rite 20120928 final+ · outline laboratory for membrane science and technology 1.はじめに...

42
広島大学 大学院工学研究院 物質化学システム専攻 都留 稔了 [email protected] tel:082-424-7714 Membrane Science & Technology at Hiroshima University 膜分離技術の現状と将来展望 2012/09/28 革新的CO 2 膜分離技術シンポジウム

Upload: vuonghanh

Post on 22-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • [email protected]

    tel:082-424-7714Membrane Science & Technology at Hiroshima University

    2012/09/28CO2

  • Outline

    Laboratory for Membrane Science and Technology

    CO2post-combustion CO2pre-combustion CO2H2oxyfuel-combustion O2

    2

  • (http://www.bbc.co.uk/news/science-environment-11435522)

    3

    Pore size [nm]

    UF MF

    NF

    RO

    1 10 1002 5 20 500.2 0.5

  • 0

    5,000,000

    10,000,000

    15,000,000

    20,000,000

    25,000,000

    30,000,000

    35,000,000

    1990

    1991

    1992

    1993

    1994

    1995

    1996

    1997

    1998

    1999

    2000

    2001

    2002

    2003

    2004

    2005

    2006

    Classified by membrane types

    32,000,000 m3/d, 2006

    m

    3 /d

    Figure is copied from The Association of Membrane Separation Technology of Japan, based on membrane manufactures in JapanIDA Inventory Report 2006

    year

    SWRONF+BWROMF+UF

    4

  • All types(SWRO)

    (NF+BWRO)(LP+MF+UF)

    SWRO

    MF+UF

    60%

    40%

    70%

    30%

    43%

    57%

    JapanOverseasJapan

    overseas

    Figure is copied from The Association of Membrane Separation Technology of Japan, based on membrane manufactures in JapanIDA Inventory Report 2006

    5

  • RO/ NF Toray (sw), Nitto (sw), Toyobo (sw)

    UF Asahi Chemicals, Daicen

    MF Mitsubishi Rayon, Asahi Chemicals

    GS Ube Industries

    PV Mitsui Shipping

    Engineering Kurita, Organo, Mitsubishi Rayon

    6

  • RO/ NF Toray, Nitto (spiral wound)Toyobo (hollow fiber)

    Topics high-flux low pressure RO membranes

    positron analysis for boron rejection

    70%

    30%JapanOverseasJapanoverseas

    7RO/NF

  • (membrane combined with anaerobic fermentation)Aqua Renaissance (1985-1990) (METI)

    MAC21 (Membrane Aqua Century 21) (1991-) NewMAC21 (1994-1996)ACT21 (Advanced Aqua Clean Technology for 21 century ) (1997-2001)E-Water, E-Water2 (2002-)

    Topics:1. Membrane BioReactor in submerged system (MBR)

    originally developed in Aqua Renaissance.

    2. MembranesPE, PP: conventional materialsPVdF: a new and major material for membranes for water treatment

    8UF/MF

  • MLSS

    (http://blog.anua-us.com/blog/bid/50584/Membrane-Bioreactor-Wastewater-Treatment-for-Processing-Nitrogen)

    9

  • Manufactures: Mitsui Engineering & Shipbuilding Co.Mitsubishi Chemical, Hitachi Zosen Cor. (Hitz)

    Zeolite: NaA, TApplications: dehydration

    Manufactures: NGK InsulatorsNoritake

    Materials: Al2O3, TiO2Pore size: MF, UF (MWCO5,000)

    10

  • Outline

    Laboratory for Membrane Science and Technology

    CO2post-combustion CO2pre-combustion CO2H2oxyfuel-combustion O2

    11

  • 12CO2 post-pre-oxycombustion

    (Rubin et al., Progress in Energy and Combustion Science, 2012)

  • 13

    CO2

    (Rubin et al., Progress in Energy and Combustion Science, 2012)

  • CO2H2

    CH4

    CO

    Mo350

    ZnO

    Ni750-900

    Fe-Cr350-400

    Cu-zn200-250

    CO+H2O H2+CO2

    PSA

    CO2

    H2(

    H2

    H2

    H2CO2

    CO2

    CH4+H2O 3H2+CO

    CO2: 0.05CH4: 0.01CO: 0.15H2

    CO2: 0.20CH4: 0.01CO: 0.01H2

    CO2

    H2

    (

    14

    CO2

  • i

    iii

    iipDSpPJ

    j

    i

    j

    i

    j

    iji D

    DSS

    PP

    /

    15

  • 16CO2

    CO2 > H2 CO2CO2 > N2 CO2H2 > CO2 H2

    (Robeson, JMS 2008)

  • 17CO2

    CO2CH3|

    -( C = C-)|

    H3C-Si-CH3|

    CH3

    PTMSP

    (Robeson, JMS 2008)

  • CO2

    18

    (Baker, Membrane Technology and Applications, 2004)

    H2/N2 100-200

    O2/N2 6-7

    H2O/air >200

  • CO2

    /

    19

  • SILM (Supported Ionic Liquid Membrane)

    100m

    20

    (Bara, Noble et. al., Ind. Eng. Chem. Res. 2009)

  • 0.20 0.30 0.40 0.50 0.60

    H2 CO2 N2

    CH4

    C3H8 i-C4H10

    kinetic diameter [nm]

    C2H6

    tolueneSF6He

    0.70

    H2O

    CO2

    DDR SAPO-34

    SAPO34

    SiSi

    Si

    Si Si

    Si

    Si

    SiO

    O

    OO

    OO

    O

    OH

    OH

    OHOH

    O

    SiSi

    Si

    Si Si

    Si

    Si

    O

    O

    OO

    OO

    O

    OH

    OH

    OHOH

    O

    21

  • (permeate:153kPa)

    SAPO34

    0

    50

    100

    150

    perm

    eanc

    e ra

    tio [-

    ]

    Predicted

    0 1 2 3 410-10

    10 -9

    10 -8

    10 -7

    Per

    mea

    nce

    [mol

    /(m2

    s P

    a)]

    CO2 (Pure)CO2 (Mix) CH4 (Mix)

    Predicted (CH4)Predicted (CO2)

    Upstream partial pressure of CO2 [MPa]

    pd = 0.1 MPa

    CO2

    CO2

    CO2SAPO50-100

    22

    (Ping, Noble et al., JMS 2012) (, 2010)

  • CO2/CH4

    10 -11 10 -10 10 -9 10 -8 10 -7 10 -6 10 -510 0

    10 1

    10 2

    CO2 Permeance [mol/(m2 s Pa)]

    CO

    2/ C

    H4

    sele

    ctiv

    ity [-

    ]

    Organic

    Inorganic

    Fig. CO2/CH4 CO2

    35 C Low pressure (this work)

    DDRSAPO-34

    35C High pressure (this work)

    -SiO2CO2/CH4

    23

    (, 2010)

  • 24Oxy-combustion

    800-900

  • Outline

    Laboratory for Membrane Science and Technology

    CO2post-combustion CO2pre-combustion CO2H2oxyfuel-combustion O2

    25

  • Membrane Reactor)

    26

  • A+B C

    D

    A+B C+D

    A

    C

    A+B C D

    B

    Distributor

    CH4 + H2O CO + 3H2

    CO + H2O CO2 + H2

    Extractor

    CH3OH + O2 HCHO + H2O

    CO2 + H2O

    A+B

    A+B C (cat.)

    Active Contactor

    VOC+ O2 CO2+H2 O

    C

    CO+ O2 CO2+H2 O Pt/ zeolite-Y

    MeOH DME ZSM-5

    Extractor

    Distributor

    ActiveContactor

    VOC

    27

  • S, Cl

    Pd

    CVD CVDNi SiNSiC

    Pd,Pd/Ag CVD

    Pd

    28

  • C7H14 =C7H8 +3H2(MCH) (TOL)

    CH4+H2O CO+3H2 (SRM)CO + H2O CO2+H2 (WGS)

    (150~300C)

    (Tsuru et al., Sep. Sci. Tech. 2001, AIChE J 2004, App. Cat; 2006, J. Membr. Sci 2008) (Yada, Tsuru et al., ICIM10, 2008)

    7.2 6.6 2.89(500~600C)

    H2 CO2

    H2

    -

    0.20 0.30 0.40 0.50 0.60

    H2NH3CO2 N2

    CH4C3H8 iC4H10

    [nm]

    C2H6tolueneSF6He

    0.70

    H2O

    29

  • 2NH3 N2 +3H2H=+46 kJ/mol

    (400~500C)

    Ru-basedalkali-promoter

    CH4+2H2O CO2+4H2 H=+164.5 kJ/molC7H14 C7H8 + 3H2 H=+ 104.6kJ/mol

    0

    0.2

    0.4

    0.6

    0.8

    1

    200 300 400 500 600 700T[C]

    NH 3

    Conversio

    n

    P=1bar

    Feed:NH3100%

    10bar

    100bar

    400-500

    H2 NH32

    30

  • NH3

    CO2

    NH3 methanol L-H2 propane

    [g/cm3] 0.68 0.79 0.07 0.51

    [wt%] 17.6 12.5 100.0 18.2

    [kg/m3] 120.0 98.8 70.0 92.7

    HHV [MJ/kg] 22.5 22.7 141.9 48.9

    HHV [MJ/L] 15.3 17.9 9.9 24.9

    CO2 [kg/kg] 0.0 1.4 0.0 3.0

    31

  • Silica membrane

    BimodalCatalyticMembraneReactor

    Compact configuration

    Improved catalytic performance

    Proposal of a bimodal catalytic membrane reactor (BCMR) for NH3decomposition

    Macropores by -Al2O3 (~1m)

    Mesopores by -Al2O3 (~5nm)

    Bimodal pore structures (-Al2O3/ -Al2O3):

    High gas diffusivity

    Improved catalyst dispersion

    Momomodal [1] Bimodal [2,3] [1] Tsuru et al., AIChE J. 50 (2004) 2794-2805 [2] Tsuru et al., Appl. Catal., A 302 (2006) 78-85

    [3] Tsuru et al., J. Membr. Sci., 316 (2008) 53-62

    32

  • NH3 flow rate: 10 cc/minReaction temperature : 450CN2 sweep gas: 100 cc/min

    Reaction conditions:

    without sweep gas with sweep gas

    withoutsweep gas

    0

    4

    8

    12

    16

    20

    H 2flo

    wra

    te[m

    lmin

    1]

    0

    20

    40

    60

    80

    100NH 3

    conversio

    n[%

    ]

    0 100 200 300 400 500 600 700 800Time[min]

    retentatepermeate

    Retentate(NH3,N2,H2)

    Permeate

    Feed(NH3)

    sweepgas

    Catalytic activitystable with time.

    With H2 extractionNH3 conversion increased.H2 production rate increased.

    NH3 33

    (Li, Tsuru et al., J. Cata. Commun. 2011)

  • H2O + AcOH100kg/hW: 50A: 50

    50 kg/hW:0.5A: 49.5

    50 kg/hW: 49.5A: 0.5

    250 kg/h

    300 kg/h

    162,000 kcal/h

    energy-saving70%

    (M. Matsukata et. al., 2011)

    H2O + AcOH100kg/hW: 50A: 50

    50 kg/hW: 49.5A: 0.5

    35,000 kcal/h20 kg/hW:0.44A: 19.5

    45.3 kg/hW: 7.7A: 37.6

    15.3 kg/hW: 7.6A: 7.6

    30 kg/hW: 0.06A: 30.0

    95.3 kg/hW: 57.2A: 38.1

    Water/AcOH=150

    Water/AcOH=20

    34

    70%

    150

  • 35

  • Membrane Extraction Adsorption Distillation

    855 1003 634 151

    1. 1991-2011

    web of Science(Membrane OR Extraction OR Adsorption OR Distillation) AND separation AND

    hydrocarbon AND (1991-2011)

    36

  • 37

    2 C6H5CH3 C6H6 + C6H5(CH3)2

    STARMEM

    STARMEM55bar4391.2%8-carbon8.8%7-carbon0.035

    (L. White JMS 2006)

  • 38MOF(Metal Frame Organic)

    MOF(1)

    ZIF(2) (3)

    MOF(1)MOF(2)

    ZnO-based MOFZIF (ZnN)

    (3)

    (Slash et al., IEC 2011)

    (1) in-situ(2) secondary growth(3) Others

    layer-by-layercouter-diffusion(4) MOF on polymer supports(5) Mixed-matrix membranes (MMM)

  • 39MOF

    (1) in-situ(2) secondary growth(3) Others

    Liquid-phase epitaxy (layer-by-layer)(4) MOF on polymer supports(5) Mixed-matrix membranes (MMM)

    (Pan and Lai, ChemComm 2011)

  • Generation-4(1) High concentration acid gas removal from natural gas(2) Propane-propylene debottlenecking(3) Shale-gas

    40

  • 2021

    20

    21

    , CO2challenging

    41

  • Membrane Science & Technology, Hiroshima University

    Thank you very much for your kind attention!

    42