rong -gen cai ( 蔡荣根 ) institute of theoretical physics chinese academy of sciences

40
Rong-Gen Cai ( 蔡蔡蔡Institute of Theoretical Physics Chinese Academy of Sciences lography and Black Hole Phys

Upload: sai

Post on 03-Feb-2016

49 views

Category:

Documents


0 download

DESCRIPTION

Holography and Black Hole Physics. Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences. TexPoint fonts used in EMF: A A. Contents: Black Hole Mechanics and Black Hole Thermodynamics Bekenstein Bound and D-Bound 3. Holography in AdS Space and dS Space - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Rong-Gen Cai ( 蔡荣根)

Institute of Theoretical PhysicsChinese Academy of Sciences

Holography and Black Hole Physics

®= ¯®= ¯

Page 2: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Contents:

1. Black Hole Mechanics and Black Hole Thermodynamics

2. Bekenstein Bound and D-Bound

3. Holography in AdS Space and dS Space

4. Friedmann equations and first law of thermodynamics

Page 3: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

1. Black Hole mechanics and Black Hole Thermodynamics

18

2R g R GT

Einstein’s Equations (1915):

{Geometry matter (energy-momentum)}

Page 4: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Black Holes:

horizonSchwarzschild Black Hole: Mass M

More general:

Kerr-Newmann Black Holes

M, J, Q

No Hair Theorem

2 2 1 2 2 22 22(1 ) (1 )GM GM

r rds dt dr r d

Page 5: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

The 0th law k =const.

The 1st law d M=k dA/8πG + Ω dJ +Φd Q

The 2nd law d A > 0

The 3rd law K -> 0

Four Laws pf Black Hole mechanics:

K: surface gravity (J.M. Bardeen,B. Carter, S. Hawking, CMP,1973)

Page 6: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

The 0th law T=Const. on the horizon

The 1st law d M= T d S + J d Ω+Φ d Q

The 2nd law d (SBH +Smatter)>=0

The 3rd law T->0

Four Laws of Black Hole Thermodynamics:

Key Points: T = k/2π S= A/4G(S. Hawking, 1974, J. Bekenstein, 1973)

Page 7: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

2. What we learn from black hole thermodynamics:

Holography

/ 2T

2/ 4 / 4 pS A G A l

Hawking Temperature:

Bekenstein-Hawking Entropy:

(1) Black hole entropy:

Page 8: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

(2) Bekenstein Bound and Holographic Bound:

R

V, A

Bekenstein Bound (Bekenstein 1981):

2bS ER

Energy: E

Holography Bound:

2/ 4 pS A l

(‘t Hooft,1993, L. Susskind, 1994)

To be consistent with the second Law of thermodynamics

Page 9: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Holographic Bound:

Page 10: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Bekenstein Bound and Geroch Process.

E, R

2bS ER

(R.G. Cai and Y.S. Myung, PLB 559 (2003)60)

Consider a spherically symmetric black hole

Page 11: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Its horizon and Hawking temperature

First law of black hole thermodynamics

Page 12: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

The red shift factor near the horizon is given by

Therefore near the horizon the proper distance R has the relation to the coordinate distance x

The absorbed energy is given by

and the increased entropy of the black hole

Page 13: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

(3) de Sitter Space and D-bound:

(Willem de Sitter,1872-1934)

112 ( )R R g g g g

0C

Definition:

Page 14: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

2 2 2 2 2 20 1 2 3 4z z z z z l 3R S

2 2 2 2 2 20 1 2 3 4ds dz dz dz dz dz

A four dimensional de Sitter space is a hyperboloidembedded in a five dimensional Minkowski space!

TopologyAnother one:

Page 15: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

2 2 2 2 2 2 2 2 2cosh ( / )[ sin ( sin )]ds dt l t l d d d

In the global coordinates:

Page 16: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

2 2 2 2 2 2 1 2 2 2(1 / ) (1 / )ds r l dt r l dr r d

Cosmological constant

1) Cosmological horizon thermodynamics:

1/ 2T l 2/ 4 pS A l

2) Asymptotically de Sitter Space: for example, SdS space

2 2 2 2 2 2 1 2 2 2(1 2 / / ) (1 2 / / )ds m r r l dt m r r l dr r d

(G. Gibbons and S. Hawking,1977)

In the static coordinates:

Page 17: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

3) D-Bound (R. Bousso, 2001):

Entropy bound of a system in de Sitter space

20( ) / 4m pS A A l

This is consistent with the Bekenstein Bound !

Page 18: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

D-Bound and Bekenstein Bound:

(R.G. Cai, Y.S. Myung and N. Ohta, CQG 18 (2001) 5429)

Neutral system Charged system in 4 dim. (S. Hod, J. Bekenstein, B. Linet,2000)

Consider a charged system in de Sitter space

Page 19: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

When M=Q=0, a pure de Sitter space has a cosmological horizon and entropy

D-Bound leads to

On the other hand, the cosmological horizon obeys

Page 20: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Consider the large cosmological horizon limit:

One has, up to the leading order,

The D-Bound gives

Page 21: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

3. Holography in AdS and dS Spaces

AdS Spaces: 12 0R g R g

2 2

2 2

2 2 1 2 2 2(1 ) (1 )r rl l

ds dt dr r d

AdS/CFT Correspondence (J. Maldacena, 1997)

A well-known example: 5 4AdS / CFT

IIB superstring on N=4 SYM on the boundary of AdS_5

55AdS x S

Page 22: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

(E. Witten)

(A. Polyakov) (I. Klebanov) (S. Gubser)

Page 23: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

AdS/CFT Correspondence:

Page 24: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

AdS/CFT Correspondence:

where has two interpretations: on the gravity side, these fields correspond to boundary data or boundary values, for the bulk fields which propagate in the AdS space.

on the field theory side, these fields correspond to external source currents coupled to various CFT operators.

Page 25: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Holography in dS Space (A. Strominger, 2000)

Quantum Gravity in dS

Euclidean CFT on the Boundary of dS Space

2 2 2 2 2 2 2 2 2cosh ( / )[ sin ( sin )]ds dt l t l d d d

Page 26: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

准德西特相 德西特时空

标准大爆炸宇宙模型引力描写:

全息描写:

暴胀 未来

CFT1 QFT CFT2

重整化群的流动

我们的宇宙有个全息图吗?

2 2 2exp[2 / ]ds dt t l dx

Page 27: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

(1) Holography for AdS Black Holes

Cardy-Verlinde Formula for higher dimensional CFTs (J. Cardy, 1986, E. Verlinde, 2000)

The CFTs reside on

Page 28: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Consider an (n+2)-dimensional Schwarzschild-adS black hole

where

Some thermodynamic quantities:

Page 29: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

The boundary metric:

Thus, one has the thermodynamic quantities of CFTs:

It is easy to obtain

and to verify:

Page 30: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

4) Friedmann equations and first law of thermodynamics

Schwarzschild-de Sitter Black Holes:

Black hole horizon and cosmological horizon:

First law:

Page 31: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Friedmann-Robertson-Walker Universe:

22 2 2 2 2 2 2 2

2( )( sin )

1

drds dt a t r d r d

kr

1) k = -1 open

2) k = 0 flat

3) k =1 closed

Page 32: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Friedmann Equations:

Where:

Page 33: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Our goal :

(R.G. Cai and S.P. Kim, hep-th/0501055 (JHEP 02 (2005) 050))

Page 34: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

22 2 2 2 2 2 2 2

2( )( sin )

1

drds dt a t r d r d

kr

Page 35: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Horizons in FRW Universe:

Particle Horizon:

Event Horizon:

Apparent Horizon:

Page 36: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Apply the first law to the apparent horizon:

Make two ansatzes:

The only problem is to get dE

Page 37: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Suppose that the perfect fluid is the source, then

The energy-supply vector is: The work density is:

Then, the amount of energy crossing the apparent horizon within the time interval dt

( S. A. Hayward, 1997,1998)

Page 38: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

By using the continuity equation:

Page 39: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

What does it tell us:

Classical General relativity Thermodynamics of Spacetime

Quantum gravity Theory Statistical Physics of Spacetime

?

T. Jacobson, Phys. Rev. Lett. 75 (1995) 1260

Thermodynamics of Spacetime: The Einstein Equation of State

Page 40: Rong -Gen Cai ( 蔡荣根 ) Institute of Theoretical Physics Chinese Academy of Sciences

Thanks !