soc-06:digital control of dc-dc...

40
Digital Control of DC-DC Converters NCTU 2005 Course Notes: SoC & SoP for Power Electronics 1 page 1 2005421鄒應嶼 教授 國立交通大學 電機與控制工程研究所 Filename: \A02 投影片:電力電子系統晶片(研究所)\SoC-06Digital Control of DC-DC Converters.ppt Digital Control of DC-DC Converters - An Introduction 國立交通大學電力電子晶片設計與DSP控制實驗室 Power Electronics IC Design & DSP Control Lab., NCTU, Taiwan http://powerlab.cn.nctu.edu.tw/ POWERLAB NCTU 電力電子晶片設計與DSP控制實驗室 Power Electronics IC Design & DSP Control Lab. 台灣新竹交通大學 電機與控制工程研究所 page 2 Contents 1. Analog PWM IC 2. Digital PWM IC 3. Digital PWM IC: Future Outlook 4. Digital Control Loop Design 5. Digital Controller Realization

Upload: doanliem

Post on 03-May-2018

218 views

Category:

Documents


3 download

TRANSCRIPT

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 1

    page 1

    2005421

    Filename: \A02 ()\SoC-06Digital Control of DC-DC Converters.ppt

    Digital Control of DC-DC Converters- An Introduction

    DSPPower Electronics IC Design & DSP Control Lab., NCTU, Taiwan

    http://powerlab.cn.nctu.edu.tw/

    POWERLABNCTU

    DSPPower Electronics IC Design & DSP Control Lab.

    page 2

    Contents

    1. Analog PWM IC2. Digital PWM IC3. Digital PWM IC: Future Outlook4. Digital Control Loop Design 5. Digital Controller Realization

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 2

    page 3

    1. Analog PWM Control IC

    Power Electronics IC Design and DSP Control Lab., NCTU, Taiwan

    DSPPower Electronics IC Design & DSP Control Lab.

    page 4

    UC3845: PWM Control ICs from TI (Unitrode)

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 3

    page 5

    UC3845: Features and Block Diagram

    Optimized for Off-line and DC-DC ConvertersLow Start Up Current (

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 4

    page 7

    UCC3960: First primary side start-up PWM uses digital feedback

    FeaturesOver current protection with soft startProgrammable maximum duty cycle clamp (UCC3960)Programmable volt second clamp (UCC3961)Programmable UV and OV sense (UCC3961)Self-bias regulator for external start switch in UCC3961Provides primary-side start-up functions for secondary-side controlled convertersIsolated PWM command through a pulse transformerLow current start-up with optional disconnectUp to 400-kHz synchronizable switching frequencyHigh-current FET drive (1.5-A sink, 0.75-A source)Packaging: Available in 8-pin SOIC, PDIP for the UCC3960 and 14-pin SOIC, PDIP for the UCC3961Suggested resale price starts at $1.18 each in quantities of 1,000 for the UCC3960 and $1.28 each for the UCC3961

    Vin

    out

    CSVS

    RT FB out

    startUVS/OVS

    FB

    Vout

    f eedbackStart-upOSC

    UV&OVProtection*

    OptionalRegulator*

    ControllogicV*S

    Clamp*

    VDD

    +1A

    *UCC3961 only

    SecondarySide

    controller

    page 8

    Buck DC-DC Regulator: LM1575/LM1575HV/LM2575/LM2575HV SeriesSIMPLE SWITCHER 1A Step-Down Voltage Regulator (National Semiconductor)

    Features3.3V, 5V, 12V, 15V, and adjustable output versionsAdjustable version output voltage range,23V to 37V (57V for HV version) 4% max over line and load conditionsGuaranteed 1A output currentWide input voltage range, 40V up to 60V for HV versionRequires only 4 external components52 kHz fixed frequency internal oscillatorTTL shutdown capability, low power standby modeHigh efficiencyUses readily available standard inductorsThermal shutdown and current limit protectionP+ Product Enhancement tested

    ApplicationsSimple high-efficiency step-down (buck) regulatorEfficient pre-regulator for linear regulatorsOn-card switching regulatorsPositive to negative converter (Buck-Boost)

    Gnd 4-feedback3-ground2-output1-VIN

    /OFFON5

    7V-40V (60V)Unregulated

    DC input 1

    3 52

    4L1

    D1IN5819

    GND

    +5VRegulatedOutput1 A load

    feedback

    /OFFONH330

    output

    INV+

    F100INC

    F330outC

    + +

    LM2575/LM2575HV

    5.0

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 5

    page 9

    Functional Description of the Buck Regulator

    LM1575

    For adjustable version

    R1 = open, R2 = 0

    1.7k3.1k

    8.84k11.3k

    3.3V5.0V12V15V

    R2

    ()Output

    Voltage version

    +

    +

    +

    Latch

    Reset52 kHzoscillator

    1.235VBand-gapreference

    Thermalshutdown

    3.1V internalregulator1

    4

    R2

    R11.0k

    Fixed gainError amplifier Comparator

    FreqShift18kHz

    feedback

    UnregulatedDC input

    Currentlimit

    Driver

    Cout3

    21.0Ampswitch

    output

    Gan D1

    L1

    Load

    Regulatoroutput

    Vout

    5

    +Vin

    Cin+

    +

    +

    /OFFON/OFFON

    page 10

    Switching Regulator: Analog or Digital Control IC?

    +

    PWMControl IC

    L

    C

    np

    vgn

    Vbat vsw(t)

    vL(t)

    iL(t) Iload

    vo(t)

    iC(t)+ + +

    Vref

    vgp

    Main switchSynchronous rectifier

    drivers

    Bandgapreference

    p

    n

    td1 td2dead times

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 6

    page 11

    2. Digital PWM Control IC

    Power Electronics IC Design and DSP Control Lab., NCTU, Taiwan

    DSPPower Electronics IC Design & DSP Control Lab.

    A New Frontier!

    page 12

    Advantages of Using Digital Control Schemes

    Low sensitivity to process and parameter variationsProgrammability

    Improved Flexibility / Reduced Design Time Elimination Of Discrete Component Tuning Self Calibration for Accuracy

    Improved FlexibilityImproved System ReliabilityConfigurabilityReduction or elimination of passive components for tuningEase of integration with digital systemsEase of implementing multi-phase converters Ability To Implement Advanced Control TechniquesSystematic design software to shorten development time

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 7

    page 13

    Programmability ProgrammabilityElimination Of Discrete Component Tuning

    Loop Coefficient Readjustment Compensation Filter is Digital Frequency Response is set by Coefficients stored in Memory

    Digital PID Compensator No fixed, externalcompensation componentslike analog

    Analog equivalent

    Vout VrefVrefTo PWM

    +

    DigitalERR

    To digitalPWM

    Z-1

    Z-1

    +

    +

    ++

    +

    +

    iK

    pK

    dK

    page 14

    Improved Flexibility

    Eases Ability to Connect Multiple Controllers and Power Stages

    Easier System Integration Communication Bus Eases Layout & Routing

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 8

    page 15

    Digital Control of DC-DC Converters

    DigitalPWM

    Control IC

    LOAD

    + +

    )(sd )(siL

    C

    Cr

    LLr

    dcV oV

    )(sVo

    )(sio

    )(sVdc

    Characterization of a Buck Converter Modeling and Control of DC-DC ConvertersArchitecture Digital PWM Control IC Realization of a First-Order Digital Compensator VHDL Realization of the Digital Controller ModelSim Verification of the Digital-Controlled Buck Converter

    page 16

    Simulink Block Diagram

    Linear Model of the Buck Converter

    Digital Controller

    R. R. Boudreaux, R. M. Nelms, and J. Y. Hung, "Simulation and modeling of a DC-DC converter controlled by an 8-bit microcontroller," IEEE APEC Conf. Rec., pp. 963 - 969, 23-27 Feb. 1997.

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 9

    page 17

    Digital Control IC Implementation

    Anti-aliasingfilter Sample and hold

    Control/DPWMgenerator

    A/DconverterVout Sense

    ADC

    page 18

    Anti-Aliasing Filter

    Anti-Aliasing Filter: Required by Sampling TheoremUnity DC Gain and Minimum Phase Lag before Main Loop Cutoff requires:

    High Sampling Frequency High order filter (2nd order or higher)

    -0dB at 100kHz

    -40dB at 1/2F samplew/2 pole filter

    F sample = 10MHz

    frequency

    Gai

    n (d

    B)

    0

    -40

    -80

    -1201.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 10

    page 19

    Digital Control IC Implementation

    Source: B. J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, "High-frequency digital controller IC for dc/dc converters," Proc. IEEE Appl. Power Electron. Conf., vol. 1, pp. 374380, 2002.

    +

    L

    C

    c(t)

    Switching power converter

    vo

    +

    fs = 1MHz

    Vg

    Vsense

    HybridDPWM

    Compensator(look-up table)

    Delay-lineA/D

    d e

    VrefDigital Control IC

    OUT SENSE

    Externalmemory

    Simple, small-area, low-power, all-digital standard-cell ASIC

    Programmable compensator

    1 MHZ switching frequency

    page 20

    A Prototype of Digital PWM Control Chip

    1 MHz digital PWM controller IC0.5 CMOS technologyArea: 0.96 mm284 pins, only 4 essential: SENSE, OUT, VDD, GNDStandard digital design flow:

    HDL (Verilog) based designSynthesis to standard-cell gatesAutomated place & route

    Source: B. J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, "High-frequency digital controller IC for dc/dc converters," Proc. IEEE Appl. Power Electron. Conf., vol. 1, pp. 374380, 2002.

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 11

    page 21

    Chip Architecture

    Vq

    VoVref

    (Vo)max

    e+4+3+2+10

    1234

    Vref

    Vsense

    SENSE

    A/D converter

    Look-up table programming interface

    Programmable compensatorSystem clock

    Digital pulse-width modulator

    OUT

    DPWM

    External memory

    Table A

    Table B

    Table C

    Ts

    TsTs

    e[n]

    e[n1]

    e[n2]

    d[n]

    d[n+1]+

    c(t) TsdTs ss Tf /1=

    page 22

    ADC Requirements

    Vq

    VoVref

    (Vo)max

    e+4+3+2+1

    01234

    Only a few digital error output needed

    Static voltage regulation Vq Vo

    Dynamic voltage regulation small conversion range

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 12

    page 23

    Types of A/D Converter

    DELAY-LINE CONVERTER

    FEEDBACK-TYPE CONVERTER

    DUAL-SLOPE CONVERTER

    PARALLEL (FLASH) CONVERTER

    CHARGE-REDISTRIBUTION CONVERTER

    page 24

    Delay-line A/D

    Analog input is the supply voltage VD for a chain of logic gates

    Digital output q(in thermometer code)

    Digital output e

    SENSE

    sample

    test

    R

    D Q

    VDD

    t1

    R

    D Q

    VDD

    t2

    R

    D Q

    VDD

    t3

    D Q

    t8

    R

    VDDdelaycell

    Analog input Vsense

    R

    VDD

    q1 q2 q3 q8

    Encoder

    Digital output e

    Delay td versus VDD

    1200

    1000

    800

    600

    400

    200

    00 1 2 3 4 5

    VDD

    t d(ps

    )

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 13

    page 25

    Delay-line A/D Operation

    Stateconversion

    Endconversion

    q = {11111100}e = 2

    sample

    test

    t1t2

    t3t4

    t5t6

    t7t8

    td

    s

    11111100

    page 26

    Features of Deal-Line A/D Converter

    Small chip area, inherent averaging of analog inputDelay blocks constructed with standard cellsMatched strobe delay added to provide self-calibrated reference point

    Experimental characteristics over temperature

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 14

    page 27

    Delay-line A/D Experimental Results

    nconsumptiocurrent A 10sampling MHz 1

    6.3 ,53tionimplementa digital-All

    =

    ==

    s

    q

    fmVmVVVq

    Vsense

    Error e+4

    +3

    +2

    +1

    0

    1

    2

    3

    4

    Zero-error bin

    Vref 0.2 V VrefVref 0.1 V Vref + 0.1 V Vref + 0.2 V

    page 28

    Digital PID Controller

    +

    rn end t( )

    y t( )K zi ( )11

    Kp

    +

    +

    ++

    K zd ( )11

    unZOH G sp ( )

    ynT

    u n K e n K T e iKT

    e n e nP Ii

    nD( ) ( ) ( ) [ ( ) ( )]= + +

    =

    11

    u n K e n K T e i KT

    e n e nP ID

    si

    n( ) ( ) ( ) [ ( ) ( )] = + +

    =

    1 1 1 21

    1

    )]2()1(2)([)( )]1()([)1()( ++++= neneneTK

    neTKneneKnunus

    DsIP

    The velocity form or incremental form of this digital PID control algorithm can be derived as following:

    [Position form]

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 15

    page 29

    Digital PI Controller with Anti-Windup

    mu

    0

    1)(tw

    ue u

    e

    +

    mu

    1

    1

    1

    zz

    TK

    D

    I

    PK

    +

    0 0

    )(te

    1t 0t

    mu

    u

    t 0 1t 0t

    mu

    u

    t0t

    t

    page 30

    Look-up Table Based Programmable Compensator

    PID compensator: d[n+1] = d[n] + a e[n] + b e[n-1] + c e[n-1]

    Table A Table B Table C

    Table A

    Table B

    Table C

    Ts

    TsTs

    e[n1]

    e[n2]

    d[n]

    d[n+1]+

    Duty-cycleto

    DPWM

    Programmable compensator

    External memory

    ErrorfromA/D

    e[n]

    8-bit

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 16

    page 31

    PID Regulator based on Look-up Tables

    Source: A. Prodic and D. Maksimovic, "Design of a digital PID regulator based on look-up tables for control of high-frequency DC-DC converters," IEEE Workshop on Computers in Power Electronics, pp. 18-22, June 2002.

    ToPWM

    Look up tableb e(n-1)

    Look up tablec e(n-2)

    +d[n]

    d[n-1]

    +Look up table

    a e(n) e[n]

    e[n-1]

    e[n-2]

    FromA/D

    +

    page 32

    High-Resolution Hybrid DPWM

    Combines a delay line (ring oscillator) with a counter to reduce the maximum clock speed

    Conventional DPWM:

    Hybird DPWM:

    Prototype:

    sn

    clk ff = 2

    sn

    clks fff = 2

    MHz 8MHz 1bits 8

    ==

    =

    clk

    s

    ffn

    +VDD

    Q0 Q1 Q2 Q3

    0 1 2 3

    RD Q

    RD Q

    RD Q

    RD Q

    d[3:2]

    d[1:0]

    inputd[3:0]

    nd

    nc

    n

    nc

    Rsect

    Set

    R

    S

    Qc(t)

    OUT

    Systemclock2-bit

    counter+1 out[1:0]

    cnt[1:0]

    MUX 1:2 dnnc-bit

    Comparator 1(a ?=b)

    nc-bitComparator 2

    (a ?=b)

    a[1:0]b[1:0]

    a[1:0]b[1:0]

    out(a=b)

    out(a=b)

    cnt[1:0]

    nc

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 17

    page 33

    DPWM Experimental Results

    0 32 64 96 128 160 192 224 255

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    Output duty ratio [%]

    DPWM input (decimal)

    page 34

    A Digitally Controlled Buck Converter

    L = 1 H, C = 22 F

    4 V < Vg < 6 V

    Vo = 2.7 V +/- 25 mV

    0 < Io < 1.5 A

    fs = 1 MHz

    +

    L

    C

    c(t)

    Switching power converter

    vo

    +

    fs = 1MHz

    Vg

    Vsense

    HybridDPWM

    Compensator(look-up table)

    Delay-lineA/D

    d e

    VrefDigital controller IC

    OUT SENSE

    Externalmemory

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 18

    page 35

    Experimental Results

    Load Transient Responses

    page 36

    Predictive Digital Current Mode Control

    Objective: compute d[n] so that i[n] = ic (dead-beat control)Three possible control objectives: peak current, valley current or average current

    + vin

    +

    g(t)

    i(t)L

    A/D

    vo

    +

    A/D

    Ts

    DPWMPredictive

    DigitalCurrent-mode

    controlleric

    i[n-1]

    d[n]

    d[n-1]

    Power-stagevoltage(s)

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 19

    page 37

    Types of current-mode control and their stability regions

    Source: Bob Erickson, Advancing Digital Control of Switched-Mode Converters, 2004.

    The same control law holds for the inherently stable control/PWM combinationsThis form of control law is appropriate for digital realization

    Vvini

    VTLndnd inc

    s

    2)]1[(]1[2][ =

    StableStableD0.5StableTrailing triangle

    D0.5StableTrailing

    AveragePeakValley

    page 38

    Digital Deadbeat Current Control Scheme

    A/D A/D A/D

    +

    +

    Switching power converter vo(t)+

    vin load

    DPWM

    Analog/digitalinterface

    vo(t)vin(t) ig(t) d(t)

    Computation unit

    vin[n] ig[n] d[n] vo[n]

    Deadbeat controller

    iref[n] vo[n]Vref[n]

    ev[n]Voltage loop regulator

    ADMC401

    ])1[][(]1[][

    +=

    necnebKnuanu

    vv

    vvvv

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 20

    page 39

    Digital Current-Mode Control for DC-DC Converters

    + vg

    +

    C

    is(t) L

    ref sensesa

    mpl

    e

    iL[n]

    Current A/D

    vo

    +

    Triangle-mod.DPWM

    PredictiveDigital

    Current-modecontroller

    DigitalVoltage-loop reg.

    andControl state mach.

    A/D

    Ts

    Reference generatorVoltage and parameter programming

    ic[n]

    d[n]

    d[n+1]

    e[n]

    CLK

    Vref

    page 40

    Current A/D Implementation

    Sensing voltage across RonConversion time: TcResolution: LSB = IqConversion range: 0-Imax

    + vg

    +

    C

    iL(t)

    L

    c(t)

    ref sense

    sample

    iL[n]

    Delay-lineCurrent A/D

    vo

    +

    sample

    c(t)

    nTs

    Tc

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 21

    page 41

    Current A/D Sampling and Resolution

    ON or OFF time samplingLocal signal averaging over Tc Improved noise immunity Tc can be longerResolution:

    Example:Tc = 200 nstd = 0.2 nsVg = 5 VViq = 5 mV

    gc

    diqqon VT

    tVIR =sample

    c(t)

    nTs

    Tc

    On-time sampling

    OFF-time sampling

    sample

    c(t)

    nTs

    Tc

    page 42

    Experimental Results of the Synchronous Current Sampling

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 22

    page 43

    Summary: Digital Current-Mode Control

    Investigations of all-digital current-mode multi-phase controller architectureStandard-cell based implementation of all key building blocksHDL-based design scales with digital technologyOpen possibilities for:

    More advanced control algorithmsProgrammable features and parametersTight system integration with P loadMore advanced power management techniques including adaptive voltage scalingMore sophisticated approaches to accurate current sensing in multi-phase architecturesMasterless multi-phase architectures

    page 44

    3. Digital PWM IC: Future Outlook

    Power Electronics IC Design and DSP Control Lab., NCTU, Taiwan

    DSPPower Electronics IC Design & DSP Control Lab.

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 23

    page 45

    Digital PWM IC: Future Outlook

    TI positive about digital PWM IC outlookTI, which rolled out its new Fusion Digital Power solutions at the Texas-held Applied Power Electronics Conference 2005, expects to start volume producing within half a year and believes global digital PWM IC demand will reach US$335M through 2007. [DigiTimes March 8, 2005]

    page 46

    Available Digital PWM Control ICs

    IXDP610: IXYS digital pulse width modulator, 8-bit, 390 kHz with programmable dead-time counterISL6590: Intersil digital multi-phase PWM controller for core-voltage regulation with internal 8-bit digital PID controller. ISL6580: Intersil digital PWM generator with internal 6-bit A/D converter. UCD8220: TI Digitally Controlled Push-Pull PWM Controllers

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 24

    page 47

    IXDP 610 [IXYS] Bus Compatible Digital PWM Controller

    FeaturesMicrocomputer bus compatibleTwo complementary outputs for direct control of a switching power bridgeDynamically programmable pulse width ranges from 0 to 100 %Two modes of operation: 7-bit or 8-bit resolutionSwitching frequency range up to 390 kHzProgrammable Dead-time Counter prevents switching overlapCycle-by-Cycle disable input to protect against over-current, overtemperature, etc.Outputs may be disabled under software controlSpecial locking bit prevents damage to the stage in the event of a software failure18-pin slim DIP package

    D0D1D2D3D4D5D6D7GND

    123456789

    181716151413121110

    CSWRRST

    ODISSEL

    CLKVccOUT1OUT2

    IXYSIXDP610PI

    Year: 2001

    page 48

    IXDP 610 [IXYS] Functional Block Diagram

    Pulsewidthlatch

    Pulsewidth

    counter

    comparatorDeadtimelogic

    Outputdisable

    logic

    Frequencydivider

    Controllatch

    Latchselectlogic

    OUT1

    Deadtime

    counter

    OUT2

    DTLE

    stop

    DIV

    lock

    DT0-DT2

    7/8

    D0-D7

    LE

    CLK

    SEL

    8

    8

    WRCS

    RST

    ODIS

    8

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 25

    page 49

    Application of IXDP610 to Full Bridge DC Servo Motor Drive

    PWM Cycle Time and Dead-Time

    out1

    out2

    tDT tDT

    tPWtcycl

    TTLclock

    8051 IXDP610

    XTAL2XTAL1 P0.D (D0)

    P0.7 (D7)through

    P1.7

    P2.7(A15)P2.0(A8)

    CLKD0ThroughD7

    OUT1

    OUT2

    topowerbridge

    frompowerbridge

    11.059 MHz

    RSTWRCS

    )WR( P3.6

    SEL ODIS

    +V

    CLK

    SEL

    DATA OUT1

    OUT2

    OverCurrentref

    IXDP610

    Mic

    ropr

    oces

    sor

    orm

    icro

    cont

    rolle

    r

    RST

    WR

    CS

    ODIS

    page 50

    UCD8620: Digitally Controlled Push-Pull PWM Controllers

    FeaturesFor Digitally Assisted Power Supplies Using The UCD8220 and UCD8620 are members of the Microcontrollers and DSPsVoltage Mode Control or Peak Current Mode Control with Cycle-by-Cycle Current LimitingProgrammable Internal Slope CompensationProgrammable On-the-Fly Current Sense Threshold System using UCD8K devices close the PWM feedback loop in the traditional analog domain but the UCD8K controllers include circuitry to interpret a time-domain digital pulse train from a digital supervisor.

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 26

    page 51

    Digital Pulse Train Timing Diagram and UCD8K Operation

    page 52

    UCD 8620 Push-Pull Application CircuitUCD8620: Digitally Controlled Push-Pull PWM Controllers

    36V-75Vinput

    CS

    FB

    MSP430F1232Controller

    orEquivalent

    2

    3

    4

    5

    6

    7

    8

    15

    14

    13

    12

    11

    10

    9

    16UCD8620

    CLK

    3V3

    ISET

    AGND

    CTRL

    CLF

    ILIM

    VIN

    N/C

    VDD

    PVDD

    OUT1

    OUT2

    CS

    PGND

    output

    CS

    3V3

    Biaswinding

    FBE/A

    Communication(Programming & status reporting)

    MSP430F1232: 16-bit Ultra-Low-Power Microcontroller, 8kB Flash, 256B RAM, 10 bit ADC, 1 USART

    Biaswinding

    Rth

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 27

    page 53

    UCD 8620 Half-Bridge Application Circuit

    36V-75Vinput

    CS

    FB

    MSP430F1232or

    EquivalentController

    2

    7

    4

    5

    3

    8

    6

    12

    11

    9

    14

    13

    10

    16UCD8620PWP

    CLK

    CLF

    ISET

    AGND

    3V3

    ILIM

    CTRL

    VIN

    OUT1

    OUT2

    CS

    VDD

    PGND

    PVDD

    output

    CS

    3V3

    FB

    E/A

    Communication(Programming & status reporting)

    MSP430F1232: 16-bit Ultra-Low-Power Microcontroller, 8kB Flash, 256B RAM, 10 bit ADC, 1 USART

    Rth

    Vcin_mid

    CSXFMR

    Biaswinding

    Gate driveTransformer(3-winding)

    Vcin_mid

    page 54

    PWM IC Manufacturers

    National Semiconductors: http://www.national.com/Unitrode/Texas Instruments http://www.unitrode.com/Motorola/On Semiconductor http://www.onsemi.com/Power Integrations http://www.powerint.com/Maxim http://www.maxim.com/

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 28

    page 55

    4. Digital Control Loop Design

    DSPPower Electronics IC Design & DSP Control Lab.

    Power Electronics IC Design and DSP Control Lab., NCTU, Taiwan

    page 56

    Digital Control Loop Design

    Control Loop: From Analog to DigitalDirect and Indirect Design MethodsSampling Frequency SelectionBilinear Transformation and Prewarping

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 29

    page 57

    Direct and Indirect Design Flows in Control Systems

    Analogdesign and analysis

    (Bode, root locus, )

    Analysis

    DSPimplementation

    Digitaldesign and analysis

    (Bode, root locus, )

    DSPimplementation

    Indirect Direct

    Analogdomain

    Digitaldomain

    Transformation

    page 58

    Digital Controller Design Procedure

    Analog Design, Digital Implementation

    Digital Design, Digital Implementation

    G s G s G zP c c( ) ( ) ( )

    G s G z G zP P c( ) ( ) ( )

    zero-order-holder

    Bilinear transform with prewarping

    (usually used in Classical Control)

    (Usually used in Modern Control) In either case, we need to transform a continuous transfer function G(s) to a discrete transfer function G(z).

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 30

    page 59

    Analog Design, Digital Implementation

    +

    ADC DigitalController PLANT

    CLOCK

    r t( ) e t( ) u k( ) u t( ) y t( )e k( )DAC + ZOH

    +

    AnalogController PLANT

    r t( ) e t( ) u t( ) y t( )

    (a) An Analog Control System

    (b) A Digital Control System

    page 60

    Digital Design, Digital Implementation

    +

    ADCDigital

    Controller PLANT

    CLOCK

    DISCRETIZED PLANT

    )(kr u k( ) u t( ) y t( )e k( )DAC + ZOH

    )(ky

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 31

    page 61

    Control System Using an ADC Followed by a ZOH

    H z( )1

    DAC+

    ZOHPLANT

    H(s)ADC

    page 62

    Operation of a Zero Order Hold (ZOH)

    ZERO ORDERHOLD

    Ts

    1 (t)

    Ts

    1( )t Ts

    +

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 32

    page 63

    Operation of ADC, DAC, and ZOH

    ADC

    Ts

    Sampling period

    DAC ZOH+

    ZOH

    page 64

    Convert a Continuous System to a Discrete System

    T i

    input

    t

    t

    output

    t

    u(t)

    )(' zHu(t)

    DAC)(' tx'ix

    )(' tx

    x(t)

    iu

    iu

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 33

    page 65

    Sampling: Time Domain

    Many signals originate as continuous-time signals, e.g. conventional music or voice.By sampling a continuous-time signal at isolated, equally-spaced points in time, we obtain a sequence of numbers

    k {, -2, -1, 0, 1, 2,}Ts is the sampling period.

    [ ] ( )sTksks =

    ( ) ( ) ( )

    =

    =k (t)

    s

    ks

    ssampled

    sT

    TktTksts43421321

    trainimpulse][

    s(t)

    t

    Ts

    Sampled analog waveform

    page 66

    Sampling: Frequency Domain

    Sampling replicates spectrum of continuous-time signal at integer multiples of sampling frequencyFourier series of impulse train where s = 2 fs

    ( ) ( ) ) (2cos2 ) (cos2 1 1 )( L+++==

    =

    ttT

    Tktt sssk

    sTs

    +++== ) (2cos)(2 ) (cos)(2 )( 1 )( )()(

    2cosby Modulationcosby Modulation

    L44 344 2144 344 21

    t)(

    s

    t)(

    ss

    T

    ss

    sttfttftf

    Tttftg

    F()

    G()

    s 2s2s s2fmax-2fmax

    maxmaxmax 2222 if only and if gap fffff ss ><

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 34

    page 67

    Shannon Sampling Theorem: Nyquist Frequency

    A continuous-time signal x(t) with frequencies no higher than fmax can be reconstructed from its samples x[k] = x(kTs)if the samples are taken at a rate fs which is greater than 2 fmaxNyquist Rate = 2 fmax (constraint on the sampling rate)Nyquist Frequency = fs/2 (constraint on the frequency band)What happens if fs = 2 fmax?Consider a sinusoid sin(2 fmax t)

    Use a sampling period of Ts = 1/fs = 1/2fmaxSketch: sinusoid with zeros at t = 0, 1/2fmax, 1/fmax,

    page 68

    Assumptions of Sampling Theorem

    Continuous-time signal has no frequency content above the fmax

    Sampling time is exactly the same between any two samples

    Sequence of numbers obtained by sampling is represented in exact precision

    Conversion of the sequence of numbers to continuous-time is ideal

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 35

    page 69

    Discretization of a Sinusoidal Signal

    f fe = 8 0

    f fe = 2 0

    f fe = 2 0

    page 70

    Spectrum of the Sampled Signal

    Case 1 : f f smax

    0

    f max f s 2 f s 3 f s

    Continuous-timespectrum

    Spectrum of thesampled signal

    0

    f max f s 2 f s 3 f sf s

    Continuous-timespectrum

    Overlapping (aliasing)of the spectrum (distortions!)

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 36

    page 71

    Frequency Response of a Zero-Order-Holder (ZOH)

    ( )sesG

    sT

    ho

    = 1

    The transfer function of a Zero-Order-Holder (ZOH) is

    Its frequency response is

    ( )2

    2sin

    1 2T

    T

    TejejG Tj

    Tj

    ho

    =

    =

    Magnitude response is

    Phase response is

    ( )

    =

    2sin TcTjGho

    ( )2TjGho

    =

    G jhO ( )

    2 s

    s2

    0

    0

    -

    - 2

    - 3

    - 4

    - 5

    s

    2s 3s

    4s3s2s

    s 4s

    Ideal low-pass filtercharacteristics

    ( )jGho

    page 72

    Bilinear Transform

    Given that u se s

    G sc( )( )

    ( )=

    G z G sc cs

    Tzz

    ( ) ( )=

    + 2 1 1

    1 1

    It does not preserve the frequency response.

    Tj

    Tj

    ee

    Tj

    +=

    112

    =2

    2TTtan

    D(j)(the continuous filter)

    D(e jT )

    (the discrete filter)

    T

    T

  • Digital Control of DC-DC Converters

    NCTU 2005 Course Notes: SoC & SoP for Power Electronics 37

    page 73

    Prewarping Effect Due to Bilinear Transform

    ( )2/tan Tk

    ( )digital

    (a

    nalo

    gue)

    page 74

    Anti-Aliasing Filter

    02

    02

    022+ +s s

    02

    02

    022+ +s s

    In order to avoid the aliasing of the spectrum, the analog signals must be filtered prior to sampling to ensure that:

    f f sm ax