ave (54.0)■:F-Ave (46.0)■:F-Min (42.9)

気温(℃) 4.9湿度(%) 65.3

気温(℃) 6.5湿度(%) 48.0

43Idling for 70 minutes ⇒ Full throttle for 90 seconds

Temperature (˚C)

Humidity (%)

Temperature (˚C)

Humidity (%)

始動時 レーシング時始動時間 THC THC

0℃-15℃0℃

-15℃0℃

-15℃

後処理装置 試験温度車両 適合規制

車両A 新短期 DOC

車両B 新長期 DOC DPF

車両C ポスト新長期 DOC LNT DPF

44

Topic 2: Impacts on cold startability – Wrap up

Cetane number has no impact on cold startability.

Cetane number has an impact on cold startability.However, the values with future diesel fuel fallwithin the range of those with domestic diesel fuel.Cetane number has an impact on cold startability.In some cases, the values with future diesel fuel exceed those with domestic diesel fuel.

Vehicle

VehicleA

VehicleB

VehicleC

Applicableemission

regulations

2002 regulations

2005regulations

2009regulations

Exhaustaftertreatment

systemTest

temperature Enginestartup time

During startup During engineracing

45

Determine impacts of the increase in LCO on low temperature operability1. Evaluation item

・ After engine startup, keep idling for a prescribed duration, and determinethe time required to accelerate from 0 to 40 km/h

(Test to be conducted at the accelerator opening degree that is likely to affect on operability)

・Combustion noise (for 0˚C only)2. Test temperature

0 and -15˚C3. Measurement item

・ Vehicle speed・ Engine speed・ Combustion noise (for 0˚C only)・ Temperature of water, oil fuel and exhaust emissions

2. Research results(4) Topic 3: Impacts on low temperature operability

Topic Vehicle/ Applicable emissions D-Max D-Ave D-Min F-Max F-Ave1 F-Ave2 F-Min1 F-Min2Engine regulations

Vehicle A 2002 regulations. O O OLow 0˚C Vehicle B 2005 regulations. O O O

temperature Vehicle C 2009 regulations. O O Ooperability Vehicle A 2002 regulations. O O O

-15˚C Vehicle B 2005 regulations. O O OVehicle C 2009 regulations. O O O

Test duration

Eng

ine

spee

d

Engine startup

Neutralfor

3 sec.Interval

for 3 sec.

40km/h

Evaluation item・0→40 km/h acceleration time・Combustion noise (0℃)

2nd gearfor

3 sec.

*Shift up to3rd gear

Connectionof clutches

*Vehicle C (Passenger car)Start in 1st gear →

Shifting up to 2nd gear

Low temperature operability- Evaluation method

Vehicle warmupⅠ・・・・・Engine operation at 60 km/h till when water temperature reaches 60˚C

↓0→40 km/h acceleration for 10 times (1 set)

(Oil and water temperature rises to 70 - 80˚C)↓

Vehicle warmup Ⅱ・・・・・60 km/h for 20 minutes↓

0→40 km/h acceleration for 10 times (2 set)

46

Low temperature operability - Acceleration time (0˚C)

47

02468

10

02468

10

02468

10

40 45 50 55

Vehicle AVehicle B

Vehicle C

Acce

lera

tion

time

(sec

)

Cetane number

0

0

<Engine warmup conditions>1 set (solid line): water temperature: 60˚C2 set (dotted line): 60km/h for 20 minutes

◆:Domesticdiesel fuel

■:Future diesel fuel

02468

10

02468

10

02468

10

Low temperature operability - Acceleration time (-15˚C)

48

Vehicle AVehicle B

Vehicle C

Acce

lera

tion

time

(sec

)

0

0

<Engine warmup conditions>1 set (solid line): water temperature: 60˚C2 set (dotted line): 60km/h for 20 minutes

40 45 50 55Cetane number

◆:Domesticdiesel fuel

■: Future diesel fuel

Low temperature operability - Combustion noise (0˚C, Vehicle A)

49

燃焼騒音ー現行Ave(1セット)

70

80

90

100

0 1 2 3 4 5 6 7 8

時間(sec)

燃焼

騒音

(dB)

燃焼騒音ー現行Ave(2セット)

70

80

90

100

0 1 2 3 4 5 6 7

時間(sec)

燃焼

騒音

(dB)

Combustion noise – D-Ave (1 set)

Com

bust

ion

nois

e (d

B)

Time (sec)

Com

bust

ion

nois

e (d

B) Combustion noise – D-Ave (2 set)

Time (sec)

Low temperature operation test: Combustion noise

50

90

92

94

96

98

100

90

92

94

96

98

100

Vehicle AVehicle B

40 45 50 55Cetane number

90

<Engine warmup conditions>1 set (solid line): water temperature: 60˚C2 set (dotted line): 60km/h for 20 minutes

◆:Domesticdiesel fuel

■:Future diesel fuelC

ombu

stio

n no

ise

(dB)

0℃-15℃0℃

-15℃0℃

-15℃

車両 適合規制 後処理装置 試験温度 加速時間 燃焼騒音

車両A 新短期 DOC

車両B 新長期 DOC DPF

車両C ポスト新長期 DOC LNT DPF

Topic 3: Impacts on low temperature operability – Wrap up

Cetane number has no impact on low temperature operability.

Cetane number has an impact on low temperature operability.However, the values with future diesel fuel fall within the range of those with domestic diesel fuel.Cetane number has an impact on cold startability.In some cases, the values with future diesel fuel exceed those with domestic diesel fuel.

Vehicle

VehicleA

VehicleB

VehicleC

Applicableemission

regulations

2002regulations

2005regulations

2009regulations

Exhaustaftertreatment

systemTest

temperatureAcceleration

timeCombustion

noise

51

52

(2) Evaluation conditions: Conditions where differences infuels are identified during testing in steady-state mode

(3) Test engine: Engine B

(4) Test fuel: D-Ave, F-Min

Conduct combustion analysis test to determine impacts of the increase in LCO on emissions and other vehicle performance

(1) Evaluation method: Using a test method where engine speed is set to a prescribed value, while load is varied, determine Pmax, dP/dθ, ignition delay etc.

回転(%) 負荷(%)40 1040 5040 10060 1080 1080 60

2. Research results(5) Topic 4: Combustion analysis test

Engine speed (%) Load (%)

THC(エンジンアウト)

-1

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0Δメイン着火遅れ(deg C.A.)

(将来Min・メイン着火遅れ-現行Ave・メイン着火遅れ)

Δ T

HC

(g/

kWh

)(将

来M

in・

TH

C-

現行

Ave

・T

HC

)

53

Combustion analysis test - results

High engine load (50~100%)→ No changes

Low engine load (10%)→ Increase

Δ Main ignition delay (deg C.A.)(F-Min・Main ignition delay – D-Ave・Main ignition delay)

ΔTH

C (g

/kW

h)(F

-Min

・TH

C –

D-A

ve・TH

C)

THC emissions (at engine outlet)

54

3. Summary and future research issues(1) Summary

①Impacts on emissions performance・For Vehicle A and Engine A that meet 2002 regulations, cetane number has animpact on emissions performance. In some cases, the values with future dieselfuel exceed those with domestic diesel fuel.

・For Vehicle B and Engine B that meet 2005 regulations, cetane number has animpact on emissions performance. However, the values with future diesel fuel fall within the range of those with domestic diesel fuel.

②Impacts on fuel economy performance・For any vehicle or engine, cetane number has no impact on fuel economyperformance.

③Impacts on cold startability・For Vehicles A, B and C, cetane number has no impact on engine startup time at 0˚C.・For Vehicles A and B, cetane number has a impact on engine startup time at -15˚C.・For THC emissions during engine startup, impacts of cetane number are observed at

-15˚C for Vehicles A and B, while for Vehicle C, impacts of cetanenumber are observed at 0 and -15˚C.

・THC emissions during engine racing after long idling, differences areobserved in the case of Vehicle A.

④Impacts on low temperature operability・For Vehicles A, B and C, cetane number has no impact on acceleration

time (0 and -15˚C).・For Vehicles A and B, cetane number affects combustion noise level.

低温始動性能 低温運転性能始動時 レーシング時

始動時間 THC THC0℃

-15℃0℃

-15℃0℃

-15℃

燃焼騒音

車両A 新短期 DOC

加速時間適合規制 後処理装置 試験温度車両

車両C

車両B 新長期 DOC DPF

ポスト新長期 DOC LNT DPF

触媒アウト エンジンアウトNOx CO THC PM NOx CO THC PM

車両A 新短期 DOC 過渡排出ガス車両B 新長期 DOC DPF 過渡排出ガス車両C ポスト新長期 DOC LNT DPF 過渡排出ガス

過渡排出ガス定常排出ガス過渡排出ガス定常排出ガス

燃費車両・エンジン 適合規制 後処理装置 試験項目

エンジンA 新短期 DOC DPF

エンジンB 新長期 DOC DPF

3. Summary and future research issues

55

Impacts on emissions and fuel economy performance

Impacts on cold startability and low temperature operability

Cetane number has no impact. Cetane number has an impact. However, the values with future diesel fuel fall within the range of those with domestic diesel fuel.

Cetane number has an impact on coldstartability. In some cases, the valueswith future diesel fuel exceed thosewith domestic diesel fuel.

Catalyst –out emissions Engine-out emissionsVehicle/ engine

Vehicle AVehicle BVehicle C

Engine A

Engine B

Applicableemission

regulationsExhaust

aftertreatmentsystem

Test item

2002 regs2005 regs2009 regs

2002 regs

2005 regs

EF

Transient emissions

Transient emissions

Transient emissions

Transient emissions

Transient emissions

Steady-state emissions

Steady-state emissions

VehicleApplicableemission

regulations

Exhaustaftertreatment

system

Testtemperature

VehicleA

VehicleB

VehicleC

2002 regs

2005 regs

2009 regs

Cold startability Low temperatureoperability

During startup During engineracing

Startup timeAcceleration

timeCombustion

noise

56

3. Summary and future research issues

(2) Future research issues・ Study of impacts of 2009 reg vehicles that may have a

high market share in year 2020 on various vehicleperformance

・Evaluation of impacts on material compatibility, injectordeposits, etc. in addition to exhaust emissions, fuel economy, cold startability and low temperatureoperability

57

Thank you for your kind attention!