5. dc-dc converters: topologies, modeling, and...

110
1/220 5. DC-DC Converters: Topologies, Modeling, and Control Power Electronic Systems & Chips Lab., NCTU, Taiwan 電力電子系統與晶片實驗室 Power Electronic Systems & Chips Lab. 交通大學 電機控制工程研究所 台灣新竹交通大學電機控制工程研究所電力電子實驗室~鄒應嶼 教授 2/220 Basic Structure of a Switching Power Supply PWM OSC COMP REF 60 Hz line input PFC converter and filter PWM Controller High frequency inverter 20-200 KHz DC output output rectifier and filter Load Source 120 Hz Feedback Sensing and Isolator PFC Controller Input EMI filter Output EMI filter

Upload: ngocong

Post on 27-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 1/220

    5. DC-DC Converters: Topologies, Modeling, and Control

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Power Electronic Systems & Chips Lab.

    ~

    2/220

    Basic Structure of a Switching Power Supply

    PWM

    OSC

    COMP

    REF

    60 Hz

    lineinput PFC converter

    and filter

    PWM Controller

    Highfrequencyinverter

    20-200 KHz DC

    output

    output rectifierand filter

    LoadSource

    120 Hz

    Feedback Sensing and

    IsolatorPFC

    Controller

    Input EMI filter

    Output EMI filter

  • 3/220

    Why Topologies is Important in SPS Design?

    Power ratings (voltage and current) are primary concerns in determination of SPS topologies Converters are classified as nonisolated and isolated converters DC-DC converters are basic of other converters Resonant and soft-switching converters are derivatives of their corresponding PWM

    converters

    AC/DC Battery Charger DC/DCDC/DC

    DC

    AC85

    26

    5V

    PFC Controller PWM Controller

    DC/DCController

    SMPS AC/DC

    BatteryCharger

    DC/DCController

    IC

    DC/DC Converter

    Power Conversion, Control, and Management

    4/220

    ac inputsupply

    dc output

    voltage

    Transformers in SPS +

    v1(t)

    i1(t)+

    v2(t)

    i2(t)n1:n2

    +

    i3(t)

    v3(t)

    n3

    Isolation Turns Ratio Provide Wide Range Output Multiple Outputs Transformer

    Input rectificationand filtering

    duty cyclecontrol

    controlcircuitry

    HighFrequency

    switch

    PowerTransformer

    Output rectificationand filtering

    Vref

    mosfet orbipolar

    TPWM

    OSC

    Signal Coupling

  • 5/220

    Objectives of Transformer

    Isolation of input and output ground connections, to meet safety requirements

    Extend the voltage conversion range Reduction of transformer size by incorporating high

    frequency isolation transformer inside converter Minimization of current and voltage stresses when a large

    step-up or step-down conversion ratio is needed use transformer turns ratio

    Obtain multiple output voltages via multiple transformer secondary windings and multiple converter secondary circuits

    Transformer isolation is required for all circuits operating at a dc input voltage of 60 V DC or more.

    6/220

    Transformers for Asymmetrical and Symmetrical Converters

    Asymmetrical Converter Symmetrical Converter

    2Bs

    B

    H

    Bssymmetricalconverters

    asymmetricalconverters

    symmetricalconverters

    forwardconverter

    flybackconverter

    AvailableFlux swing

    A

    BCDN2

    N1

    v1

    i1

    v2

    i2

    Ll2Ll1

    Lm

    A

    B

    C

    D

  • 7/220

    Buck Derived Isolated DC-DC Converters with Synchronous Switch

    Push-Pull Converter

    Forward Converter Half-Bridge Converter

    Full-Bridge Converter

    S

    L

    C RSn:1

    Vg

    n:n

    S

    S1

    S2n:1

    S2

    S1

    Vg

    S1

    S2n:1

    S2

    S1

    Vg

    S1

    S2

    S1

    S2

    n:1

    S1

    S2

    Vg

    LC R

    LC R

    LC R

    8/220

    Buck-Boost Derived Isolated DC-DC Converter

    Flyback Converter

    n:1

    S

    Vg Lp Ls

    S

    R

  • 9/220

    Most Commonly Used Isolated Converters for Low-Power Applications

    Flyback Converter

    LOAD

    Forward Converter

    LOAD

    An isolated dc-dc converter module (MS Kennedy Corporation)

    10/220

    Basic Topologies of PWM DC-DC Converters

    Buck

    Boost

    Buck-Boost L C

    D

    vovi

    L

    C

    D

    vovi

    vi vo

    L

    CD

    One Inductor, One Capacitor

    C,uk

    L1

    C2D

    L2C1

    L1

    C2

    D

    L2

    C1

    SEPIC

    Zeta L1 C2D

    L2C1

    SEPIC: Single-Ended Primary Inductor Converter

    Two Inductors, Two Capacitors

    vi

    vi

    vi

    vo

    vo

    vo

  • 11/220

    Basic DC-DC Converters in CCM

    Buck Converter

    Boost Converter

    Buck-Boost Converter

    V

    Buck converter

    +

    V

    Boost converter

    +

    V

    Buck-boost converter

    0 0.2 0.4 0.6 0.8 10

    0.20.40.60.8

    1

    M(D

    )

    D

    0 0.2 0.4 0.6 0.8 10

    M(D

    )

    D

    0 0.2 0.4 0.6 0.8 1

    -5

    M(D

    )

    D

    -4-3-2-10

    +

    V

    Cuk converter

    +

    V

    Sepic

    0 0.2 0.4 0.6 0.8 1

    -5

    M(D

    )

    D

    -4-3-2-10

    0 0.2 0.4 0.6 0.8 10

    M(D

    )

    D

    12345

    12345

    Transform to Isolated Converters

    Buck-Boost Converter

    L C

    D

    vovi

    L1

    C2

    D

    L2

    C1

    vi vo

    SEPIC Converter

    L1

    C2D

    L2C1

    vi vo

    Cuk Converter

    LOAD

    Flyback Converter

    Isolated SEPIC Converter

    LOAD

    L1 L2

    V1 V2

    V0

    i1 i2

    C1 C2

    VinLOAD

    Isolated Cuk Converter

  • 13/220

    Power Supply Topologies (sluw001a)

    14/220

    Power Supply Topologies (sluw001a)

  • 15/220

    Selection of Isolated SPS Topologies in Watts

    Topologies

    1 10 100 1000 10000Output power, watts

    Com

    plex

    ity

    Flyback

    Resonant resetForward

    Current fedPush-pull

    Single transistorforward

    Tow transistorforward

    Half bridge

    Dual interleavedForward converter

    Full bridge

    Phase shiftedFull bridge

    Server applications

    16/220

    Modeling of Switching Converters

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Power Electronic Systems & Chips Lab.

    ~

  • 17/220

    Modeling of Switching Converters

    Why Modeling ? Classification of Modeling Techniques Modeling of Switching Power Converters State-Space Averaging Technique Transfer Functions Small-Signal Equivalent Circuit Model

    18/220

    Objective of Modeling

    Objective of Modeling

    Analysis

    Simulation

    DesignEfficiency

    Output Impedance

    Static Characteristics

  • 19/220

    Difficulties with Modeling of SPS

    Nonsmooth Systems (time and state discontinuity)Nonlinearity due to operating point Concepts of existence, uniqueness, stability not clearly defined for systems with discontinuous right half-plan zero Inherent Nonlinear Dynamic Behavior! Concept of chaotic dynamics relatively new to power electronics

    20/220

    Working Profile of a Switching Converter

    Power-on Power-off

    ov

    oi

    Wat

    ts

    % C

    PU

    tim

    e

    Dell power edge 2400 (web/SQL server)

  • 21/220

    Operating Region State-Variable Plane

    DCM

    D = 1.0

    0.1

    0.3

    0.5

    0.7

    0.9

    CCM

    80% 100%60%40% 110%90%10% 20%

    Vo/Vi = 1.0

    0.25

    0.5

    0.75

    0

    1.0

    22/220

    Operating Region Operating Point Operating Mode?

    IN

    OUT

    VV

    )(max,LB

    o

    II

    0 0.5 1.0 1.5 2.0

    0

    0.25

    0.50

    0.75

    1.0

    DCM

    D = 1.0

    0.1

    0.3

    0.5

    0.7

    0.9

    CCMCRM

    VIN = constant

    (min)

    (max)

    IN

    OUT

    VV

    (max)

    (min)

    IN

    OUT

    VV

    (max)OUTI(min)OUTI

  • 23/220

    Modeling of Switching Power Converters

    Modeling of Voltage-Mode DC-DC Converters- Power Stage Modeling State-space average model (Middlebrook and C'uk 1977) Discrete time-domain model (Lee 1979) Equivalent circuit model (Chetty 1981) Unified topological model (Pietkiewicz and Tollik, 1987) PWM switch model (Voperian 1988) Injected-absorbed-current model (Kisovski 1991)

    - Error Processor Modeling (Chetty 1982)- Pulsewidth Modulator Modeling Describing function model (Lee 1983) Equivalent circuit model (Bello 1981)

    - Larger Signal Modeling (Vicua 1992) Modeling of Current-Mode DC-DC Converters

    - Equivalent Circuit Model (Chetty 1981)- y-parameter Model (Middlebrook 1989)

    24/220

    Modeling Techniques

    State Space Averaging Method[1] R. D. Middlebrook and S. Cuk, A general unified approach to modeling switching-converter

    stages, IEEE PESC Conf. Rec., pp. 18-34, 1976.[2] S. Cuk and R. D. Middlebrook, A general unified approach to modeling switching DC-to-DC

    converters in discontinuous conduction mode, IEEE PESC Conf. Rec., pp. 36-57, 1977.

    Modeling of Switching Converters in DCM Operation[1] D. Maksimovic and S. Cuk, A unified analysis of PWM converters in discontinuous modes, IEEE

    Trans. Power Electron., vol. 6, pp. 476490, May 1991. [2] J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, Averaged modeling of PWM

    converters operating in discontinuous conduction mode, IEEE Trans. Power Electron., vol. 16, pp. 482-492, July 2001.

  • 25/220

    Modeling Techniques ..

    PWM Switch Method[1] V. Vorperian, Simplified Analysis of PWM Converters Using Model of PWM Switch Part I:

    Continuous Conduction Mode, IEEE Trans. on Aero. and Elec. Sys., vol. 26, no. 3, pp. 490-496, May 1990.

    [2] V. Vorperian, Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous Conduction Mode, IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 497-505, May 1990.

    Fast Analytical Techniques for Electrical and Electronic Circuits,V. Vorperian, Cambridge Press, 2004.

    26/220

    Modeling Techniques ..

    Discrete Time-Domain Method[1] F. C. Lee, R. P. Iwens, Y. Yu, and J. E. Triner, Generalized computer-aided discrete time-domain

    modeling and analysis of DC-DC converters, IEEE Trans. IECI, vol. 26, pp. 58-69, May 1979.

    Equivalent Circuit Method[1] P.R.K. Chetty, Switch-Mode Power Supply Design, TAB BOOKS, Inc., 1986.

    Modeling of Current-Programmed Converter[1] R. D. Middlebrook, Modeling current programmed Buck and Boost converters, IEEE Trans. on

    Power Electronics, vol. 4, pp. 36-52, January 1989.

    Unified Topological Method[1] Pietkiewicz, A. and D. Tollik, Unified topological modeling method of switching dc-dc converters

    in duty-ratio programmed mode, IEEE Trans. on Power Electron., vol. 2, no. 3, pp. 218-226, July 1987.

    Injected-Absorbed-Current Method[1] Kislovski, A. S., R. Redl, and N. O. Sokal, Dynamic Analysis of Switching-Mode DC/DC

    Converters, Van Nostrand Reinhold, 1991.

  • 27/220

    Recommended Books: Modeling and Simulation

    Dynamic Analysis of Switching-Mode DC/DC Converters,Andre'S. Kislovski, Richard Redl, and Nathan O. Sokal,Van Nostrand Reinhold, New York, 1991.

    Complex Behavior of Switching Power Converters, Chi Kong Tse, CRC Press, 2004.

    Switch-Mode Power Supply Simulation: Designing with SPICE 3Steven M. Sandler, McGraw-Hill Professional; 1 edition, Nov. 11, 2005.

    Switch-Mode Power Supplies - SPICE Simulations and Practical Designs, Christophe Basso, McGraw-Hill, Feb. 1, 2008.

    Modeling of DC-DC Converters

    voltagereference

    Pulse-widthmodulator

    cv)(t sGc

    refv

    + v

    H

    t

    tsTsdT

    tv

    t

    Complex Behavior of Switching Power Converters, Chi Kong Tse, CRC Press, 2004.

    Dynamic Analysis of Switching-Mode DC/DC Converters, Andre'S. Kislovski, Richard Redl and Nathan O. Sokal, Van Nostrand Reinhold, New York, USA, 1991

    SMPS Simulation with SPICE 3, Steven M. Sandler, McGraw-Hill Professional, Dec. 1, 1996.

    Computer-Aided Analysis and Design of Switch-Mode Power Supplies, Yim-Shu Lee, Marcel Dekker, Inc., Feb. 23, 1993.

    Switch-Mode Power Supplies -SPICE Simulations and Practical Designs, Christophe Basso, McGraw-Hill, Feb. 1, 2008. Fast Analytical Techniques for Electrical and Electronic Circuits,

    V. Vorperian, Cambridge Press, 2004.

  • 29/220

    Modeling and Control of DC-DC Converters

    Output voltage feedback only!

    PWMModulator

    LoopCompensator

    vo

    digital signal processor analog signal processor

    vR

    d

    load

    LR di~

    Buck Converter Boost Converter

    Buck/Boost Converter C,uk Converter

    vi vo

    L

    CD

    L

    C

    D

    vovi

    L C

    D

    vovi

    L1

    C2D

    C1

    vi vo

    Switching power converters

    oi

    Define the Operating Point!

    Define the Load Disturbance

    vgosZ

    sv~

    sV

    Define the Line

    Disturbance

    Define the Source Output Impedance!

    Small-Signal Modeling of a Buck Converter

    IN

    OUT

    VV

    )(max,LB

    o

    II

    0 0.5 1.0 1.5 2.0

    0

    0.25

    0.50

    0.75

    1.0

    DCM

    D = 1.0

    0.1

    0.3

    0.5

    0.7

    0.9

    CCMCRM

    Averaged Switch Modeling of Boundary Conduction Mode DC-to-DC ConvertersJ, Chen, R. Erickson, and D. Maksimovic, IECON 2001.

    VIN = constant

    V. Vorperian, "Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous Conduction Mode," IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 497-505, May 1990.

    V. Vorperian, "Simplified Analysis of PWM Converters Using Model of PWM Switch Part I: Continuous Conduction Mode," IEEE Trans. on Aero. and Elec. Sys., vol. 26, no. 3, pp. 490-496, May 1990.

  • 31/220

    Modeling of Switching Converters in DCM Operation

    IN

    OUT

    VV

    )(max,LB

    o

    II

    0 0.5 1.0 1.5 2.0

    0

    0.25

    0.50

    0.75

    1.0

    DCM

    D = 1.0

    0.1

    0.3

    0.5

    0.7

    0.9

    CCMCRM

    VIN = constant

    V. Vorperian, "Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous Conduction Mode," IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 497-505, May 1990.

    J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, Averaged modeling of PWM converters operating in discontinuous conduction mode, IEEE Trans. Power Electron., vol. 16, pp. 482-492, July 2001.

    D. Maksimovic and S. Cuk, A unified analysis of PWM converters in discontinuous modes, IEEE Trans. Power Electron., vol. 6, pp. 476490, May 1991.

    Systematic View of DC-DC ConvertersEfficiency

    Output Impedance

    Selection of Switching Frequency amd PWM Strategies

    Frequency Responses

    Time Responses

    Current Injection Testing

  • 33/220

    PWM DC-DC Power Conversion and Regulation

    CLOCK RAMP

    Zi

    Zf

    vref

    vo

    vx

    D

    vi

    T

    TOND T

    TON

    vpvx

    34/220

    Signal Composition of a PWM DC-DC Converters

    comparator

    +

    D

    d

    Vc

    v c v c

    V g

    v g v g

    igI g

    ig

    clock ramp

    analogamplifier

    reference

    load

    Vv v

    modulator-power-stagesubsystem

    Ii i

  • 35/220

    Frequency Spectrum

    f 2f 3f fs - f fs

    outputspectrum

    bandpassfilter

    frequency

    fs + f 2fs 3fs

    36/220

    AC and DC Quantities in a PWM Switching DC-DC Converter

    I ii i vd ioioIo

    vovoVo

    RLC

    L

    Z f

    vref

    v c

    V vI i

    CLOCK RAMP

    vd

    Vc

    vc vc

    io vo

    Z i

  • 37/220

    Small-Signal Modeling of a Switching Power Converter

    iIi iIi

    RLC

    L

    error processor

    Zi

    Z f

    vref

    vc

    v V vi I i

    duty cyclemodulator

    power stage

    d D d

    open

    oOo iIi v V vo O o

    AveragedPower Stage

    vi

    oid

    vo

    vo

    The concerned transfer fucntions under small perturbations can be measured under an open loop condition.

    38/220

    Definition of

    v to( )

    t

    V I VO O I, ,

    ioo viv ,,i to( )

    v ti( )

    small signal perturbation

    t

    TtD on

    D

    d(t)

    d t( )

    t

    IOO VIV ,, Ttd x

    power switch gating waveform

    xt

    Tont

    d

  • 39/220

    BuckBoost

    Buck/Boost

    Small-Signal Modeling of Voltage-Mode DC-DC Converters

    Power Stage

    PulseModulator

    ErrorProcessor

    vr

    vo

    vc

    io

    d

    vi

    40/220

    Modeling of Single-Loop DC-DC Converters

    vo

    vc

    io

    d

    vi

    ; ;

    vv

    vi

    vd

    o

    i

    o

    o

    o

    KPWM A(s)

    ( , , )v f v i do i o

    vi

    io

    d vc

    vo

    Zp

    Gd

    -A(s)

    Gv

    KPWM

  • 41/220

    Small Signal Transfer Functions

    G s vvv

    o

    i d io

    ( ) ,

    0 0

    : Open-loop input-to-output

    G vdd

    o

    v ii o

    ,0 0

    cvdk

    PWM

    : Open-loop output impedance

    : Control to output transfer function

    : PWM modulator gain

    Z vip

    o

    o d vi

    , 0 0

    A s vv

    c

    o

    ( )

    KVp

    PWM 1 : Compensator gain: PWM dc gain

    42/220

    Modeling of PWM DC-DC Converters

    A dc-to-dc switching regulator incorporating a three-port duty ratioprogrammed modulator-power-stage subsystem whose transfer functions aredefined in terms of ratios of small-signal ac quantities (hats) superimposedupon large-signal dc quantities (capitals).

    The spectrum of the output signal contains the switching frequency, thecontrol frequency, their respective harmonics, and sidebands.

    The modeling objective is to find, as function of frequency, the loop gain andthe closed properties of the regulator.

    The essential prerequisite is to find the transfer function of the three-portsubsystem of the modulator-power-stage.

  • 43/220

    Concerned Transfer Functions

    Control-to-output transfer function Line-to-output transfer function (audio susceptibility) Reference-to-output transfer function Input impedance Output impedance

    A voltage sourcing power supply should have a low (zero) outputimpedance, while a current sourcing power supply should have a high(infinite) output impedance.

    44/220

    Closed-Loop Transfer Functions

    Gv,CL (Closed-loop Audio Susceptibility)

    v G v G do v i d

    d AK vo PWMvv

    GG K A

    GT

    o

    i

    v

    d

    v

    1 1PWM

    Zp,CL (Closed-loop Output Impedance)

    v Z i G do p o d

    d AK vo PWMvi

    ZT

    o

    o

    p1

    Loop Gain : PWMT A s K Gd ( )

    vo

    vc

    iod

    vi

    ; ;

    vv

    vi

    vd

    o

    i

    o

    o

    o

    KPWM A(s)

    ( , , )v f v i do i o

    vi

    io

    d vc

    vo

    Zp

    Gd

    -A(s)

    Gv

    KPWM

  • 45/220

    State-Space Averaging Technique

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Power Electronic Systems & Chips Lab.

    ~

    46/220

    State-Space Averaging Techniques

    State Space Averaging Modeling Static Analysis Small-Signal Model at CCM Small-Signal Model at DCM Frequency Response Analysis

  • 47/220

    Concept of Time Averaging (Low Frequency Response Behavior)

    I ii i v d ioioIo

    v ov oV o

    RLC

    L

    Z i

    Z f

    v ref

    v c

    V vI i

    CLOCK RAMP

    v d

    V c

    vc v c

    io

    v o

    48/220

    Linear Approximation of State Space Trajectories

    x( )0

    x( )dTs

    x ( )Ts

    x A x B u

    x A x B u 1 1

    dT s( )Ton

    ( )1 d Ts( )Toff

    t

    x( )t

    x A x B u 2 2

  • 49/220

    State-Space Averaging Method (CCM)

    uExCyuBxAx

    uExCyuBxAx

    22

    22

    11

    11

    During

    During

    OFF

    ON

    T

    T

    When the circuit time constant is far greater than the switching period, the above equations can be averaged as:

    x d1

    averaging by using state duty ratio weighting

    x d2+

    Switch-ON Period Switch-OFF Period

    x A x B uy C x E u

    2 2

    2 2

    x A x B uy C x E u

    1 1

    1 1

    50/220

    State-Space Averaging Method

    ( ) ( )( ) ( )

    x A A x B B uy C C x E E u

    1 1 2 2 1 1 2 2

    1 1 2 2 1 1 2 2

    d d d dd d d d

    x Ax Buy Cx Du

    A A AB B BC C CE E E

    where =

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 2 2

    d dd dd dd d

  • 51/220

    State Averaging by Active Duty Ratios

    uExCyuBxAx

    uExCyuBxAx

    22

    22

    11

    11

    During

    During

    OFF

    ON

    T

    T

    When the circuit time constant is far greater than the switching period, the above equations can be averaged as:

    d1

    state averaging by using duty ratio weighting

    d2

    Switch-ON Period Switch-OFF Period

    x A x B uy C x E u

    2 2

    2 2

    x A x B uy C x E u

    1 1

    1 1

    ( ) ( )( ) ( )

    x A A x B B uy C C x E E u

    1 1 2 2 1 1 2 2

    1 1 2 2 1 1 2 2

    d d d dd d d d

    x Ax Buy Cx Du

    A A AB B BC C CE E E

    where =

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 2 2

    d dd dd dd d

    52/220

    Small-Signal Perturbation at a DC Operating Point

    Substitute x X x y Y y u U u

    ; ; ; ; d D d d D d1 1 2 2

    ddt

    D d D d D d D d( ) ( ) ( ) ( ) ( ) ( ) ( )X x A A X x B B U u 1 1 2 2 1 1 2 2

    termnonlinear ignore

    2121

    2121

    22112211

    0 termsdc

    22112211

    0 termsdc

    )()(

    )()(

    )()(

    )()(

    uBBxAA

    UBBXAA

    uBBxAA

    UBBXAAxX

    dd

    d

    DDDD

    DDDDdtd

    dtd

    i

    Note:The nonlinear dynamic system is linearized around a selected operating point!

  • 53/220

    DC Model and AC Model

    DC Model

    X A BU1

    Y ( CA B E)U1

    where

    ddt

    d

    d

    x Ax Bu F

    y Cx Eu G

    AC ModelA A AB B BC C CE E EF A A X B B UG C C X E E U

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 2 1 2

    1 2 1 2

    D DD DD DD D

    ( ) ( )( ) ( )

    54/220

    Transfer Function Matrix

    )()()(

    )()(

    )()()()(

    )()(

    2

    1

    2221

    1211 sdsGsG

    sisv

    sGsGsGsG

    sisv

    d

    d

    d

    i

    uu

    uu

    i

    o

    )()()()()()()()()( 11

    sdssssdssss

    du HuHFAIBuAIx

    y C A B E u C A F GG u G

    ( ) [ ( ) ] ( ) [ ( ) ] ( )( ) ( ) ( ) ( )

    s sI s sI d ss s s d su d

    1 1

    G C A B Eu s sI( ) ( ) 1

    G C A F Gd s sI( ) ( ) 1

    H I A BH I A F

    u

    d

    s ss s d s

    ( ) ( )( ) ( ) ( )

    1

    1

  • 55/220

    Open Loop Transfer Functions

    control-to-output (open-loop transfer function): v sd s

    G s s so d d( )( )

    ( ) ( ) ( ) 1 11

    1G C I A F G

    line-to-output (audio susceptibility):

    output impedance:

    v sv s

    G s s soi

    u u( )( )

    ( ) ( ) ( ) 11 111

    11G C I A B E

    v si s

    G s s sod

    u u( )( )

    ( ) ( ) ( ) 12 121

    12G C I A B E

    56/220

    Example: Buck Converter

    Step 1. Draw the linear equivalent circuit for each switching state of the converter.

    L

    CD

    Q iL io

    vc

    icrc

    rL

    R vo id

    iRu1 vi u2

    iiy2

    y1

    x1

    x2

    Q closed, D open

    L

    C

    iL io

    vc

    icrc

    rL

    vi R vo

    id

    iRii

    D closed, Q open

    L

    C

    iL io

    vc

    icrc

    rL

    R vo

    id

    iRii

  • 57/220

    Select State Variables

    Select the inductor current iL and capacitor voltage vL state variables.

    c

    L

    vi

    xx

    2

    1x

    i

    o

    iv

    yy

    2

    1y

    Select the input dc voltage and output disturbance current as input variables.

    Select the output voltage and input current as output variables.

    d

    i

    iv

    uu

    2

    1u

    58/220

    Derive Circuit Equations: State Equations

    Step 2. Write the circuit equations for each equivalent circuit in a state-variable format.

    L

    C

    iL io

    vc

    icrc

    rL

    vi R vo

    id

    iRiiQ-ON and D-OFF State:

    v L didt

    i r r C dvdt

    vi L L L C c C

    r Cdvdt

    v i i i R

    i Cdvdt

    i R

    i R RCdvdt

    i R

    Cc

    C L C d

    Lc

    d

    Lc

    d

    ( )

    ( )

    ( )R r Cdvdt

    i R v i RC c L C d

    dvdt

    RR r C

    iR r C

    v RR r C

    icC

    LC

    CC

    d

    ( ) ( ) ( )1

  • 59/220

    State-Space Average Modeling: State Equations

    dC

    CiC

    CLL

    C

    C

    CdC

    CC

    C

    CL

    C

    CLLi

    L

    irR

    RrvvrR

    RirrR

    Rr

    virR

    RrvrR

    rirR

    RrrivdtdiL

    )()()(

    dC

    CiC

    CLL

    C

    CL irR

    RrL

    vL

    vrR

    RL

    irrR

    RrLdt

    di

    1111

    Replace in with R

    R ri

    R rv R

    R ri

    CL

    CC

    Cd( ) ( ) ( )

    1C dv

    dtc

    CdC

    CC

    LC

    CLLL

    i virRRv

    rRi

    rRRrri

    dtdiLv

    )()(

    1)(

    We can obtain:

    60/220

    State-Space Average Modeling: State Equations

    i ii L

    dC

    CC

    CL

    C

    C

    ddC

    CC

    LC

    L

    dCL

    dCLo

    irR

    RrvrR

    RirR

    Rr

    RiiCrR

    RvCrR

    iCrR

    RRCRi

    RiRiRiRiiiv

    )()()(

    )()(1

    )(

    )(

    v RrR r

    i RR r

    v RrR r

    io CC

    LC

    CC

    Cd

    ( ) ( ) ( )

    d

    iC

    C

    C

    LCC

    C

    i

    o

    d

    i

    C

    C

    C

    C

    L

    CC

    CL

    C

    C

    C

    L

    iv

    rRRr

    vi

    rRR

    rRRr

    iv

    iv

    rRR

    C

    rRRr

    LLvi

    rRCrRR

    C

    rRR

    Lr

    rRRr

    Lvi

    00

    0

    01

    10

    11

    111

    11

    Q-OFF and D-ONState Equation

  • 61/220

    State-Space Average Modeling: State Equations

    Q-OFF and D-ON State:

    0 Ldidt

    i r r Cdvdt

    vL L L C c C

    RidtdvRCRi

    RidtdvCi

    RiiivdtdvCr

    dc

    L

    dc

    L

    dCLCc

    C

    )(

    )(

    L

    C

    iL io

    vc

    icrc

    rL

    R vo

    id

    iRii

    RivRidtdvCrR dCLcC )(

    dC

    CC

    LC

    c iCrR

    RvCrR

    iCrR

    Rdtdv

    )()(1

    )(

    62/220

    State-Space Average Modeling: State Equations

    dC

    CiC

    CLL

    C

    C

    CdC

    CC

    C

    CL

    C

    CLL

    L

    irR

    RrvrR

    RirrR

    Rr

    virR

    RrvrR

    rirR

    RrridtdiL

    )()()(

    dC

    CiC

    CLL

    C

    CL irR

    RrL

    vrR

    RL

    irrR

    RrLdt

    di

    111

    ( )R r Cdvdt

    i R v i RC c L C d

    dvdt

    RR r C

    iR r C

    v RR r C

    icC

    LC

    CC

    d

    ( ) ( ) ( )1

    Replace in with RR r

    iR r

    v RR r

    iC

    LC

    CC

    d( ) ( ) ( )

    1C dv

    dtc

    CdC

    CC

    LC

    CLLL vi

    rRRv

    rRi

    rRRrri

    dtdiL

    )()(

    1)(

    0We can obtain:

  • 63/220

    State-Space Average Modeling: State Equations

    ii 0

    dC

    CC

    CL

    C

    C

    ddC

    CC

    LC

    L

    dCL

    dCLo

    irR

    RrvrR

    RirR

    Rr

    RiiCrR

    RvCrR

    iCrR

    RRCRi

    RiRiRiRiiiv

    )()()(

    )()(1

    )(

    )(

    v RrR r

    i RR r

    v RrR r

    io CC

    LC

    CC

    Cd

    ( ) ( ) ( )

    d

    iC

    C

    C

    LCC

    C

    i

    o

    d

    i

    C

    C

    C

    C

    L

    CC

    CL

    C

    C

    C

    L

    iv

    rRRr

    vi

    rRR

    rRRr

    iv

    iv

    rRR

    C

    rRRr

    Lvi

    rRCrRR

    C

    rRR

    Lr

    rRRr

    Lvi

    00

    0

    00

    10

    10

    111

    11

    Q-ON and D-OFFState Equation

    64/220

    State-Space Average Modeling: State Equations

    d

    iC

    C

    C

    LCC

    C

    i

    o

    d

    i

    C

    C

    C

    C

    L

    CC

    CL

    C

    C

    C

    L

    iv

    rRRr

    vi

    rRR

    rRRr

    iv

    iv

    rRR

    C

    rRRr

    LLvi

    rRCrRR

    C

    rRR

    Lr

    rRRr

    Lvi

    00

    0

    01

    10

    11

    111

    11

    Q Conducted:

    D Conducted:

    d

    iC

    C

    C

    LCC

    C

    i

    o

    d

    i

    C

    C

    C

    C

    L

    CC

    CL

    C

    C

    C

    L

    iv

    rRRr

    vi

    rRR

    rRRr

    iv

    iv

    rRR

    C

    rRRr

    Lvi

    rRCrRR

    C

    rRR

    Lr

    rRRr

    Lvi

    00

    0

    00

    10

    10

    111

    11

  • 65/220

    State-Space Average Modeling: State Equations

    00

    0 ,01

    10

    11

    ,111

    11

    11

    11

    C

    C

    CC

    C

    C

    C

    C

    CC

    CL

    C

    C

    rRRr

    rRR

    rRRr

    rRR

    C

    rRRr

    LL

    rRCrRR

    C

    rRR

    Lr

    rRRr

    L

    EC

    BA

    00

    0 ,00

    10

    10 ,

    111

    11

    22

    22

    C

    C

    CC

    C

    C

    C

    C

    CC

    CL

    C

    C

    rRRr

    rRR

    rRRr

    rRR

    C

    rRRr

    L

    rRCrRR

    C

    rRR

    Lr

    rRRr

    L

    EC

    BA

    Q Conducted:

    D Conducted:

    66/220

    State-Space Average Modeling: Averaging

    Step 3. Average each state by using duty ratio as a weighting factor and then combine thetwo sets of equations into a single set.

    x A x B uy C x E u

    1 1

    1 1

    x A x B uy C x E u

    2 2

    2 2

    Q : D :x d1

    averaging by using state duty ratio weighting

    x d2+

    ( ) ( )( ) ( )

    x A A x B B uy C C x E E u

    1 1 2 2 1 1 2 2

    1 1 2 2 1 1 2 2

    d d d dd d d d

    x Ax Buy Cx Eu

    A A AB B BC C CE E E

    where =

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 2 2

    d dd dd dd d

  • 67/220

    State-Space Average Modeling: Perturbation

    Step 4. Perturb the averaged equation set to produce DC and small signal terms and eliminatenonlinear product terms.

    Substitute

    into the averaged equations (in Steps 3)

    x X x y Y y u U u

    ; ; ; ; d D d d D d1 1 2 2

    ( ) ( )( ) ( )

    x A A x B B uy C C x E E u

    1 1 2 2 1 1 2 2

    1 1 2 2 1 1 2 2

    d d d dd d d d

    uBuBUBUB

    uBuBUBUB

    xAxAXAXA

    xAxAXAXA

    uUBB

    xXAAxX

    )))(()((

    )))(()(()(

    222222

    111111

    222222

    111111

    2211

    2211

    dDdD

    dDdD

    dDdD

    dDdD

    dDdD

    dDdDdtd

    68/220

    State-Space Average Modeling: Perturbation

    ddt

    D D D D

    D D D D

    d

    d d

    ( ) ( ) ( )

    ) ( )

    ) ( )

    ) ( )

    X x A A X B B U

    A A x B B u

    A A X B B U

    A A x B B u

    1 1 2 2 1 1 2 2

    1 1 2 2 1 1 2 2

    1 2 1 2

    1 2 1 2

    (

    (

    (

    Y y C C X x

    E E U uC C X E E U

    C C x C C X E E U

    E E u C C x E E u

    ( ( ) ( ))( )

    ( ( ) ( ))( )( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    1 1 2 2

    1 1 2 2

    1 1 2 2 1 1 2 2

    1 1 2 2 1 2 1 2

    1 1 2 2 1 2 1 2

    D d D d

    D d D dD D D D

    D D d

    D D d d

    Perturbation of the State Equations

    x1

    x1Operating Point New Coordinates

    1x

    2x

  • 69/220

    State-Space Average Modeling: DC Analysis

    DC Analysis:

    Set all variational terms to zero, we can obtain

    X A BU1

    Y ( CA B E)U1

    0 1 1 2 2 1 1 2 2

    ( ) ( )A A X B B UAX BU

    D D D D

    Y C C X E E UCX EU

    ( ) ( )1 1 2 2 1 1 2 2D D D D

    Therefore

    70/220

    State-Space Average Modeling: DC Model

    AX BU 0Eliminate the DC term ddt

    X 0 and Y CX EU

    LS

    CC

    LCo

    CC

    LC

    iCC

    LCL

    DII

    VrR

    RIrRV

    VrR

    IrR

    R

    DVVrR

    RIrRr

    CD

    )//(

    10

    )//(0

    ..

    We obtain the dc model equation:

    Comments:1. DC model gives DC information (steady-state behavior). 2. DC model can be used for loss estimation.

  • 71/220

    State-Space Average Modeling: AC Model

    ddt

    d

    d

    x A x B u F

    y C x E u G

    Neglect the nonlinear product term d d x u and

    where

    A A AB B BC C CE E EF A A X B B UG C C X E E U

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 2 1 2

    1 2 1 2

    D DD DD DD D

    ( ) ( )( ) ( )

    dIiDi

    vrR

    RirRv

    vrRL

    irR

    RCdt

    vd

    dLVv

    LDv

    rRR

    Li

    LrRr

    dtid

    CA

    LLs

    CC

    LCo

    CC

    LC

    C

    iiC

    CL

    CLL

    )//(

    111

    1//

    ..

    We obtain the ac model (small-signal) equation:

    Comments:1. AC model gives small signal information.2. AC model parameter value depends on dc operating point.

    72/220

    Time-to-Frequency Transform

    In the following, the hat above the variables will be neglected for simplicity. The small signal(or ac term) of a variable is denoted using lower case letter. Thus, the dynamic equation of aPWM dc-dc converter can be represented as:

    Step 5. Transform ac state-space model into frequency domain (Laplace transform, s-domain).

    ddt

    d

    d

    x Ax Bu F

    y Cx Eu G

    ddt

    d

    d

    x Ax Bu F

    y Cx Eu G

  • 73/220

    Time-to-Frequency Transform

    Take Laplace transform:

    s s s s d ss s s d s

    x Ax Bu Fy Cx Eu G

    ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

    x I A Bu I A FH u H

    ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

    s s s s d ss s s d su d

    1 1

    y C I A B E u C I A F GG u G

    ( ) [ ( ) ] ( ) [ ( ) ] ( )( ) ( ) ( ) ( )

    s s s s d ss s s d su d

    1 1

    G C I A B Eu s s( ) ( ) 1

    G C I A F Gd s s( ) ( ) 1

    H I A BH I A F

    u

    d

    s ss s d s

    ( ) ( )( ) ( ) ( )

    1

    1

    )()()()(

    )()(2221

    12111

    sGsGsGsG

    ssuu

    uuu EBAICG

    74/220

    State-Space Average Modeling: Transfer Functions

    dsGsG

    iv

    sGsGsGsG

    iv

    d

    d

    d

    i

    uu

    uu

    i

    o

    )()(

    )()()()(

    2

    1

    2221

    1211

    Interpretation of the transfer function matrix

    Input-to-output voltage gain(audio susceptibility)

    Output impedance

    Input AdmittanceLoad-to-line current gain

    Control-to-output voltage gain

    Control-to-input current gain

  • 75/220

    State-Space Average Modeling: Transfer Functions

    vo

    vc

    io

    d

    vi

    ; ;

    vv

    vi

    vd

    o

    i

    o

    o

    o

    K PWM A(s)

    iidi

    ii

    vi i

    o

    i

    i

    i

    ;

    ;

    Loop compensator

    Disturbances Results

    Control action

    76/220

    State-Space Averaging: Time-to-Frequency Transform

    LC

    C

    LLC

    C

    i

    o

    LC

    C

    LLC

    Ci

    o

    rrRrRLCs

    rRLCrRCrs

    CsrDsvsv

    rrRrRLCs

    rRLCrRCrs

    CsrVsdsv

    2

    2

    ]//[1

    1)()(

    ]//[1

    1)()(

    Z s v si s

    G so od dv

    u

    i

    ( ) ( )( )

    ( ) 00

    12

  • 77/220

    State-Space Averaging: Time-to-Frequency Transform

    ( )( )

    v sd s

    V sr Cs

    oi

    C

    o

    1 2

    LCsCrrRLs

    CsrVsdsv

    LC

    Ci

    o

    2)(1

    1)()(

    CrrRLQ

    LC

    sQ

    ss

    CLo

    o

    oo

    )(

    11

    1

    22

    Note: In most conditions, because R >>(rL + rC), the above equations can be approximated as

    LCsCrrRLs

    CsrVsdsv

    LC

    Ci

    o

    2)(1

    1)()(

    LCsCrrRLs

    CsrDsvsv

    LC

    C

    i

    o

    2)(1

    1)()(

    78/220

    State-Space Average Modeling

    The small signal control-to-output , and line-to-output are transferfunctions of two poles and one zero

    ( ) ( )

    v sd s

    o ( ) ( )v sv s

    o

    i

    K s zs p s p

    ( )( )( )

    1

    1 2

    with its parameters depending upon component values and operating point. p1, p2 can be complex poles or real poles. But p1, p2 and z1 all lie on LHP.

    Note: The equivalent series resistance of the capacitor will introduce a LHP zero.

  • 79/220

    State-Space Averaging: Output Impedance

    Output Impedance: Z s v si s

    so od du

    ( ) ( )( )

    ( )

    00

    1c I A B du

    ( ) ( )

    ( )v si s

    R

    sQ

    s

    so

    d o

    1

    1 1 1

    2

    2

    s sQ

    s

    LCQ L

    Rr r C

    LCrr

    Q Lr

    r C

    oo

    oo

    L C

    L

    C

    CL

    2 2

    1 11

    1 1 1

    1 1 1

    ,( )

    ;

    80/220

    Modeling of Load Disturbances

    L

    CD

    Q iL io

    vc

    icrc

    rL

    vi R vo

    id

    iR

  • 81/220

    Dynamic Responses for Step Load Changes

    Intel: VRM (Voltage Regulator Module) and Enterprise Voltage Regulator-Down (EVRD) 11.0 Design Guidelines, Nov. 2006.

    Adaptive voltagepositioning offset

    VOFFSET (40mV)

    Nominal setpoint voltageVSET (2.0V)

    Dynamic voltagetolerance, VDYN-(100mV for 2s)

    Initial voltage drop is mainly due to the product

    of the load current step and ESR of the capacitors.

    V = I ESR.(ESL effects are ignored)

    Output voltageVOUT (50mV/Div)

    Steady state voltage athigh current is approximatelyVSET VOFFSET IOUT RSENSE

    Output current transientstep, I = 0 to 14A(5A/Div)

    m5.2 GX;-MV Sanyo F15006 ;H5.2 SENSEOUT RCL

    82/220

    Buck Converter with Load Current DisturbanceBlock Diagram Representation

    D

    Q

    vi

    iL iC vo

    io

    1sL rL

    rsCC

    1

    1R

    id

    iR

  • 83/220

    Control-to-Output Transfer FunctionsDC-DC Converters in CCM Operating Mode

    Buck

    ( )( ) ( )

    v sd s

    V r CssQ

    so

    iC

    o o

    11 12

    CrrRLQ

    LC

    CLo

    o

    )(

    11

    1

    vi vo

    L

    CD

    Boost

    ( )( )

    ( )( ( ))

    ( )'

    'v sd s

    VD

    r Cs sL D Rs

    Qs

    o i C

    o o

    2

    2

    2

    1 11 1

    Cr

    DCr

    RDL

    DQ

    LCD

    CLo

    o

    1

    L

    C

    D

    vovi

    Buck/Boost

    L C

    D

    vovi ( )( )

    ( )( ( ))

    ( )'

    'v sd s

    VD

    r Cs sDL D Rs

    Qs

    o i C

    o o

    2

    2

    2

    1 11 1

    CDr

    Dr

    RDL

    DQ

    LCD

    LCo

    o

    ))(

    ()(

    1

    2 2

    84/220

    Transfer Functions of Buck Converters

    Transfer Function Transfer Function

    ( ) ( )

    v sd s

    V r Css

    Foi

    C

    o

    D

    1

    21

    ( ) ( )v sv s

    D r Css

    Foi

    C

    o

    U

    1

    211

    ( ) ( )

    ( )v si s

    R

    sQ

    s

    sFo

    deq

    o

    U

    1

    1 1 1

    2

    212

    ( ) ( )

    i sd s

    Vr

    r Css

    FL iL

    L

    o

    D

    1

    22

    ( ) ( )i sv s

    DR

    RCss

    FLi o

    U

    1

    221

    ( ) ( )i si s

    r Css

    FLd

    C

    o

    U

    1

    222

    s sQ

    s R r

    LCQ L

    Rr r C

    LCrr

    Q Lr

    r C

    oo eq L

    oo

    L C

    L

    C

    CL

    2 2

    1 11

    1 1 1

    1 1 1

    ,

    ,( )

    ;

  • 85/220

    Transfer Functions of Boost Converters

    Transfer Function Transfer Function

    ( ) ( ) ( )

    ( )( )

    'v sd s

    VD

    s s

    sFo i z a

    o

    D

    2 21

    1 1

    ( ) ( ) 'v sv s D s

    Foi o

    U 1 1

    211

    ( ) ( )

    ( )v sv s

    R

    sQ

    s

    sFo

    ieq

    o

    U

    1

    1 1 1

    2

    212

    ( ) ( ) ( )'

    i sd s

    VD R

    RC

    sFL I

    o

    D

    2 1 2

    3 22

    ( ) ( ) ( )'i sv s

    VD R

    RCs

    FLi

    i

    o

    U

    2 1

    3 221

    ( ) ( ) 'i si s D

    r Css

    FLd

    C

    o

    U 1 1 222

    s sQ

    s Q D LD R

    r CD

    D r C

    DLC

    DLC

    Rr

    Q LD R

    r C

    r CD R

    LR r

    DDD

    r

    oo

    o LC

    o

    eq

    C

    eqC

    zC

    a eqL

    C

    2 2

    1 11

    2

    2

    2

    1

    1 1

    1

    ,

    ;( )

    ; ( )

    '

    ' ''

    '

    '

    '

    '

    ' '

    86/220

    Transfer Functions of Buck/Boost Converters

    Transfer Function Transfer Function

    ( )( ) ( )

    ( )( )

    'v sd s

    VD

    s s

    sFo i z a

    o

    D

    2 21

    1 1

    ( ) ( )

    ( )'

    v sv s

    DD

    r Css

    Foi

    C

    o

    U

    1

    211

    ( ) ( )

    ( )v si s

    R

    sQ

    s

    sFo

    deq

    o

    U

    1

    1 1 1

    2

    212

    ( ) ( ) ( )'

    i sd s

    VD R

    RCss

    FL io

    D 2 221

    ( ) ( ) ( )'i sv s

    DD R

    RCss

    FLi o

    U

    2 2211 1

    ( ) ( ) 'i si s D

    r Css

    FLd

    C

    o

    U 1 1 222

    s sQ

    s

    DLC

    Q D LD R

    rD

    rD

    C

    r CD RDL

    R rD

    DD

    r

    Rr

    Q LD R

    r C

    oo

    oo C L

    zC

    a eqL

    C

    oeq

    C

    eqC

    2 2

    2 2

    2

    2

    1 11

    2

    1

    1

    1 1

    , ;

    ' '

    ' ' '

    '

    ' '

    '

    ,

    ( )(

    ( ))

    ( )( )

    ;

  • 87/220

    Summary: Buck Converters at CCM

    Transfer Function Transfer Function

    ( ) ( )

    v sd s

    V r Css

    Foi

    C

    o

    D

    1

    21

    ( ) ( )v sv s

    D r Css

    Foi

    C

    o

    U 1 211

    ( ) ( )

    ( )v si s

    R

    sQ

    s

    sFo

    deq

    o

    U

    1

    1 1 1

    2

    212

    ( ) ( )

    i sd s

    Vr

    r Css

    FL iL

    L

    o

    D

    1

    22

    ( ) ( )i sv s

    DR

    RCss

    FLi o

    U 1 221

    ( ) ( )i si s

    r Css

    FLd

    C

    o

    U

    1

    222

    L

    CD

    Q iL io

    vc

    icrc

    rL

    vi R vo

    idiR

    L

    C

    iL io

    vc

    icrc

    rL

    vi R vo

    idiRii

    L

    C

    iL io

    vc

    icrc

    rL

    R vo

    idiR

    ii

    x d1

    averaging by using state duty ratio weighting

    x d2

    Switch-ON Period Switch-OFF Period

    x A x B uy C x E u

    2 2

    2 2

    x A x B uy C x E u

    1 1

    1 1

    x Ax Buy Cx Du

    A A AB B BC C CE E E

    where =

    1 1 2 2

    1 1 2 2

    1 1 2 2

    1 1 2 2

    d dd dd dd d

    D ONQ ON

    88/220

    PWM Switch Model

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Power Electronic Systems & Chips Lab.

    ~

  • 89/220

    PWM Switch Model

    Introduction PWM Switch and its Invariant Properties CCM Analysis

    DC and Small-Signal Model of PWM SwitchPWM Switch Model of Buck ConvertersPWM Switch Model of Boost ConvertersPWM Switch Model of Buck/Boost ConvertersPWM Switch Model of Cuk ConvertersAnalysis of PWM ConvertersRight-half Plane Zero of the ConvertersPWM Switch Model Including Storage-Time Modulation

    DCM AnalysisDC and Small Model of PWM SwitchAnalysis of PWM ConvertersZero of Control-to-Output Transfer Function in DCM

    90/220

    Pulse-Width Modulator

    For natural sampling,

    v c

    vp

    d ts ( )

    vpD T

    Tvv

    ON

    S

    c

    p

    ( ) ( )d s K v sm c

    Kvm p

    1 constant

  • 91/220

    PWM Switch Model

    ( )i ta

    ( )v tcp

    cd

    1-d

    p

    ( )v tap

    a)(~ tic

    (common)

    (passive)

    (active)

    Instantaneous value

    PWM Switch Modeling[1] V. Vorperian, Simplified Analysis of PWM Converters Using Model of PWM Switch Part I: Continuous

    Conduction Mode, IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 490-496, May 1990.[2] V. Vorperian, Simplified Analysis of PWM Converters Using Model of PWM Switch Part II: Discontinuous

    Conduction Mode, IEEE Trans. on Aero. and Electron. Sys., vol. 26, no. 3, pp. 497-505, May 1990.[3] E. Van Dijk, J. N. Spruijt, D. M. O'Sullivan, and J. B. Klaassens, PWM-switch modeling of DC-DC converters,

    IEEE Transactions on Power Electronics,, vol. 10, no. 6, pp. 659 -665, Nov 1995.

    92/220

    Modeling of the Switch

    ( )i ta )(~ tic

    ( )v tap ( )v tcp

    vcp

    vap

    i Dia c

    v Dvcp ap

    )(~ of valueaverage thedenotes :Note tii aa

    During a PWM switching interval:

    ss

    sea TtDT

    DTttiti

    ,00),(~

    )(~

    ss

    sapcp TtDT

    DTttvtv

    ,00),(~

    )(~

  • 93/220

    Small-Signal Perturbation

    ccccaa

    ccaa

    ca

    idiDdIDIiI

    iIdDiI

    dii

    ))((

    v dv

    V v D d V v

    V v DV V d Dv dv

    cp ap

    cp cp ap ap

    cp cp ap ap ap ap

    ( )( )

    v V vv V v

    cp cp cp

    ap ap ap

    Make a small-signal perturbation at a DC operating point

    i I ii I ia a a

    c c c

    d D d

    i Dia c

    v Dvcp ap

    We can obtain

    94/220

    DC and AC Analysis

    For dc analysis, eliminate all small signal perturbation terms, we can get itsequivalent dc model.

    I DIV DV

    a c

    cp ap

    For ac analysis, set all dc terms to zero and neglect second order nonlinear terms, we can get its equivalent small-signal ac model.

    cca iDdIi

    v V d Dvcp ap ap

  • 95/220

    PWM Switch Model

    DC Model:

    apcp

    ca

    DVVDII

    a c

    p

    1 D

    I a Ic

    Vap Vcp

    AC Model:

    dVvDv

    dIiDi

    apapcp

    cca

    VD

    dap

    a c

    p

    1 DI dc

    ai ciciD

    96/220

    DC Analysis of a Buck Converter

    DC Analysis

    rL

    rCR

    L

    C

    a

    p

    c

    Li

    o

    rRRD

    VV

    p

    a c

    1Vi Vo

    DR

    rL

  • 97/220

    AC Analysis of a Buck Converter

    Note:In the following, the hat above the small signal variables are neglected for simplicity.

    Small-signal equivalent circuit model of the buck converter.

    voRrC

    C

    rLL iL io

    vc

    ic

    id

    iR

    I dc

    dDVi

    p

    1iv

    Dii

    aia

    cic

    ii

    Vi

    iS

    iDvoR

    rC

    C

    rLL iL io

    vc

    ic

    id

    iR

    98/220

    AC Analysis: Control-to-Output Transfer Function

    Short the unrelated voltage source and open the unrelated current source

    voRrC

    C

    rLL iL io

    vc

    iR

    VD

    dap

    p

    a c

    1 Dii ic

    '

  • 99/220

    AC Analysis: Control-to-Output Transfer Function

    v VD

    d D

    v v R r sCr sL R r sC

    V d R sr Cs R r LC s r r C r RC L r RC R r

    cpi

    o cpC

    L C

    iC

    C L C L C L

    / /( / )( ) / /( / )

    ( )( ) ( ) ( )

    11

    12

    G s v sd s

    V R sr Cs RLC s r r C L r RC r RC R rd

    oi

    C

    L C L C L

    ( ) ( )( )

    ( )( ) ( )

    1

    2

    if rL

  • 101/220

    AC Analysis: Line-to-Output Transfer Function

    )()()()1(

    )1()1)(()1(

    )/1()/1)(()/1(

    /1)/1()(

    /1)/1(

    )/1//()()/1//(

    2LCLCLC

    Ci

    CCL

    Ci

    CCL

    Ci

    C

    CL

    C

    C

    iCL

    Ccpo

    icp

    rRRCrLRCrCrrsLCrRsCsrRDv

    CsrRCsrsRCsLrCsrRDv

    sCrRsCrRsLrsCrRDv

    sCrRsCrRsLr

    sCrRsCrR

    DvsCrRsLr

    sCrRvv

    Dvv

    G s v sv s

    D R sr Cs RLC s r r C L r RC r RC R rv

    o

    i

    C

    L C L C L

    ( ) ( )( )

    ( )( ) ( )

    1

    2

    if rL

  • 103/220

    AC Analysis: Disturbance-to-Output Transfer Function

    LLLCCC

    LCLC

    LCC

    LCLC

    LCC

    LC

    LCC

    LC

    LC

    C

    LC

    C

    LC

    CLC

    d

    o

    rsLRCsrCrsrLCrsRLCsRRCsrrsLCrsrLCrsR

    sLrCsrsRCRRCsrrsLCrsrLCrsR

    sLrCsrsRCCsrRsLrCsrR

    sLrsCrRsCrRsLrsCrR

    sLrsCrR

    sCrR

    sLrsCrR

    sCrR

    sLrsCrR

    sCrRsLrsCrRiv

    22

    2

    2

    ))(1())(1()1())(1(

    ))(/1()/1())(/1(

    /1)/1(

    )(/1

    )/1(

    )//(/1

    )/1()//()/1//(

    vi

    R s r LC s L r r C rs R r LC s L r r RC r r C R r

    o

    d

    C L C L

    C C L C L L

    2

    2

    ( )( ) ( ) ( )

    104/220

    AC Analysis: Disturbance-to-Output Transfer Function

    if rL

  • 105/220

    AC Analysis: Disturbance-to-Output Transfer Function

    LCLrr

    RCss

    LCr

    Csrs

    sisvsZ

    LC

    LC

    d

    oo 11

    1

    )()()(

    2

    2

    o C LQ RC

    r rL

    1

    o LC2 1

    LrrRL

    Lrr

    RCLCL

    rrRC

    QLC

    oLCoLC

    o

    o )(

    111

    111

    1 2

    1LC

    106/220

    AC Analysis: Disturbance-to-Output Transfer Function

    Q LR

    r r Lo C L

    1 1 ( )

    22

    2 11)(

    oo

    LCop

    Qss

    LCLrr

    RCsssZ

    s s sQ

    oo

    2 2

    111

    1

    1)(

    11

    221

    2

    2

    2

    sQ

    sR

    srLLCs

    rr

    LCr

    LCr

    CsrssZ

    oeq

    LL

    CL

    LCoq

    R req L

    11

    rr LC

    L

    C

    Q rLL

    11

    1

  • 107/220

    AC Analysis: Disturbance-to-Output Transfer Function

    The exact output impedance is derived as:

    LCRr

    Rrrrr

    LRCs

    Rrs

    LCr

    Lrr

    Csrs

    Rr

    RCrrCrr

    RLsLC

    Rrs

    rCrrLsLCrsrRCrrRCrrLsLCrRs

    rCrrLsLCrsRiv

    LCLLC

    C

    LCLC

    LLCLC

    C

    LCLC

    LLCLCC

    LCLC

    d

    o

    1)1()(11)1(

    )1(

    )1()()1(

    )(

    )()()()(

    2

    2

    2

    2

    2

    2

    108/220

    AC Analysis: Disturbance-to-Output Transfer Function

    111

    1)(1)(

    11

    221

    2

    22

    sQ

    sR

    sCrrLLCs

    rr

    LCr

    LCr

    Lrr

    CsrssZ

    oeq

    CLL

    CLLCLCoq

    R req L

    11

    rr LC

    L

    C

    Q Lr

    r CL

    C

    11

    1 1

  • 109/220

    Output Impedance of the Buck Converter

    LCRr

    Rrrrr

    LRCs

    Rrs

    LCr

    Lrr

    Csrs

    sisvsZ

    LCLLC

    C

    LCLC

    d

    oo 1)1()(11)1(

    )1(

    )()()(

    2

    2

    Z s v si s

    R

    sQ

    s

    soo

    deq

    o

    ( ) ( )( )

    ( )

    11 1 1

    2

    2

    Output Impedance of the Buck Converter:

    s sQ

    s R r

    LCQ L

    Rr r C

    LCrr

    Q Lr

    r C

    oo eq L

    oo

    L C

    L

    C

    CL

    2 2

    1 11

    1 1 1

    1 1 1

    ,

    ,( )

    ;

    110/220

    Difficulties with Modeling and Control of SPS

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Power Electronic Systems & Chips Lab.

    ~

  • 111/220

    6. Difficulties with Modeling and Control of SPS

    Nonsmooth Systems (time and state discontinuity)Concepts of existence, uniqueness, stability not clearly defined for systems with discontinuous right hand sideConcept of chaotic dynamics relatively new To power electronics

    112/220

    Complex Behavior of Switching Power ConvertersChi Kong Tse, Complex Behavior of Switching Power Converters, CRC Press, 2004.

    (c) Simulation results

    (d) Experimental results

    E = 22-33 V, L = 20 mH, C = 47 F, R = 22 , Vref = 11 V, A = 8.4, T = 400 s, VL = 3.8 V, VU = 8.2 V.

    (a) Voltage-mode controlled buck converter.

    (b) Operation waveforms.

    u

    VL

    VU Vrampvcon

    t

    t3T2T1T0

  • 113/220

    Bifurcation of Voltage Mode Buck Converter in CCM

    RLC

    Z i

    Z f

    vref

    v c

    V vI i

    CLOCK RAMP

    vd

    Vc

    vc vc

    io vo

    rampv

    u

    VL

    VUVramp

    vcon

    t

    t3T2T1T0

    Li

    114/220

    Vcon & Vramp at Different Gains

    L = 20 mH, C = 47 F, R = 22 , T = 400 s, VL = 3.8 V, VU = 8.2 V, Vs = 33 V, Vref = 11 V.

    KP = 5.0

    KP = 3.0

    KP = 7.0

    KP = 9.0

    8 msec

    RL

    vrefv c

    vd

    io vo

    rampv

    Li

    PK

    C

  • 115/220

    Phase Portraits

    KP = 6.8KP = 3.0

    KP = 7.4 KP = 12.0

    116/220

    Inductor Current and Output Voltage at Kp = 12.0

    KP = 12.0Inductor Current

    Output Voltage

  • 117/220

    Simulation Results with Varying Source Voltage

    Source Voltage

    Output Voltage

    Inductor Curent

    118/220

    Experimental Setup for Measuring of a SPS

    Active LoadDC Power Supply Buck Converter

    Experimental Setup Experimental Buck Converter

  • 119/220

    Typical Waveforms

    IL

    VC

    IL

    VC

    Coupling switching noise

    5s

    1ms

    What happens?

    120/220

    Bifurcation Occurs in a Switching Power Supply

    IL

    IL

    IL

    IL

    IL

    IL

    VC

    VC

    VC

    VC

    IL

    VC

  • 121/220

    Intermittency, Parasitic and Common Mode Effects

    IL

    IL

    VC

    VC

    Icom

    122/220

    Homework Assignments

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Power Electronic Systems & Chips Lab.

    ~

  • 123/220

    Simulation of a Buck Converter

    S. A. Shirsavar, "Teaching Practical Design of Switch-Mode Power Supplies," IEEE Trans. on Education, vol. 47, no. 4, pp. 467-473, Nov. 2004.

    Vinvca

    iL

    LvL vo

    io

    C R

    low-pass filteris

    ic

    Input voltage Vin = 12 VNominal output voltage Vout = 5 V

    Switching Frequency fs = 76.5 kHzInductor L = 100 HCapacitor C = 2.4 FLoad resistor R => 25

    id

    124/220

    Buck Converter

    v VDL HrC FrRf KHz

    i

    L

    C

    s

    10502000 14700 05550

    %

    .

    .

    ohm

    ohm ohm

    L

    RvorC

    C

    rL

    vi D

    Q

    iL

    io

    vc

    iciSiD

    Control-to-Output Transfer Function

    ( )( ) ( )

    v sd s

    V r CssQ

    so

    iC

    o o

    11 12

    o o

    L CLC

    Q LR

    r r C

    1 1 1 ,( )

  • 125/220

    Control Loop Design

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Power Electronic Systems & Chips Lab.

    ~

    Voltage Mode Control of DC-DC Converters

    PWMModulator

    LoopCompensator

    v o

    digital signal processor analog signal processor

    vR

    d

    Output voltage feedback only!

    load

    LR di~

    Buck Converter Boost Converter

    Buck/Boost Converter C,uk Converter

    vi vo

    L

    CD

    L

    C

    D

    vovi

    L C

    D

    vovi

    L1

    C2D

    C1

    vi vo

    Switching power converters

    oi

    vgosZ

    sv~

    sV

  • 127/220

    Control Loop Design for DC-DC Converters

    L. H. Dixon, Closing the Feedback Loop, Unitrode, 1988.

    Feedback Control to Achieve: Good Voltage Regulation (Load Variation & Line Variation) High Stability (Load Variation & Line Variation)

    vref

    d

    ve

    v v f do i ( )

    Fm

    ConverterPower Stage

    )(sA

    Rvi

    Single-Loop-Controlled Switching Regulator

    128/220

    Small Signal Modeling of Voltage Mode ControlSwitching Mode DC-DC Regulator

    BuckBoost

    Buck/Boost

    Power Stage

    PulseModulator

    ErrorProcessor rv

    ~

    ov~

    cv~

    oi~

    d~

    iv~

    LoadDynamics

  • 129/220

    Small Signal Transfer Functions

    G s vvv

    o

    i d io

    ( ) ,

    0 0

    : Open-loop input-to-output

    G vdd

    o

    v ii o

    , 0 0

    K dv c

    PWM

    : Open-loop output impedance

    : Control to output transfer function

    : PWM modulator gain

    Z vip

    o

    o d v i

    , 0 0

    A s vv

    c

    o

    ( )

    KV p

    PWM 1

    : Compensator gain

    : Power stage transfer function

    : PWM dc gain

    G Z Gv p d, ,

    DC gain: DV Vc p

    1

    A(s) : Compensator to be designed

    130/220

    Small Signal Model of Voltage Mode Control

    dv

    iv

    vv o

    o

    o

    i

    o ~~

    ;~~

    ;~~

    KPWM A(s)

    )~,~,~(~ divfv oio Zp

    Gd

    -A(s)

    Gv

    KPWM

    )(1Z

    sLZ

    Z popcpo

    )()()( sGKsAsL dPWM)(1

    sL

    GGG vovcvo

    oi~

    d~

    iv~

    oi~

    d~

    iv~ov~

    cv~cv~

    ov~

    The design problem is to synthesize a loop compensator L(s) to satisfy given specifications of Gvc(s) and Zpc(s).

  • 131/220

    Small Signal Transfer Functions

    G s vvv

    o

    i d io

    ( ) ,

    0 0

    : Open-loop input-to-output

    G vdd

    o

    v ii o

    ,0 0

    cvdk

    PWM

    : Open-loop output impedance

    : Control to output transfer function

    : PWM modulator gain

    Z vip

    o

    o d vi

    , 0 0

    A s vv

    c

    o

    ( )

    KVp

    PWM 1 : Compensator gain: PWM dc gain

    132/220

    Control Concept for Switching Regulators

    vo

    vc

    io

    d

    vi

    ; ;

    vv

    vi

    vd

    o

    i

    o

    o

    o

    K PWM A(s)

    iidi

    ii

    vi i

    o

    i

    i

    i

    ;

    ;

    Loop compensator

    Disturbances Results

    Control action

  • 133/220

    Single-Loop Control Example

    vovi

    PWM Modulator

    Zi

    Zf

    vref

    DriverStage

    Buck Converter

    Power Stage

    Error Amplifierand Compensation

    VoltageDividerNetwork

    vc

    d

    R

    VP

    134/220

    Single-Loop-Controlled PWM Converter

    Z i

    Z f

    v ref

    Logic&

    DRIVE

    +

    A

    Se

    vi

    vo

    B

    FvFm

    RL

    Features of Voltage Mode Control: Error voltage compared to external ramp Se. Unique loop gain for control loop design Analog signal can be measured at B. Digital signal can be measured at A.

  • 135/220

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Control Architecture

    Power Electronic Systems & Chips Lab.

    ~

    136/220

    The Purpose of Feedback Control

    PWMModulator

    LoopCompensator

    vgvo

    vR

    load

    RL di~

    Buck Converter

    Power Flow Control Efficiency & Stability & Power Quality Output Voltage Regulation Zero Output Impedance Input Voltage Disturbance Rejection Zero Audio Suspetibility Control with Estimated Feedback Signals

  • 137/220

    Control of Basic PWM DC-DC Converters

    PWMModulator

    LoopCompensator

    vg

    vo

    vR

    Efficiency

    load

    RL di~

    Switching power converters

    Output Impedance

    GateDrive

    osZ

    sv~

    sV

    Buck ConverterBuck-Boost ConverterBoost Converter

    138/220

    Multiple-Loop Control Scheme

    PWMModulator

    Voltage LoopCompensator

    vo

    vRCurrent LoopCompensator

    CurrentSensing

    CurrentLoop

    VoltageLoop

    load

    RL di~Buck ConverterBuck-Boost ConverterBoost Converter

    vgosZ

    sv~

    sV

    Switching Power Converters

    CarrierGenerator

  • 139/220

    Pioneer Voltage-Mode PWM Control IC SG1524

    The First PWM IC: SG1524, Bob Mammano, 1976.

    SG1524: -55C ~ 125CSG2524: -25C ~ 85CSG3524: 0C ~ 70C

    Pioneer Current-Mode PWM Control IC uc3842

    7/12

    5/9

    4/7

    2/3

    1/1

    3/5

    Vcc

    VFB

    ground

    compCurrent

    sense

    OSC

    34V

    2.50V

    UVLO

    Vrefgoodlogic

    TS2R

    R 1VPWMlatch Power

    ground

    output

    CurrentSense

    comparator

    Vref5.0V

    50mAInternalbias

    5VrefRS /

    Erroramp

    RT /CT

    R

    Vc

    8/14

    7/11

    6/10

    5/8

    Block Diagram of UC3842/3/4/5

    ccV

    RS

    Q

    Latch

    Clock

    PWMcomparator

    Erroramplifier

    reference

    Li

    eV

    sR

    sV

    RV

    oV

    RESET

    LatchOutput(PWM)

    Clock (SET)

    Li

    eV

    sV

  • 141/220

    Voltage-Mode Control vs. Current-Mode Control

    REF: Bob Bell, National Semiconductor, "Virtual-current mode: current-mode control without the noise," EDN, Feb. 16, 2006.

    Voltage Mode Control Current Mode Control

    VIN VINVOUT VOUTL1 L1

    D1 D1

    Q1 Q1

    FET DRIVER

    CLOCKSAWTOOTHGENERATOR

    1.25VREFERENCE

    Q RS

    Q RS

    CLOCK1.25V

    REFERENCE

    SWITCH DRIVER

    SWITCH-CURRENTMEASURE

    PWMCOMPARATOR

    PWMCOMPARATOR

    ERRORAMPLIFIER

    ERRORAMP

    142/220

    Control Block Diagram of a Current-Mode Controller

  • 143/220

    Peak-Current-Mode-Control of a Buck Converter

    144/220

    Current-Mode Control vs. Voltage-Model Control

    A. J. Forsyth and S. V. Mollov, "Modelling and control of DC-DC converters," IEEE Power Engineering Journal, vol. no. 5, pp. 229-236, Oct. 1998.

    (a) Voltage-Mode Control (b) Current-Mode Control

  • 145/220

    Current-Mode vs. Voltage-Mode Control

    Control-to-output bode plots for voltage and current mode converters. (The current mode converter has an extra 90 degrees of phase.)

    146/220

    Voltage Mode Control of DC-DC Converters

    PWMModulator

    LoopCompensator

    vg vo

    digital signal processor analog signal processor

    vR

    d

    Output voltage feedback only!

    load

    LR di~

    Buck Converter Boost Converter

    Buck/Boost Converter C,uk Converter

    vi vo

    L

    CD

    L

    C

    D

    vovi

    L C

    D

    vovi

    L1

    C2D

    C1

    vi vo

    Switching power converters

    oi

  • 147/220

    Voltage Mode Control

    REF: Voltage-mode control and compensation - Intricacies for buck regulators (Timothy Hegarty, EDN 2008)

    Converter power stage

    ModulatorType III compensator

    PWMcomparator

    Erroramp

    COMP

    SW

    VIN

    Vout

    IoutRLRESRCO

    LORDCR

    RFB1FB

    RC1CC1

    CC2

    RC2

    RFB2

    CC3

    Vref

    Driver&

    deadtime

    D

    PWM rampVramp

    148/220

    Robert W. Erickson and Dragan Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, 2nd Ed., February 2001.

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Control Loop Design Basics

    Power Electronic Systems & Chips Lab.

  • 149/220

    Control Loop Design Basics

    1. Introduction2. Effect of Negative Feedback

    Feedback reduces the transfer function from disturbances to the output Feedback causes the transfer function from the reference input to the

    output to be insensitive to variations in the gains in the forward path ofthe loop

    3. Construction of the important quantities 1/(1+T) and T/(1+T) and theclosed-loop transfer functions

    4. Stability The phase margin test The relation between phase margin and closed-loop damping factor Transient response vs. damping factor

    150/220

    Control Loop Design Basics ..

    5. Regulator design Feedback Lead (PD) compensator Lag (PI) compensator Combined (PID) compensator Design example

    6. Measurement of loop gains The Voltage injection Current injection Measurement of unstable systems

    7. Summary of key points

  • 151/220

    Modeling of Switching Converters

    tvg tvo

    tiload

    Pulse-widthmodulator

    Switching converter

    transistor gate driver

    Load

    tvc t t

    tsTsdT tvo

    tvg

    tiload td

    divftv loadg ,,

    disturbances

    Control input

    Switching converter

    Output voltage of aswitching converterdepends on duty cycle d,input voltage vg, and loadcurrent iload

    td

    152/220

    The DC Regulator Application

    Objective: maintain constantoutput voltage vo(t) = V, in spiteof disturbances in vg(t) andiload(t).Typical variation in vg(t) : 100Hzor 120Hz ripple, produced byrectifier circuit.

    Load current variations: a significant step-change in load current, suchas from 50% to 100% of rated value, may be applied.A typical output voltage regulation specification: 5V 0.1V.

    Circuit elements are constructed to some specified tolerance. In highvolume manufacturing of converters, all output voltages must meetspecifications.

    tvo tvg

    tiload td

    divftv loadgo ,,

    disturbances

    Control input

    Switching converter

  • 153/220

    The DC Regulator Application

    So we cannot expect to set the duty cycle to a single value, and obtain agiven constant output voltage under all conditions.

    Negative feedback: build a circuit that automatically adjusts the duty cycleas necessary, to obtain the specified output voltage with high accuracy,regardless of disturbances or component tolerances.

    154/220

    Negative Feedback: A Switching Regulator System

    gv v

    tiload

    Pulse-widthmodulator

    Switching converter

    transistor gate driver

    Load

    cv

    Powerinput

    H(s)sensorgain

    error signal

    compensator

    sGc ev

    refvreference

    input

    +

    tvo

  • 155/220

    Negative Feedback

    tvo tvg

    tiload td

    divftv loadgo ,,

    disturbances

    Control input

    Switching converter

    Pulse-widthmodulator

    cv

    error signal

    sensorgain

    tverefvreference

    input

    + compensator

    156/220

    Power Electronic Systems & Chips Lab., NCTU, Taiwan

    Effect of Negative Feedback

    Power Electronic Systems & Chips Lab.

    ~

  • 157/220

    Effect of Negative Feedback

    C tvg svo sdsj

    eL

    R

    sdse

    1 : M(D)

    Small signal model: open-loop equivalent circuit mode of a buck converter

    Output voltage can be expressed as

    where

    tiload

    sisZsvsGsdsGtv loadoutgvgvdo

    000

    00

    0

    gloadload

    g

    vdload

    oout

    id

    g

    ovg

    sisv

    ovd si

    svsZsvsvsG

    sdsvsG

    158/220

    Voltage Regulator System Small-Signal Model

    Use small-signal converter model

    Perturb and linearize remainder of feedback loop

    .

    etctvvtv

    tvvtv

    eee

    refrefref

    C tvg svo sdsj

    eL

    R

    sdse 1 : M(D)

    tiload

    error signal

    sve svref

    referenceinput

    +

    svc

    H(s)

    sGccompensator Pulse-width

    modulator

    sd

    svsH o

    sensorgain

    MV1

  • 159/220

    H(s)

    Regulator System Small-Signal Block Diagram

    error signal

    sve svref

    referenceinput

    svc sGc

    compensator Pulse-widthmodulator

    svsH o

    Sensor gain

    MV1 sd sGvd

    sGvd svgac line variation

    svo

    tiloadload current variation

    output voltagevariation

    duty cyclevariation

    Converter power stage

    sZout

    Mvdc

    outload

    Mvdc

    vdg

    Mvdc

    Mvdcrefo VGHG

    ZiVGHG

    GvVGHG

    VGGvv/1

    /1

    /1

    /

    160/220

    Solution of Block Diagram

    Manipulate block diagram to solve for . Result is

    Loop gain T(s) = products of the gains around the negative feedback loop.

    which is of the form

    svo

    Mvdc

    outload

    Mvdc

    vdg

    Mvdc

    Mvdcrefo VGHG

    ZiVGHG

    GvVGHG

    VGGvv/1

    /1

    /1

    /

    " "/with 1

    1

    1

    1

    gainloopVsGsGsHsTT

    ZiT

    Gv

    TT

    Hvv

    Mvdc

    outload

    vggrefo

  • 161/220

    Feedback Reduces Sensitivity to Load Disturbances

    Original (open-loop) line-to-output transfer function:

    With addition of negative feedback, the line-to-output transfer function becomes:

    Feedback reduces the line-to-output transfer function by a factor of

    If T(s) is large in magnitude, then the line-to-output transfer function becomessmall.

    0 0

    laodid

    g

    ovg sv

    svsG

    sTsZ

    sisv out

    vv

    load

    o

    gref

    1

    00

    sT11

    162/220

    Closed-loop Output Impedance

    Original (open-loop) output impedance:

    With addition of negative feedback, the output impedance becomes:

    Feedback reduces the output impedance by a factor of

    If T(s) is large in magnitude, then the output impedance is greatly reduced in magnitude.

    0 0

    gv

    dload

    oout si

    svsZ

    sTsZ

    sisv out

    vv

    load

    o

    gref

    1

    00

    sT11

  • 163/220

    Feedback Causes Reduction of Sensitivity

    If the loop gain is large in magnitude, i.e., || T || >> 1, then (1+T) T and T/(1+T) T/T = 1. The transfer function then becomes

    which is independent of the gains in the forward path of the loop.This result applies equally well to dc values:

    0

    101

    00

    1HT

    THV

    Vref

    o

    Closed-loop transfer function from to is : svrefv

    sT

    sTsHsv

    sv

    laod

    giv

    ref

    o

    1

    1

    00

    sHsvsv

    ref

    o 1

    Feedback causes the transfer function from the reference input to the output to be insensitive to variations in the gains in the forward path of the loop

    164/220

    Construction of 1/(1+T) and T/(1+T)

    cf

    At the crossover frequency fc, ||T || = 1

    80dB

    60dB

    40dB

    20dB

    0dB

    -20dB

    -40dB1Hz 1KHz 10kHz100Hz 100kHz10Hz

    f

    -40dB/dec

    -20dB/dec

    -40dB/dec

    zf

    2pf

    1pf

    dB0T dBQ

    2

    2

    11

    0

    11

    1

    ppp

    z

    s

    s

    Qs

    s

    TsT

    crossoverfrequency

    T

    Example

  • 165/220

    Approximating 1/(1+T) and T/(1+T)

    1for

    1for 11 TT

    TT

    T

    1for 1

    1for 1

    11

    T

    TsT

    sT

    166/220

    Construction of T/(1+T)

    cf

    80dB

    60dB

    40dB

    20dB

    0dB

    -20dB

    -40dB1Hz 1KHz 10kHz100Hz 100kHz10Hz

    f

    -40dB/dec

    -20dB/deczf

    2pf

    1pf T

    crossoverfrequency

    1for

    1for 11 TT

    TT

    T

    TT1

  • 167/220

    Derive Reference to Output Transfer Function

    This is the desired behavior: the output follows the reference according to the idealgain 1/H(s) . The feedback loop works well at frequencies where the loop gain T(s)has large magnitude.At frequencies above the crossover frequency, || T ||

  • 169/220

    Interpretation: How the Loop Gain Rejects Disturbances?

    1for 1

    1for 1

    11

    T

    TsT

    sT

    Bellow the crossover frequency: f < fc and || T || > 1Then 1/(1+T) 1/T, and disturbances are reduced in magnitude by 1/ || T ||

    Above the crossover frequency: f < fc and || T || < 1Then 1/(1+T) 1, and the feedback loop has essentially no effect ondisturbances

    170/220

    Terminology: Open-loop vs. Closed-loop

    Upon introduction of feedback, these transfer functions become (closed-looptransfer functions):

    The loop gain:

    Original transfer functions, before introduction of feedback (open-loop transferfunctions):

    sZsGsG outvgvd

    sTsZ

    sTsG

    sTsT

    sHoutvg

    1

    1

    11

    sT

  • 171/220

    Stability

    Even though the original open-loop system is stable, the closed-loop transfer functionscan be unstable and contain right half-plane poles. Even when the closed-loop system isstable, the transient response can exhibit undesirable ringing and overshoot, due to thehigh Q -factor of the closed-loop poles in the vicinity of the crossover frequency.When feedback destabilizes the system, the denominator (1+T(s)) terms in the closed-loop transfer functions contain roots in the right half-plane (i.e., with positive realparts). If T(s) is a rational fraction of the form N(s) / D(s), where N(s) and D(s) arepolynomials, then we can write

    sDsN

    sD

    sDsNsT

    sDsNsN

    sDsN

    sDsN

    sTsT

    1

    11

    1

    11

    Could evaluate stability by evaluatingN(s) + D(s), then factoring to evaluateroots. This is a lot of work, and is notvery illuminating.

    172/220

    Nyquist stability theorem: general result. A special case of the Nyquist stability theorem: the phase margin

    test

    Allows determination of closed-loop stability (i.e., whether 1/(1+T(s)) containsRHP poles) directly from the magnitude and phase of T(s).

    A good design tool: yields insight into how T(s) should be shaped, to obtaingood performance in transfer functions containing 1/(1+T(s)) terms.

    Determination of Stability Directly from T(s)

  • 173/220

    The Phase Margin Test

    If there is exactly one crossover frequency, and if T(s) contains no RHP poles, then

    A test on T(s), to determine whether 1/(1+T(s)) contains RHP poles. The crossoverfrequency fc is defined as the frequency where

    dB012 cfjTThe phase margin m is determined from the phase of T(s) at fc, as follows:

    cm fjT 2180

    the quantities T(s) / (1+T(s)) and 1/(1+T(s)) contain no RHP poles wheneverthe phase margin jm is positive.

    174/220

    Example: a loop gain leading to a stable closed-loop system

    68112180

    1122

    m

    c

    fjT

    60dB

    40dB

    20dB

    0dB

    -20dB

    -40dB

    1Hz 1KHz 10kHz100Hz 100kHz10Hz

    cfzf

    1pf crossoverfrequency

    T

    T TT

    m

    0

    -90

    -180

    -270

    f

  • 175/220

    Example: a loop gain leading to an unstable closed-loop system

    502301802302

    m

    c

    fjT

    60dB

    40dB

    20dB

    0dB

    -20dB

    -40dB

    1Hz 1KHz 10kHz100Hz 100kHz10Hz

    cfzf

    1pf crossoverfrequency

    T

    T TT

    0m

    0

    -90

    -180

    -270

    f

    176/220

    Relation Between Phase Margin and Closed-loop Damping Factor

    A small positive phase margin leads to a stable closed-loop systemhaving complex poles near the crossover frequency with high Q. Thetransient response exhibits overshoot and ringing.

    Increasing the phase margin reduces the Q. Obtaining real poles, withno overshoot and ringing, requires a large phase margin.

    The relation between phase margin and closed-loop Q is quantified inthis section.

    How much phase margin is required?

  • 177/220

    A Simple Second-order System

    f

    40dB

    20dB

    0dB

    -20dB

    -40dB

    2f

    0f

    T

    TTT

    m

    0

    -90

    -180

    -270

    -90-40dB/dec

    -20dB/dec

    10/2f

    210 f

    2f

    ff0

    220

    fff

    Consider the case where T(s) can be well-approximated in the vicinity of thecrossover frequency as

    20

    1

    1

    s

    s

    sT

    178/220

    Closed-Loop Response

    if

    Then

    20

    1

    1

    s

    s

    sT

    20

    2

    0

    1

    111

    11

    s

    s

    sTsT

    sT

    or,

    2

    1

    11

    cc s

    QssT

    sT

    where2

    002 2

    Qf

    cccc

  • 179/220

    Low-Q case

    202

    00

    Q :ionapproximat -low QQ

    Q cc

    c

    f

    40dB

    20dB

    0dB

    -20dB

    -40dB

    2f

    0f

    T

    -40dB/dec

    -20dB/dec

    ff0

    220

    fff

    20 fffc

    20 / ffQ T

    T1

    180/220

    High-Q case

    2

    0

    c

    020 2

    Q fQ c

    f

    40dB

    20dB

    0dB

    -20dB

    -40dB

    2f

    0f

    T

    -40dB/dec

    -20dB/dec

    ff0

    220

    fff

    20 fffc

    cffQ /0

    TT1

    60dB

  • 181/220

    Q vs. m

    Solve for exact crossover frequency, evaluate phase margin, express as function of m. Result is:

    4

    41

    2411

    tan

    sincos

    QQ

    Q

    m

    m

    m

    182/220

    Q vs. m

    -20dB

    20dB

    10dB

    0dB

    -10dB

    -15dB

    -5dB

    15dB

    5dB

    Q

    0 10 20 30 40 50 60 70 80 90

    Q=1 0dB

    Q=0.5 -6dB

    m

    52m

    76m

  • 183/220

    Transient response vs. damping factor

    Unit-step response of second-order system T(s)/(1+T(s))

    22121

    1

    12

    2

    212

    2

    2/

    4112

    ,

    5.0 1

    5.0 14tan2

    14sin

    1421

    21

    QQ

    Qe

    e

    tv

    QQtQ

    QQ

    Qetv

    c

    tt

    c

    Qtc

    For Q>0.5, the peak value is

    14/ 21peak Qetv

    184/220

    Transient Response vs. Damping Factor

    2

    0 5radianst c ,

    1.5

    1

    0.5

    010 15

    tv Q=50Q=10

    Q=4

    Q=2

    Q=1Q=0.75Q=0.5

    Q=0.3

    Q=0.2

    Q=0.1Q=0.05Q=0.01

  • 185/220

    Typical specifications: Effect of load current variations on output voltage regulation

    This is a limit on the maximum allowable output impedance Effect of input voltage variations on the output voltage regulation

    This limits the maximum allowable line-to-output transfer function Transient response time

    This requires a sufficiently high crossover frequency Overshoot and ringing

    An adequate phase margin must be obtained

    The regulator design problem: add compensator network Gc(s) tomodify T(s) such that all specifications are met.

    5. Regulator Design

    186/220

    Lead (PD) Compensator

    f

    zf

    0cG

    cG

    cG

    +45/decade

    10/zf

    zf10

    z

    pc f

    fG 0

    pz fff max

    Improves phase margin

    p

    zcc

    s

    s

    GsG1

    1

    0

    -45/decade

    10/pf

    0

    pf

  • 187/220

    Lead Compensator: Maximum Phase Lead

    ff

    ff

    ff

    fG

    fff

    z

    p

    p

    z

    z

    p

    c

    pz

    sin1sin1

    2tan 1max

    max

    0

    15

    30

    45

    60

    75

    90

    1 10 100 1000

    maximumphase lead

    zp ff /

    188/220

    Lead (PD) Compensator

    f

    zf

    0cG

    cG

    cG

    +45/decade

    10/zf

    zf10

    z

    pc f

    fG 0

    pz fff max

    -45/decade

    10/pf

    0

    pf

    To optimally obtain a compensator phase lead of at frequency fc, the pole andzero frequencies should be chosen as follows:

    ff

    ff

    cp

    cz

    sin1sin1

    sin1sin1

    If it is desired that the magnitude of the compensator gain at fc be unity, then Gc0 should be chosen as

    p

    zc f

    fG 0

  • 189/220

    Example: Lead Compensation

    60dB

    40dB

    20dB

    0dB

    -20dB

    -40dB

    cfzf

    pf

    original gain

    T

    TT

    T

    m

    0

    -90

    -180

    -270

    f

    0

    compensated gain

    compensated phase asymptotes

    original phase asymptotes

    0f

    0T

    00 cGT

    190/220

    Lag (PI) Compensation

    f

    zf

    cG

    cG

    cG

    10/Lf

    Lf10

    Improves low-frequencyloop gain and regulation

    s

    GsG Lcc 1

    +45/decade-90

    -20dB/dec

    0

  • 191/220

    Example: Lag Compensation

    0

    0

    1s

    TsT uu40dB

    20dB

    0dB

    -20dB

    -40dB

    cf

    010 fT

    T

    m

    0

    -90

    -180

    f

    0f0uT

    0uc TG

    1Hz 1KHz 10kHz100Hz 100kHz10Hz

    90

    Original (uncompensated)loop gain is

    Compensator:

    s

    GsG Lcc 1

    Design strategy:chooseGc to obtain desiredcrossover frequencyL sufficiently low tomaintain adequate phasemargin

    uT

    uT

    0f

    Lf

    Lf10

    192/220

    Example, Continued

    Construction of 1/(1+T), lag compensator example:

    40dB

    20dB

    0dB

    -20dB

    -40dB

    cf

    T

    f

    0f0uc TG

    1Hz 1KHz 10kHz100Hz 100kHz10Hz

    0f

    Lf

    Lf

    0

    1uc TG T1

    1

  • 193/220

    Combined (PID) Compensator

    40dB

    20dB

    0dB

    -20dB

    -40dB

    f1Hz 1KHz 10kHz100Hz 100kHz10Hz

    zfcmG

    cG

    cG

    90/dec

    10/Lf110 pf

    45/dec

    10/1pf-90

    1pf

    21

    11

    11

    pp

    Z

    L

    cmc

    s

    s

    s

    s

    GsG

    cG

    cfLf

    2pf

    10/zf

    10/2pfLf10 zf10

    -90/dec

    cG

    0

    90

    -180

    -90

    194/220

    5. An Illustrated Design Example

    V28tvg tvo

    loadi

    Pulse-widthmodulator

    transistor gate driver

    cv

    H(s)sensorgain

    error signal

    compensator

    sGc ev

    V5refv

    referenceinput

    +

    F50 L

    3R

    F500C

    V4mV

    vH

    100kHzsf

  • 195/220

    Quiescent Operating Point

    Input voltageOutputQuiescent duty cycleReference voltageQuiescent value of control voltageGain H(s) 3/115/5/

    14.25

    536.028/153,5,15

    28

    VVHVDVV

    VVD

    RAIVVVV

    ref

    Mc

    ref

    load

    g

    196/220

    Small-Signal Model

    C tvg svodRV

    L

    R

    1 : D

    siload

    error signal

    sve 0 refv + svc

    H(s)

    sGccompensator

    sd

    svsH o

    MV1

    dDV

    2

    V4mV

    31

    H

    sT

  • 197/220

    2

    000

    0

    1

    1

    s

    Qss

    GsG dvd

    Open-Loop Control-to-Output Transfer Function Gvd(s)

    LCs

    RLsD

    VsGvd21

    1

    f

    40dB

    20dB

    0dB

    -20dB

    -40dB

    vdG

    vdG

    0

    -90

    -180

    -270

    0fStandard form:

    Salient features:

    dB5.195.9

    kHz12

    12

    28

    0

    00

    0

    LCRQ

    LCf

    VFVGd

    60dB

    vdG

    vdG

    dBV29V280 dGdB5.199.50 G

    kHz1.110 02/1 0 fQ

    1Hz 1KHz 10kHz100Hz10Hz 100kHz

    900Hz10 02/1 0 fQ

    198/220

    Open-loop line-to-output transfer function and output impedance

    Same poles as control-to-output transfer function standard form:

    2

    000

    0

    1

    1

    s

    Qss

    GsG dvd

    LCs

    RLs

    DsGvd21

    1

    Output impedance:

    LCs

    RLs

    sLsLsC

    RsZout21

    1

  • 199/220

    System Block Diagram

    sve 0 refv + svc

    H(s)

    sGcMV1 sd sGvd

    sGvg svg

    ac linevariation

    sZout

    +

    +

    svo

    tiloadload current

    variation

    duty cyclevariation

    Converter power stage

    sHsGV

    sGsT vdM

    c

    1

    V4mV

    31

    H

    2

    000

    1

    1

    s

    QsD

    VV

    sHsGsTM

    c

    200/220

    dB4.733.2

    1

    1

    0

    2

    000

    0

    Mu

    uu

    DVHVT

    s

    Qs

    TsT

    Uncompensated Loop Gain (with Gc=1)

    f

    40dB

    20dB

    0dB

    -20dB

    -40dB

    uT

    0

    -90

    -180

    -270

    0f

    With Gc=1, the loop gain is

    uT

    dB4.723.20 uT dB5.199.50 Q

    kHz1.110 02/1 fQ

    1Hz 1KHz 10kHz100Hz10Hz 100kHz

    900Hz10 02/1 fQ

    uTuT

    0kHz1

    5 ,kHz8.1 mc f

  • 201/220

    Lead Compensator Design

    Obtain a crossover frequency of 5kHz, with phase margin of 52 Tu has phase of approximately -180 at 5kHz, hence lead (PD)

    compensator is needed to increase phase margin. Lead compensator should have phase of +52 at 5kHz Tu has magnitude of -20.6dB at 5kHz Lead compensator gain should have magnitude of +20.6dB at 5kHz Lead compensator pole and zero frequencies should be

    kHz5.1452sin152sin1kHz5

    kHz7.152sin152sin1kHz5

    p

    z

    f

    f

    Compensator dc gain should be dB3.117.310

    2

    00

    p

    z

    u

    cc f

    fTf

    fG

    202/220

    Lead Compensator Bode Plot

    f

    zf0cG

    cG

    cG

    10/zfzf10

    z

    pc f

    fG 0

    pz

    c

    ff

    f

    10/pf0

    pf

    40dB

    20dB

    0dB

    -20dB

    -40dB 0

    -180

    1Hz 1KHz 10kHz100Hz10Hz 100kHz

    cG

    -90

    90

    cG

  • 203/220

    2

    000

    00

    11

    1

    s

    Qs

    s

    s

    CTsT

    p

    zcuLoop Gain with Lead Compensator

    f

    40dB

    20dB

    0dB

    -40dB 0

    -90

    -180

    -270

    0f

    T

    dB7.186.80 TdB5.199.50 Q

    1Hz 1KHz 10kHz100Hz10Hz 100kHz

    0

    T

    -20dB

    T

    zfcf

    pf

    52m

    170kHz

    900kHz

    1.4kHz

    1.1kHz

    17kHz

    14kHz

    5kHz

    1.7kHz1kHz

    204/220

    1/(1+T) with Lead Compensator

    need more low-frequency loop gainhence, add inverted zero (PID controller)

    f

    40dB

    20dB

    0dB

    -40dB

    0f

    dB7.186.80 T dB5.199.50 Q

    1Hz 1KHz 10kHz100Hz10Hz 100kHz

    T

    -20dB

    zfcf

    pfT1

    1dB7.1812.0/1 0 T

    0Q

  • 205/220

    Improved Compensator (PID)

    p

    L

    Zcmc

    s

    s

    s

    GsG1

    11

    40dB

    20dB

    0dB

    -20dB

    -40dB

    f1Hz 1KHz 10kHz100Hz10Hz

    zfcmG

    cG

    cG

    90/dec

    10/Lf

    45/dec

    10/pf-90

    pf

    cG

    cfLf

    10/zf

    Lf10 zf10 -45/dec

    cG

    0

    90

    -180

    -90

    add inverted zero toPD compensator,without changing dcgain or cornerfrequencies

    choose fL to be fc/10,so that phase marginis unchanged

    206/220

    T(s) and 1/(1+T(s)), with P