reversible vedic multiplier - manisha · pdf filedigital vlsi design vlsi design lab abv-iiitm...

27
Digital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier Neelam Arya(2011VLSI-02) Priyanka Mishra(2011VLSI-05) Shweta Singh(2011VLSI-13 ) 5 September 2012 1 Under Guidance of Dr. Manisha Pattanaik

Upload: truongkhue

Post on 01-Feb-2018

221 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Reversible Vedic Multiplier

• Neelam Arya(2011VLSI-02)• Priyanka Mishra(2011VLSI-05)• Shweta Singh(2011VLSI-13 )

5 September 20121

Under Guidance of

Dr. Manisha Pattanaik

Page 2: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Existing Multiplication Algorithms

• Shift/Add Multiplication Algorithm• Booth’s Recoding• High Redix Multiplier• Tree and Array Multiplier

These Multiplication Algorithms Differ in the means of Partial product generation and partial product addition.

5 September 2012 2

Page 3: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Vedic Multiplication Algorithm

• Urdhva Tiryakbhyam• It is the multiplication sutra (algorithm) in Vedic mathematics.Urdhva

means vertical.• Triyagbhyam means Crosswise• The multiplier is based on an algorithm Urdhva Tiryakbhyam (Vertical

and Crosswise) of ancient Indian Vedic Mathematics. Urdhva Tiryakbhyam Sutra is a general multiplication formula applicable to all cases of multiplication. It literally means vertically and crosswise. It is based on a novel concept through which the generation of all partial products can be done with the concurrent addition of these partial products. The algorithm can be generalized for n x n bit number.

•••

5 September 2012 3

Page 4: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Steps of Urdhva Tiryakbhyam Sutra(Algorithm)

5 September 2012 4

Page 5: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior 5 September 2012 5

Page 6: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior 5 September 2012 6

Page 7: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior 5 September 2012 7

Page 8: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Extension of VedicMultiplication Algorithm into

Conventional Logic

5 September 2012 8

Two Logic Blocks are needed to implement 4-bit multiplier

• Four 2*2 Multiplier blocks

• Three 4-bit Full Adder blocks

Page 9: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Architecture

5 September 2012 9

Page 10: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Simulation Result

Total Delay Time 12.735ns(8.559ns Logic ,4.177ns Route)(67.2%Logic,32.8%Route)

5 September 2012 10

Page 11: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Complexity Issue

5 September 2012 11

•As we will realize higher bit multiplier, complexity increases. Example:-for designing 8-bit multiplier, 4-bit multiplier blocks are used along with 8-bit adders. This increases the gate level complexity by 5 times and the delay time also increases by approx.2 times.

•Therefore we can conclude that realization of higher bit multipliers will need larger gate complexity and increased delay.

Page 12: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Design Optimization

• 2-bit Multipliers are designed using partial product generation method instead of conventional k-map method.

• 4-bit full adders are replaced with combination of full adder, half adder and xor gates.

5 September 2012 12

Page 13: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Implementation of Vedic Multiplier in Reversible Logic

• The multiple output Boolean function F (x1 , x2 , ..., xn ) of n Boolean variables is called reversible if

• The number of outputs is equal to the number of inputs;• Maps each input assignment to unique output assignment and vice

versa.

5 September 2012 13

Page 14: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Basic Reversible Gates Used

5 September 2012 14

• Quantum Cost 6• Used as a full adder

Page 15: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Basic Reversible Gates Used

5 September 2012 15

• Quantum Cost 4• Used as AND gate and Half Adder

Page 16: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Basic Reversible Gates Used

5 September 2012 16

•Quantum Cost 1•Used as copy gate and xor gate

Page 17: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Reversible Circuit

5 September 2012 17

Page 18: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior 5 September 2012 18

Page 19: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Important Parameters in Reversible Logic Circuit Designing

• Number of constant inputs (Gin): The inputs that are added to an n*k function to make it reversible are called constant inputs.

• Number of garbage outputs (Gout): Garbage outputs are some outputs that are not used for further computations in the circuit.

• Number of Gates (NOG): The number of reversible gates used to realize the function.

• Quantum Cost (QC): The Quantum Cost (QC) of a reversible circuit is defined as the number of 1*1 or 2*2 reversible quantum or logic gates that are needed to realize the circuit.

• Total logical calculations (circuit cost): One of the main factors of a circuit is its hardware complexity.

5 September 2012 19

Page 20: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

• α = A two input EX-OR gate calculation• β = A two input AND gate calculation• δ = A NOT calculation• T = Total logical calculation

5 September 2012 20

Page 21: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Circuit parameters

5 September 2012 21

Page 22: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Circuit Optimization

• 2-bit multilpier is realized using partial products (earlier 2-bit multilpier is realized using k-map boolean equations).

• To reduce garbage output and constant inputs, toffoli gate is used in 2-bit multiplier circuit.

• Half adder gates (peres gates) and 2-cnot gate(xor gate) is used in circuit where no carry is generated in the circuit and

• hence full adder gate can be replaced with them.

5 September 2012 22

Page 23: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Optimization of 2*2 Multiplier

5 September 2012 23

Page 24: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Optimization of 4-bit full adder

5 September 2012 24

Page 25: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Results and Comparison

5 September 2012 25

Page 26: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

Conclusions

• Low Delay• Quantum Cost, GO , No of Gates in

acceptable limit.• Regularity in structure.

5 September 2012 26

Page 27: Reversible Vedic Multiplier - Manisha · PDF fileDigital VLSI design VLSI Design Lab ABV-IIITM Gwalior Reversible Vedic Multiplier • Neelam Arya(2011VLSI-02) • Priyanka Mishra(2011VLSI-05)

Digital VLSI designVLSI Design Lab

ABV-IIITM Gwalior

References:

• Dr. K.S. Gurumurthy , M.S Prahalad,“Fast and Power Efficient 16X16 Array of Array Multiplier using Vedic Multiplication”,Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th

International, 20-22 Oct. 2010,pp 1 - 4 .• Haghparast, M., S.J. Jassbi, K. Navi and O. Hashemipour,

2008 “Design of a novel reversible multiplier circuit using HNG gate in nanotechnology”, World Appl. Sci. J., 3(6): 974-978.

5 September 2012 27