signals and systems -...

91
Spring 2013 信號與系統 Signals and Systems Chapter SS-2 Linear Time-Invariant Systems Feng-Li Lian NTU-EE Feb13 – Jun13 Figures and images used in these lecture notes are adopted from “Signals & Systems” by Alan V. Oppenheim and Alan S. Willsky, 1997

Upload: leminh

Post on 16-Apr-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

Spring 2013

信號與系統Signals and Systems

Chapter SS-2Linear Time-Invariant Systems

Feng-Li LianNTU-EE

Feb13 – Jun13

Figures and images used in these lecture notes are adopted from“Signals & Systems” by Alan V. Oppenheim and Alan S. Willsky, 1997

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-2Outline

Discrete-Time Linear Time-Invariant Systems• The convolution sum

Continuous-Time Linear Time-Invariant Systems• The convolution integral

Properties of Linear Time-Invariant SystemsCausal Linear Time-Invariant Systems

Described by Differential & Difference EquationsSingularity Functions

h(t)h[n]

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-3Chapter 1 and Chapter 2

h(t)h[n]

SystemsSignals

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-4In Section 1.5, We Introduced Unit Impulse Functions

Sample by Unit Impulse For x[n] More generally,

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-5DT LTI Systems: Convolution Sum

Representation of DT Signals by Impulses:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-6DT LTI Systems: Convolution Sum

Representation of DT Signals by Impulses: More generally,

• The sifting property of the DT unit impulse• x[n] = a superposition of scaled versions of

shifted unit impulses δ[n-k]

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-7DT LTI Systems: Convolution Sum

DT Unit Impulse Response & Convolution Sum:

Linear System

Linear System

Linear System

Linear System

Linear System

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-8DT LTI Systems: Convolution Sum

DT Unit Impulse Response & Convolution Sum:

Linear System

Linear System

Linear System

Linear System

Linear System…

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-9DT LTI Systems: Convolution Sum

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-10DT LTI Systems: Convolution Sum

Linear System

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-11DT LTI Systems: Convolution Sum

If the linear system (L) is also time-invariant (TI)

Then,

Linear System

Linear System

L & TI

L & TI

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-12DT LTI Systems: Convolution Sum

Hence, for an LTI system,

• Known as the convolution of x[n] & h[n]• Referred as the convolution sum or superposition sum

Symbolically,

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-13DT LTI Systems: Convolution Sum

Example 2.1m: LTILTI

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-14DT LTI Systems: Convolution Sum

Example 2.2m: LTI

Feng-Li Lian © 2011NTUEE-SS2-LTI-15DT LTI Systems: Convolution Sum

Example 2.2m:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-16DT LTI Systems: Convolution Sum

Example 2.1o: LTI

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-17DT LTI Systems: Convolution Sum

Example 2.2o: LTI

Feng-Li Lian © 2011Feng-Li Lian © 2013

Example 2.2o:

DT LTI Systems: Convolution Sum NTUEE-SS2-LTI-18

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-19DT LTI Systems: Convolution Sum

Example 2.2o:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-20DT LTI Systems: Convolution Sum

Example 2.3:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-21DT LTI Systems: Convolution Sum

Example 2.3:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-22DT LTI Systems: Convolution Sum

Example 2.3:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-23DT LTI Systems: Convolution Sum

Example 2.4:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-24DT LTI Systems: Convolution Sum

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-25DT LTI Systems: Convolution Sum

LTI

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-26DT LTI Systems: Convolution Sum

Example 2.5: LTI

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-27DT LTI Systems: Matrix Representation of Convolution Sum

For an LTI system,

The convolution of finite-duration discrete-time signals may be expressed as the product of a matrix and a vector.

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-28DT LTI Systems: Matrix Representation of Convolution Sum

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-29Outline

Discrete-Time Linear Time-Invariant Systems• The convolution sum

Continuous-Time Linear Time-Invariant Systems• The convolution integral

Properties of Linear Time-Invariant SystemsCausal Linear Time-Invariant Systems

Described by Differential & Difference EquationsSingularity Functions

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-30CT LTI Systems: Convolution Integral

Representation of CT Signals by Impulses:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-31CT LTI Systems: Convolution Integral

Representation of CT Signals by Impulses:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-32CT LTI Systems: Convolution Integral

Graphical interpretation:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-33CT LTI Systems: Convolution Integral

CT Impulse Response & Convolution Integral:

Linear System

Linear System

Linear System

Linear System

Linear System

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-34CT LTI Systems: Convolution Integral

CT Impulse Response & Convolution Integral:

Linear System

Linear System

Linear System

Linear System

Linear System…

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-35CT LTI Systems: Convolution Integral

LinearSystem

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-36CT LTI Systems: Convolution Integral

CT Unit Impulse Response & Convolution Integral:

Linear System

Linear System

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-37CT LTI Systems: Convolution Integral

If the linear system (L) is also time-invariant (TI)• Then,

Hence, for an LTI system,

• Known as the convolution of x(t) & h(t)• Referred as the convolution integral

or the superposition integral

Symbolically,

LTI

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-38CT LTI Systems: Convolution Integral

Example 2.6:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-39CT LTI Systems: Convolution Integral

Example 2.7:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-40CT LTI Systems: Convolution Integral

Example 2.8:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-41Convolution Sum and Integral

Signal and System:

LTI: h(t)

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-42Outline

Discrete-Time Linear Time-Invariant Systems• The convolution sum

Continuous-Time Linear Time-Invariant Systems• The convolution integral

Properties of Linear Time-Invariant SystemsCausal Linear Time-Invariant Systems

Described by Differential & Difference EquationsSingularity Functions

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-43Properties of LTI Systems

Convolution Sum & Integral of LTI Systems:

h(t)

h[n]

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-44Properties of LTI Systems

Properties of LTI Systems

1. Commutative property

2. Distributive property

3. Associative property

4. With or without memory

5. Invertibility

6. Causality

7. Stability

8. Unit step response

h[n]

h(t)

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-45Properties of LTI Systems

Commutative Property:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-46Properties of LTI Systems

Distributive Property:

h2[n]

+

h1[n]

h1[n]+h2[n]

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-47Properties of LTI Systems

Distributive Property:

h[n]+

h[n]

+

h[n]

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-48Properties of LTI Systems

Example 2.10

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-49Properties of LTI Systems

Associative Property:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-50Properties of LTI Systems

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-51In Section 1.6.1: Basic System Properties

Systems with or without memory Memoryless systems

• Output depends only on the input at that same time

Systems with memory

(resistor)

(delay)

(accumulator)

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-52Properties of LTI Systems

Memoryless:• A DT LTI system is memoryless if

• The impulse response:

• From the convolution sum:

• Similarly, for CT LTI system:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-53In Section 1.6.2: Basic System Properties

Invertibility & Inverse Systems Invertible systems

• Distinct inputs lead to distinct outputs

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-54Properties of LTI Systems

Invertibility:

h1(t)

Identity System δ(t)

h2(t)

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-55Properties of LTI Systems

Example 2.11: Pure time shift

h1(t) h2(t)

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-56Properties of LTI Systems

Example 2.12

h1[n] h2[n]

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-57Properties of LTI Systems

Causality:

• The output of a causal system depends only on the present and past values of the input to the system

• Specifically, y[n] must not depend on x[k], for k > n

• It implies that the system is initially rest

• A CT LTI system is causal if

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-58Properties of LTI Systems

Convolution Sum & Integral

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-59In Section 1.6.4: Basic System Properties

Stability Stable systems

• Small inputs lead to responses that do not diverge• Every bounded input excites a bounded output

– Bounded-input bounded-output stable (BIBO stable)– For all |x(t)| < a, then |y(t)| < b, for all t

• Balance in a bank account?

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-60Properties of LTI Systems

Stability:• A system is stable

if every bounded input produces a bounded output

Stable LTI

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-61Properties of LTI Systems

Stability:• For CT LTI stable system:

Stable LTI

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-62Properties of LTI Systems

Example 2.13: Pure time shift

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-63Properties of LTI Systems

Example 2.13: Accumulator

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-64Properties of LTI Systems

Unit Impulse and Step Responses:• For an LTI system, its unit impulse response is:

• Its unit step response is:

DT LTI CT LTI

DT LTI CT LTI

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-65Outline

Discrete-Time Linear Time-Invariant Systems• The convolution sum

Continuous-Time Linear Time-Invariant Systems• The convolution integral

Properties of Linear Time-Invariant Systems1. Commutative property2. Distributive property3. Associative property4. With or without memory5. Invertibility6. Causality7. Stability8. Unit step response

Causal Linear Time-Invariant Systems Described by Differential & Difference Equations

Singularity Functions

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-66Singularity Functions

Singularity Functions• CT unit impulse function is one of singularity functions

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-67Singularity Functions

Singularity Functions

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-68Singularity Functions

Example 2.16

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-69Singularity Functions

Example 2.16

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-70Singularity Functions

Defining the Unit Impulse through Convolution:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-71Singularity Functions

Defining the Unit Impulse through Convolution:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-72Singularity Functions

Defining the Unit Impulse through Convolution:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-73Singularity Functions

Unit Doublets of Derivative Operation:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-74Singularity Functions

Unit Doublets of Derivative Operation:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-75Singularity Functions

Unit Doublets of Integration Operation:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-76Singularity Functions

Unit Doublets of Integration Operation:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-77Singularity Functions

Unit Doublets of Integration Operation:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-78Singularity Functions

In Summary…

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-79Outline

Discrete-Time Linear Time-Invariant Systems• The convolution sum

Continuous-Time Linear Time-Invariant Systems• The convolution integral

Properties of Linear Time-Invariant Systems1. Commutative property2. Distributive property3. Associative property4. With or without memory5. Invertibility6. Causality7. Stability8. Unit step response

Causal Linear Time-Invariant Systems Described by Differential & Difference Equations

Singularity Functions

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-80Causal LTI Systems by Difference & Differential Equations

Linear Constant-Coefficient Differential Equations• e.x., RC circuit

• Provide an implicit specification of the system• You have learned how to solve the equation in Diff Eqn

RC Circuit

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-81Causal LTI Systems by Difference & Differential Equations

Linear Constant-Coefficient Differential Equations• For a general CT LTI system, with N-th order,

CT LTI

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-82Causal LTI Systems by Difference & Differential Equations

Linear Constant-Coefficient Difference Equations• For a general DT LTI system, with N-th order,

DT LTI

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-83Causal LTI Systems by Difference & Differential Equations

Recursive Equation:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-84Causal LTI Systems by Difference & Differential Equations

For example, Example 2.15 LTI

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-85Causal LTI Systems by Difference & Differential Equations

Nonrecursive Equation:• When N = 0,

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-86Causal LTI Systems by Difference & Differential Equations

Block Diagram Representations:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-87Causal LTI Systems by Difference & Differential Equations

Block Diagram Representations:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-88Causal LTI Systems by Difference & Differential Equations

Block Diagram Representations:

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-89Causal LTI Systems by Difference & Differential Equations

Block Diagram Representations:

Example 9.30 (pp.711) Example 10.30 (pp.786)

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-90Chapter 2: Linear Time-Invariant Systems

Discrete-Time Linear Time-Invariant Systems• The convolution sum

Continuous-Time Linear Time-Invariant Systems• The convolution integral

Properties of Linear Time-Invariant Systems1. Commutative property2. Distributive property3. Associative property4. With or without memory5. Invertibility6. Causality7. Stability8. Unit step response

Causal Linear Time-Invariant Systems Described by Differential & Difference Equations

Singularity Functions

Feng-Li Lian © 2011Feng-Li Lian © 2013NTUEE-SS2-LTI-91

Periodic Aperiodic

FS CTDT

(Chap 3)FT

DT

CT (Chap 4)

(Chap 5)

Bounded/Convergent

LTzT DT

Time-Frequency

(Chap 9)

(Chap 10)

Unbounded/Non-convergent

CT

CT-DT

Communication

Control

(Chap 6)

(Chap 7)

(Chap 8)

(Chap 11)

Signals & Systems LTI & Convolution(Chap 1) (Chap 2)

Flowchart