stephen friend icr uk 2012-06-18

84
Exploring Disease Bionetworks and How we Perform our Science Stephen Friend June 18, 2012 ICR

Upload: sage-base

Post on 28-Nov-2014

453 views

Category:

Health & Medicine


2 download

DESCRIPTION

Stephen Friend, June 18, 2012. Institute for Cancer Research, London, UK

TRANSCRIPT

Page 1: Stephen Friend ICR UK 2012-06-18

Exploring  Disease  Bionetworks  and  How  we  Perform  our  Science    

Stephen  Friend  June  18,  2012  

ICR  

Page 2: Stephen Friend ICR UK 2012-06-18

InformaFon  Commons  for  Biological  FuncFon  

Page 3: Stephen Friend ICR UK 2012-06-18

KRAS NRAS

BRAF

MEK1/2

EGFR

ERBB2

BCR/ABL

EGFRi

Proliferation, Survival

•  EGFR  Pathway  commonly  mutated/acFvated  in  Cancer  •  30%  of  all  epithelial  cancers  

•  Blocking  Abs  approved  for  treatment  of  metastaFc  colon  cancer  

•  Subsequently  found  that  RASMUT  tumors  don’t  respond  –  “NegaFve  PredicFve  Biomarker”  

•  However  sFll  EGFR+  /  RASWT  paFents  who  don’t  respond?  –  need  “PosiFve  PredicFve  Biomarker”  

•  And  in  Lung  Cancer  not  clear  that  RASMUT  status  is  useful  biomarker  

PredicFng  treatment  response  to  known  oncogenes  is  complex  and  requires  detailed  understanding  of  how  different  geneFc  backgrounds  funcFon  

Oncogenes only make good targets in particular molecular contexts : EGFR story

Page 4: Stephen Friend ICR UK 2012-06-18

Causal Relationships ≠ Correlative Relationships? : CETPi story

•  Epidemiological Data provides strong support for independent association of low LDL and high HDL with reduced incidence of heart disease

•  Statins reduce LDL and reduce incidence of CVD deaths establishing causal relationship

•  CETP inhibition raises HDL – Does this have positive clinical benefit?

•  Torcetrapib (Pfizer) - $800M drug failed Ph3 (2006): a) Lack of efficacy; b) Increased mortality (off target?) •  Dalcetrapib (Roche) – development halted in Ph3 (May 2012) for lack of efficacy (no increase in mortality) •  Anacetrapib (Merck) / Evacetrapib (Lilly) – development ongoing. Hoped that they are better inhibitors and

this will lead to clinical benefit. Will cost $1Billion+ to find out

Can  we  save  billions  of  dollars  by  generaFng  and  sharing  datasets  that  let  us  be]er  understand  causal  relaFonships?  

Is  there  a  common  framework  for  tesFng  clinical  hypotheses  (ARCH2POCM)?  

Page 5: Stephen Friend ICR UK 2012-06-18

what will it take to understand disease?

                                       DNA    RNA  PROTEIN    

MOVING  BEYOND  ALTERED  COMPONENT  LISTS  

Page 6: Stephen Friend ICR UK 2012-06-18

Familiar but Incomplete

Page 7: Stephen Friend ICR UK 2012-06-18
Page 8: Stephen Friend ICR UK 2012-06-18

Preliminary Probabalistic Models- Rosetta

Gene symbol Gene name Variance of OFPM explained by gene expression*

Mouse model

Source

Zfp90 Zinc finger protein 90 68% tg Constructed using BAC transgenics Gas7 Growth arrest specific 7 68% tg Constructed using BAC transgenics Gpx3 Glutathione peroxidase 3 61% tg Provided by Prof. Oleg

Mirochnitchenko (University of Medicine and Dentistry at New Jersey, NJ) [12]

Lactb Lactamase beta 52% tg Constructed using BAC transgenics Me1 Malic enzyme 1 52% ko Naturally occurring KO Gyk Glycerol kinase 46% ko Provided by Dr. Katrina Dipple

(UCLA) [13] Lpl Lipoprotein lipase 46% ko Provided by Dr. Ira Goldberg

(Columbia University, NY) [11] C3ar1 Complement component

3a receptor 1 46% ko Purchased from Deltagen, CA

Tgfbr2 Transforming growth factor beta receptor 2

39% ko Purchased from Deltagen, CA

Networks facilitate direct identification of genes that are

causal for disease Evolutionarily tolerated weak spots

Nat Genet (2005) 205:370

Page 9: Stephen Friend ICR UK 2012-06-18

"Genetics of gene expression surveyed in maize, mouse and man." Nature. (2003)

"Variations in DNA elucidate molecular networks that cause disease." Nature. (2008)

"Genetics of gene expression and its effect on disease." Nature. (2008)

"Validation of candidate causal genes for obesity that affect..." Nat Genet. (2009) ….. Plus 10 additional papers in Genome Research, PLoS Genetics, PLoS Comp.Biology, etc

"Identification of pathways for atherosclerosis." Circ Res. (2007)

"Mapping the genetic architecture of gene expression in human liver." PLoS Biol. (2008)

…… Plus 5 additional papers in Genome Res., Genomics, Mamm.Genome

"Integrating genotypic and expression data …for bone traits…" Nat Genet. (2005)

“..approach to identify candidate genes regulating BMD…" J Bone Miner Res. (2009)

"An integrative genomics approach to infer causal associations ...”  Nat Genet. (2005)

"Increasing the power to detect causal associations… “PLoS Comput Biol. (2007)

"Integrating large-scale functional genomic data ..." Nat Genet. (2008)

…… Plus 3 additional papers in PLoS Genet., BMC Genet.

d

Metabolic Disease

CVD

Bone

Methods

Extensive Publications now Substantiating Scientific Approach Probabilistic Causal Bionetwork Models

• >80 Publications from Rosetta Genetics

Page 10: Stephen Friend ICR UK 2012-06-18

  50 network papers   http://sagebase.org/research/resources.php

List of Influential Papers in Network Modeling

Page 11: Stephen Friend ICR UK 2012-06-18

Biological System

Data Analysis

Fundamentally  Biological  Science  hasn’t  changed  because  of  the  ‘Omics  RevoluFon……  

…..it  is  about  the  process  of  linking  a  system  to  a  hypothesis  to  some  data  to  some  analyses    

But  the  way  we  do  it  has  changed…………………………………………  

Page 12: Stephen Friend ICR UK 2012-06-18

Biological System

Data

Analysis

Biological System

Analysis

Data

Single Lab Model

Multiple Lab Model

•  R01 Funding •  Hypothesis->data->analysis->paper •  Small-scale data / analysis •  Reproducible?

•  P01 Funding •  Hypothesis->data->analysis->paper •  Medium-scale data / analysis •  Data Generators/Analysts/Validators maybe

different groups •  Reproducible?

Driven  by  molecular  technologies  we  have  become  more  data  intensive  leading  to  more  specializaFon:  data  generators  (centralized  cores),  data  analyzers  (bioinformaFcians),  validators  (experimentalists:  lab  &  clinical)  This  is  reflected  in  the  tendency  for  more  mulF  lab  consorFum  style  grants  in  which  the  data  generators,  analyzers,  validators  may  be  different  labs.  

Page 13: Stephen Friend ICR UK 2012-06-18

Biological System

Data

Analysis

Iterative Networked Approaches To Generating Analyzing and Supporting New Models

Uncouple the automatic linkage between the data generators, analyzers, and validators  

Page 14: Stephen Friend ICR UK 2012-06-18

SYNAPSE

CURATED DATA

TOOLS/ METHODS

ANALYZES/ MODELS

RAW DATA

BioMedicine Information Commons

Data Generators

Data Analysts

Experimentalists

Clinicians

Patients/ Citizens

Networked Approaches

Page 15: Stephen Friend ICR UK 2012-06-18

SYNAPSE

CURATED DATA

TOOLS/ METHODS

ANALYZES/ MODELS

RAW DATA

BioMedical Information Commons

Data Generators

Data Analysts

Experimentalists

Clinicians

Patients/ Citizens

Networked Approaches

5  PRIVACY  BARRIERS  

2  REWARDS  

RECOGNITION  

3  GOVERNANCE  

1  USABLE  DATA  

4  HOW  TO  

DISTRIBUTE  TASKS  

Page 16: Stephen Friend ICR UK 2012-06-18

Barriers to Engaging Networked Approaches to a BioMedicine Information Commons

5  PRIVACY  BARRIERS  

1  USABLE  DATA  

3  RULES  

GOVERNANCE  

2  REWARDS  

RECOGNITION  

4  HOW  TO  

DISTRIBUTE  TASKS  

PORTABLE  LEGAL  CONSENT  

SYNAPSE  

SYNAPSE  

THE  FEDERATION  

COLLABORATIVE  CHALLENGES  

Page 17: Stephen Friend ICR UK 2012-06-18

Open and Networked Approaches:Democratization of Science

1  USABLE  DATA  

2  REWARDS  

RECOGNITION  

SYNAPSE  

SYNAPSE  

Page 18: Stephen Friend ICR UK 2012-06-18

Two approaches to building common scientific and technical knowledge

Text summary of the completed project Assembled after the fact

Every code change versioned Every issue tracked Every project the starting point for new work All evolving and accessible in real time Social Coding

Page 19: Stephen Friend ICR UK 2012-06-18

Synapse is GitHub for Biomedical Data

Data and code versioned Analysis history captured in real time Work anywhere, and share the results with anyone Social Science

Every code change versioned Every issue tracked Every project the starting point for new work All evolving and accessible in real time Social Coding

Page 20: Stephen Friend ICR UK 2012-06-18

Why not share clinical /genomic data and model building in the ways currently used by the software industry (power of tracking workflows and versioning

Page 21: Stephen Friend ICR UK 2012-06-18

Leveraging Existing Technologies

Taverna

Addama

tranSMART

Page 22: Stephen Friend ICR UK 2012-06-18

Watch What I Do, Not What I Say

sage bionetworks synapse project

Page 23: Stephen Friend ICR UK 2012-06-18

Reduce, Reuse, Recycle

sage bionetworks synapse project

Page 24: Stephen Friend ICR UK 2012-06-18

Most of the People You Need to Work with Don’t Work with You

sage bionetworks synapse project

Page 25: Stephen Friend ICR UK 2012-06-18

My Other Computer is “The Cloud”

sage bionetworks synapse project

Page 26: Stephen Friend ICR UK 2012-06-18

Data Analysis with Synapse

Run Any Tool

On Any Platform

Record in Synapse

Share with Anyone

Page 27: Stephen Friend ICR UK 2012-06-18

Find Public Data

Use Existing Tools

Public or Private Projects

Publish Your Work

Page 28: Stephen Friend ICR UK 2012-06-18

clearScience links the components of a ‘big science’ project to a cloud computing environment...

so with a click from your browser you can push code into a virtual machine

or data...

or models...

or figures...

or entire compute environments... conveniently pre-populated with data, code, and the library and version dependencies

“my other computer is the cloud… let me hand it to you…”

pilot advisors!

Page 29: Stephen Friend ICR UK 2012-06-18

Downloading  through  TCGA  data  portal  

Page 30: Stephen Friend ICR UK 2012-06-18

!"#$%#&'()"*'++"++&"(,*

-./#"++0%(* 1%/2*(3&4"#* 53,'6%(* !7"(%,2/"*

-./#"++0%(* 1%/2*(3&4"#* 53,'6%(* !7"(%,2/"*

-./#"++0%(*1%/2*

(3&4"#*

53,'6%(*

!7"(%,2/"*-./#"++0%(*

1%/2*(3&4"#*

53,'6%(*

!7"(%,2/"*

!#"80)69"*&%8":*;"("#'6%(*

•  Automated  workflows  for  curaFon,  QC,  and  sharing  of  large-­‐scale  datasets.  

•  All  of  TCGA,  GEO,  and  user-­‐submi]ed  data  processed  with  standard  normalizaFon  methods.  

•  Searchable  TCGA  data:  •  23  cancers  •  11  data  plaoorms  •  Standardized  meta-­‐data  ontologies  

Page 31: Stephen Friend ICR UK 2012-06-18

!"#$%#&'()"*'++"++&"(,*

-./#"++0%(* 1%/2*(3&4"#* 53,'6%(* !7"(%,2/"*

-./#"++0%(* 1%/2*(3&4"#* 53,'6%(* !7"(%,2/"*

-./#"++0%(*1%/2*

(3&4"#*

53,'6%(*

!7"(%,2/"*-./#"++0%(*

1%/2*(3&4"#*

53,'6%(*

!7"(%,2/"*

!#"80)69"*&%8":*;"("#'6%(*

•  Data  accessible  at  mulFple  levels  of  aggregaFon.  •  Links  to  upstream  and  downstream  processing  of  

data.  •  Displayed  is  TCGA  Glioblastoma  data  normalized  

for  each  plaoorm  across  batches.  

Page 32: Stephen Friend ICR UK 2012-06-18

!"#$%#&'()"*'++"++&"(,*

-./#"++0%(* 1%/2*(3&4"#* 53,'6%(* !7"(%,2/"*

-./#"++0%(* 1%/2*(3&4"#* 53,'6%(* !7"(%,2/"*

-./#"++0%(*1%/2*

(3&4"#*

53,'6%(*

!7"(%,2/"*-./#"++0%(*

1%/2*(3&4"#*

53,'6%(*

!7"(%,2/"*

!#"80)69"*&%8":*;"("#'6%(*

•  Data  accessible  through  programmaFc  environments  such  as  R.  

•  Standardized  formats  allow  reuse  of  analysis  pipelines  on  all  processed  datasets.  

•  TCGA,  GEO,  user-­‐submi]ed  data.  

Page 33: Stephen Friend ICR UK 2012-06-18

!"#$%&'()$

*&+%

,-./

0$1-

-'&2-3$45

6 7$

!"#$%#&'()"*'++"++&"(,*

-./#"++0%(* 1%/2*(3&4"#* 53,'6%(* !7"(%,2/"*

-./#"++0%(* 1%/2*(3&4"#* 53,'6%(* !7"(%,2/"*

-./#"++0%(*1%/2*

(3&4"#*

53,'6%(*

!7"(%,2/"*-./#"++0%(*

1%/2*(3&4"#*

53,'6%(*

!7"(%,2/"*

!#"80)69"*&%8":*;"("#'6%(*

•  Comparison  of  many  modeling  approaches  applied  to  the  same  data.  

•  Models  transparently  shared  and  reusable  through  Synapse.  

•  Displayed  is  comparison  of  6  modeling  approaches  to  predict  sensiFvity  to  130  drugs.  

•  Extending  pipeline  to  evaluate  predicFon  of  TCGA  phenotypes.  

•  HosFng  of  collaboraFve  compeFFons  to  compare  models  from  many  groups.  

Page 34: Stephen Friend ICR UK 2012-06-18

Open and Networked Approaches

3  RULES  

GOVERNANCE  

THE  FEDERATION  

Page 35: Stephen Friend ICR UK 2012-06-18

A   B   C  

Pipeline  Strategy  

A   B   C  

D  

Divide  and  Conquer  Strategy  

A   B   C  

Parallel/IteraFve  Strategy  

Page 36: Stephen Friend ICR UK 2012-06-18

sage federation: model of biological age

Faster Aging

Slower Aging

Clinical Association -  Gender -  BMI -  Disease Genotype Association Gene Pathway Expression Pr

edicted  Age  (liver  expression)  

Chronological  Age  (years)  

Age Differential

Page 37: Stephen Friend ICR UK 2012-06-18

REDEFINING HOW WE WORK TOGETHER: Sage/DREAM Breast Cancer Prognosis Challenge

4  HOW  TO  

DISTRIBUTE  TASKS  

COLLABORATIVE  CHALLENGES  

Page 38: Stephen Friend ICR UK 2012-06-18

What  is the problem? Our current models of disease biology are primitive and limit

doctor’s understanding and ability to treat patients

Current incentives reward those who silo information and work in closed systems 38  

Page 39: Stephen Friend ICR UK 2012-06-18

The Solution: Competitions to crowd-source research in biology and other fields

  Why competitions? •  Objective assessments •  Acceleration of progress •  Transparency •  Reproducibility •  Extensible, reusable models

  Competitions in biomedical research •  CASP (protein structure) •  Fold it / EteRNA (protein / RNA structure) •  CAGI (genome annotation) •  Assemblethon / alignathon (genome assembly / alignment) •  SBV Improver (industrial methodology benchmarking) •  DREAM (co-organizer of Sage/DREAM competition)

  Generic competition platforms •  Kaggle, Innocentive, MLComp

39  

Page 40: Stephen Friend ICR UK 2012-06-18

The Sage/DREAM breast cancer prognosis challenge

Goal: Challenge to assess the accuracy of computational models designed to predict breast cancer survival using patient clinical and genomic data

Why this is unique:   This Sage/DREAM Challenge is a pre-collated cohort: 2000 breast cancer samples

from the Metabric cohort   Accessible to all: A cloud-based common compute architecture is being made

available by Google to support the computational models needed to develop and test challenge models

  New Rigor: •  Contestants will evaluate their models on a validation data set composed of newly generated

data (provided by Dr. Anne-Lise Borreson Dale) •  Contestants must demonstrate their models can be reproduced by others

  New incentives: leaderboard to energize participants, Science Translational Medicine publication for winning team

  Breast cancer patients, funders and researchers can track this Challenge on BRIDGE, an open source online community being built by Sage and Ashoka Changemakers and affiliated with this Challenge

40  

Page 41: Stephen Friend ICR UK 2012-06-18

Sage/DREAM Challenge: Details and Timing

Phase  1: Apr thru end-Sep 2012

  Training data: 2,000 breast cancer samples from METABRIC cohort

•  Gene expression •  Copy number •  Clinical covariates •  10 year survival

  Supporting data: Other Sage-curated breast cancer datasets

•  >1,000 samples from GEO •  ~800 samples from TCGA •  ~500 additional samples from

Norway group •  Curated and available on

Synapse, Sage’s compute platform

  Data released in phases on Synapse from now through end-September

  Will evaluate accuracy of models built on METABRIC data to predict survival in:

•  Held out samples from METABRIC

•  Other datasets

Phase  2:  Oct 1 thru Nov 12, 2012

  Evaluation of models in novel dataset.

  Validation data: ~500 fresh frozen tumors from Norway group with:

•  Clinical covariates •  10 year survival

  Gene expression and copy number data to be generated for model evaluation

•  Sent to Cancer Research UK to generate data at same facility as METABRIC

•  Models built on training data evaluated on newly generated data

  Winners announced at November 12 DREAM conference

41  

Page 42: Stephen Friend ICR UK 2012-06-18

Summary

Transparency,  reproducibility  

Valida;on  in  novel  dataset  

Publica;on  in  Science  Transla;onal  Medicine  

Dona;on  of  Google-­‐scale  compute  space.  

For  the  goal  of  promo;ng  democra;za;on  of  medicine…  Registra;on  star;ng  NOW…  

sign  up  at  synapse.sagebase.org  

!"#$%#&'()"*'++"++&"(,*

-./#"++0%(* 1%/2*(3&4"#* 53,'6%(* !7"(%,2/"*

-./#"++0%(* 1%/2*(3&4"#* 53,'6%(* !7"(%,2/"*

-./#"++0%(*1%/2*

(3&4"#*

53,'6%(*

!7"(%,2/"*-./#"++0%(*

1%/2*(3&4"#*

53,'6%(*

!7"(%,2/"*

!#"80)69"*&%8":*;"("#'6%(*

42  

Page 43: Stephen Friend ICR UK 2012-06-18

Presentation outline

  mRNA   copy number   Sequencing

(1,600 genes)

Molecular characterization •  1,000 cell lines

Viability screens •  500 cell lines •  24 compounds

Cancer  cell  line  encyclopedia  

1)  Predic;ng  drug  response  from  cancer  cell  lines  

Primary  tumor  datasets  (TCGA,  METABRIC)  

  genomics   transcriptomics   epigenetics

Clinical data (e.g. survival time)

2)  Predic;ng  clinical  cancer  phenotypes  

3)  Workflows  for  data  management,  versioning  and  method  comparison  

!"#$%#&'()"*'++"++&"(,*

-./#"++0%(* 1%/2*(3&4"#* 53,'6%(* !7"(%,2/"*

-./#"++0%(* 1%/2*(3&4"#* 53,'6%(* !7"(%,2/"*

-./#"++0%(*1%/2*

(3&4"#*

53,'6%(*

!7"(%,2/"*-./#"++0%(*

1%/2*(3&4"#*

53,'6%(*

!7"(%,2/"*

!#"80)69"*&%8":*;"("#'6%(*

4)  Network-­‐based  predictors  and  mul;-­‐task  learning  

Predic;ve  model  

Molecular characterization

Page 44: Stephen Friend ICR UK 2012-06-18

Developing predictive models of genotype-specific sensitivity to compound treatment

Pred

ic;ve  Features  

(biomarkers)  

Gene;c  Feature  Matrix  Expression,  copy  number,  somaFc  mutaFons,  etc.  

 

Sensi;ve   Refractory  

(e.g.  EC50)  

Cancer  samples  with  varying  degrees  of  response  to  therapy  

44  

Page 45: Stephen Friend ICR UK 2012-06-18

Our approach identifies mutations in genes upstream of MEK as top predictors of sensitivity to MEK inhibition

#1  Mut  NRAS  

#3  Mut  BRAF  

PD-­‐0325901  

PD-­‐0325901  

#9  Mut  BRAF  

#312  Mut  NRAS  

!"#$% &"#$%

'"#(%

)*!+,-% #./0-11%2/345-674+%

45  

#9  Mut  KRAS  

Page 46: Stephen Friend ICR UK 2012-06-18

TP53 mut

CDKN2A copy

MDM2 expr

HGF expr

CML linage EGFR mut

EGFR mut

EGFR mut

CML lineage

ERBB2 expr

BRAF mut

BRAF mut

NRAS mut

BRAF mut

NRAS mut

KRAS mut

BRAF mut

NRAS mut

KRAS mut

#1  BRAF  mut  

#2  NRAS  mut  #1  BRAF  mut  

#3  KRAS  mut  #2  NRAS  mut  #1  BRAF  mut  

#3  KRAS  mut  #2  NRAS  mut  #1  BRAF  mut  

#1  EGFR  mut  

#1  ERBB2  expr  

#1  EGFR  mut  

#2  CML  lineage  #1  EGFR  mut  

#1  CML  lineage  

#1  HGF  expr  

#2  TP53  mut  #3  CDKN2A  copy  #1  MDM2  expr  

Can  the  approach  make  new  discoveries?  

For 11/12 compounds, the #1 predictive feature in an unbiased analysis corresponds to the known stratifier of sensitivity

46  

Page 47: Stephen Friend ICR UK 2012-06-18

Predicted biomarkers supported by literature evidence

Predic;on   Literature  evidence   Model  /  Significance  

haematopoietic

solid

LBH589 (HDACi)

”Responses  with  single  agent  HDACi  have  been  predominantly  observed  in  advanced  hematologic  malignancies  including  T-­‐cell  lymphoma,  Hodgkin  lymphoma,  and  myeloid  malignancies."  

HDAC  inhibitors  are  effec;ve  in  haematopoie;c  tumors  

Supported  in  current  clinical  trials  

Typical  pharma:  >10  phase  2  clinical  trials  in  solid  tumors  @  $millions  per  trial.  

!"#$%&'()%

)*+,,-%

NQO1  over-­‐expression  predicts  17-­‐AAG  sensi;vity  

NQO1  metabolizes  17-­‐AAG  to  stable  intermediary  with  32-­‐fold  increase  in  ac;vity.    

!"#$%%&&'(

)*+,(-.)(

!"#$

%&'())**+$

,-./*$

MYC  amplifica;on  predicts  sensi;vity  to  HSP70  inhibi;on.  

HSP70  inhibits  MYC-­‐mediated  apoptosis.  

Page 48: Stephen Friend ICR UK 2012-06-18

AHR  expression  predicts  sensi;vity  to  MEK  inhibitors  in  NRAS  mutant  cell  lines  

Func;onally  validated  by  AHR  knockdown  

Legend                    AHR  shRNA                    Control  shRNA  

Novel predictions are functionally validated

48  

Predic;on   Valida;on  

!"#$%#&'%()*++,-.&&

!"#"$%&'(')*+$',-".'/0*1203)0*4(-!*5.67",'$'/".*4)'("28(')*9%$"28(')*

!"#$%&'#()* +',-&$#"#(&'* ./%0* 0&1&"23#/#4* .4#5&67/#4* 86)94)* :2"&67/#4*

;<"*

/,5$,5)*

=><"*

?!@*

BCL-­‐xL  expression  predicts  sensi;vity  to  several  chemotherapeu;cs  

Func;onally  validated  by  :  

BCL-­‐xL  knockdown   BCL-­‐xL  inhibitor  drug  synergy  

Mouse  models   Clinical  trials  

Wei  G.*,  Margolin  A.A.*,  et  al,  Cancer  Cell  

Page 49: Stephen Friend ICR UK 2012-06-18

Open and Networked Approaches

5  PRIVACY  BARRIERS  

PORTABLE  LEGAL  CONSENT:  weconsent.us  John  Wilbanks  

Page 50: Stephen Friend ICR UK 2012-06-18

Arch2POCM  

Page 51: Stephen Friend ICR UK 2012-06-18

The Current R&D Ecosystem Is In Need of a New Approach to Drug Development

•  $200B per year in biomedical and drug discovery R&D

•  Only a handful of new medicines are approved each year

•  Productivity in steady decline since 1950

•  >90% of novel drugs entering clinical trials fail, and negative POC information is not shared

•  Significant pharma revenues going off patent in next 5 years

•  >30,000 pharma employees laid off from downsizing in each of last four years

•  90% of 2013 prescriptions will be for generic drugs

51  

Page 52: Stephen Friend ICR UK 2012-06-18

Issues With Drug Discovery

1.  The greatest attrition is at clinical proof-of-concept – once a “target” is linked to a disease in the clinic, the risk of failure is far lower

2.  Most novel targets are pursued by multiple companies in parallel (and most fail at clinical POC)

3.  The complete data from failed trials are rarely, if ever, released to the public

52  

Page 53: Stephen Friend ICR UK 2012-06-18

Open access research tools drive science

53  

Page 54: Stephen Friend ICR UK 2012-06-18

SGC: Open Access Chemical Biology a great success

•  PPP:      -­‐  GSK,  Pfizer,  NovarFs,  Lilly,  Abbo],  Takeda    -­‐  Genome  Canada,  Ontario,  CIHR,  Wellcome  Trust  

•  Based  in  UniversiFes  of  Toronto  and  Oxford  

•  200  scienFsts  

•  Academic  network  of  more  than  250  labs  

•  Generate  freely  available  reagents  (proteins,  assays,  structures,  inhibitors,  anFbodies)  for  novel,  human,  therapeuFcally  relevant  proteins  

•  Give  these  to  academic  collaborators  to  dissect  pathways  and  disease  networks,  and  thereby  discover  new  targets  for  drug  discovery  

54  

Page 55: Stephen Friend ICR UK 2012-06-18

Some SGC Achievements

•  Structural  impact  –  SGC  contributed  ~25%  of  global  output  of  human  structures  annually    

–  SGC  contributes  >40%  of  global  output  of  human  parasite  structures  annually  

•  High  quality  science  (some  publicaFons  from  2011)          Vedadi  et  al,  Nature  Chem  Biol,  in  press  (2011);  Evans  et  al,  Nature  Gene;cs  in  

press  (2011);  Norman  et  al  Science  Transl  Med.  3(88):88mr1  (2011);  Kochan  G  et  al  PNAS  108:7745  (2011);  Clasquin  MF  et  al  Cell  145:969  (2011);  Colwill  et  al,  Nature  Methods  8:551  (2011);  Ceccarelli  et  al,  Cell  145:1075  (2011;  Strushkevich  et  al,  PNAS  108:10139  (2011);  Bian  et  al  EMBO  J  in  press  (2011)  Norman  et  al  Science  Trans.  Med.  3:76cm10  (2011);  Xu  et  al  Nature  Comm.  2:  art.  no.  227  (2011);  Edwards  et  al  Nature  470:163  (2011);  Fairman  et  al  Nature  Struct,  and  Mol.  Biol.  18:316  (2011);  Adams-­‐Cioaba  et  al,  Nature  Comm.  2  (1)  (2011);  Carr  et  al  EMBO  J  30:317  (2011);  Deutsch  et  al    Cell  144:566  (2011);  Filippakopoulos  et  al  Cell,  in  press;  Nature  Chem.  Biol.  in  press,  Nature  in  press  

55  

Page 56: Stephen Friend ICR UK 2012-06-18

Impact Of SGC’s Open Access JQ1 BET Probe

  Paper published Dec 23 has already cited >60 times

  Harvard spin off (15 M$ seed funding raised)

  > 5 pharma have launched bromodomain programs

  JQ1/SGCB01 has been distributed to >250 labs/companies

  Already used by some to link Brd4 to new areas of science

Zuber et al : BRD4 as target in acute leukaemia Nature, 2011 Delmore et al: JQ1 suppresses myc in multiple myeloma Cell, 2011 Dawson et al: BRD4 in MLL (isoxazole inhibitor) Nature, 2011 Blobel et al: Novel Targets in AML Cancer Cell, 2011 Mertz et al : Myc dependent cancer PNAS, 2011 Zhao et al: Post mitotic transcriptional re-activation Nature Cell Biol., 2011

56  

Page 57: Stephen Friend ICR UK 2012-06-18

Open access to the clinic?

57  

Page 58: Stephen Friend ICR UK 2012-06-18

Drug  Discovery  Is  a  Lomery  Because:  

Knowledge  about  clinical  disease  is  limiFng    -­‐  paFents  are  heterogeneous  

 -­‐  do  not  know  how  some  drugs  work  eg  paracetamol  

 -­‐  different  doses  effecFve  in  different  paFents  

 -­‐  efficacy  is  short  lived  

 -­‐  poor  biomarkers…..  

Too  many  targets/preclinical  assays  do  not  prioriFze  

58  

Page 59: Stephen Friend ICR UK 2012-06-18

Other Problems With How We Do Drug Discovery

•  Same  targets,  in  parallel,  in  secret    

•  No  one  organisaFon  has  all  capabiliFes  

•  Early  IP  is  making  it  even  harder  (makes  process  slower,  harder  and  more  expensive)  

59  

Page 60: Stephen Friend ICR UK 2012-06-18

Most Novel Targets Fail at Clinical POC

Target ID/

Discovery

Hit/ Probe/ Lead

ID

Clinical candidate

ID

Tox./ Pharmacy

Phase I

Phase IIa/ b

HTS LO

10% 30% 30% 90+% 50%

this is killing our industry

…we can generate “safe” molecules, but they are not developable in chosen patient group 60  

Page 61: Stephen Friend ICR UK 2012-06-18

This Failure Is Repeated, Many Times

Target ID/

Discovery

Hit/ Probe/ Lead

ID

Clinical candidate

ID

Toxicology/ Pharmacy

Phase I

Phase IIa/ b

HTS

30% 30% 90+%

Target ID/

Discovery

Hit/ Probe/ Lead

ID

Clinical candidate

ID

Toxicology/ Pharmacy

Phase I

Phase IIa/ b

30% 30% 90+%

Target ID/

Discovery

Hit/ Probe/ Lead

ID

Clinical candidate

ID

Toxicology/ Pharmacy

Phase I

Phase IIa/ b

30% 30% 90+%

Target ID/

Discovery

Hit/ Probe/ Lead

ID

Clinical candidate

ID

Toxicology/ Pharmacy

Phase I

Phase IIa/ b

30% 30% 90+%

Target ID/

Discovery

Hit/ Probe/ Lead

ID

Clinical candidate

ID

Toxicology/ Pharmacy

Phase I

Phase IIa/ b

30% 30% 90+%

Target ID/

Discovery

Hit/ Probe/ Lead

ID

Clinical candidate

ID

Toxicology/ Pharmacy

Phase I

Phase IIa/ b

30% 30% 90+%

Target ID/

Discovery

Hit/ Probe/ Lead

ID

Clinical candidate

ID

Toxicology/ Pharmacy

Phase I

Phase IIa/ b

10% 30% 30% 90+% 50%

LO

…and outcomes are not shared 61  

Page 62: Stephen Friend ICR UK 2012-06-18

A Possible Soution:Arch2POCM An Open Access Clinical Validation PPP

•  PPP  to  clinically  validate  (Ph  IIa)  pioneer  targets  

•  Pharma,  public,  academia,  regulators  and  paFent  groups  are  acFve  parFcipants  

•  CulFvate  a  common  stream  of  knowledge  –  Avoid  patents    

–  Place  all  data  into  the  public  domain  

–  Crowdsource  the  PPP’s  druglike  compounds  

•  In  –validated  targets  are  idenFfied  before  pharma  makes  a  substanFal  proprietary  investment  

–  Reduces  the  number  of  redundant  trials  on  bad  targets    

–  Reduces  safety  concerns  

•  Validated  targets  are  de-­‐risked  for  pharma  investment  –  Pharma  can  iniFate  proprietary  effort  when  risks  are  balanced  with  returns  

–  PPP  pharma  members  can  acquire  Arch2POCM  IND  for  validated  targets  and  benefit  from  shorter  development  Fmeline  and  data  exclusivity  for  sales  

62  

Page 63: Stephen Friend ICR UK 2012-06-18

Arch2POCM: Scale and Scope •  Proposed Vertical Goal:

–  Initiate 2 programs. One for Oncology/Epigenetics/Immunology. One for Neuroscience/Schizophrenia/Autism.

–  Both programs will have 8 drug discovery projects (targets) –  By Year 5, 30% of projects will have started Ph 1 and 20% will have completed

Ph Iia –  $200-250M over five years is projected as necessary to advance up to 8 drug

discovery projects within each of the two therapeutic programs –  By investing $1.6 M annually into one or both of Arch2POCM’s selected disease

areas, partnered pharmaceutical companies: 1.  obtain a vote on Arch2POCM target selection 2.  gain real time data access to Arch2POCM’s 16 drug discovery projects 3.  have the strategic opportunity to expand their overall portfolio

•  Proposed Horizontal Goal: –  Initiate 1-2 projects, (1-2 novel target mechanisms), as pilots to assess

Arch2POCM principles –  In either Oncology or Neuroscience –  Specific target mechanisms to be determined by funders’ interest –  Interested funders include pharma, public research foundations and venture

philanthropists 63  

Page 64: Stephen Friend ICR UK 2012-06-18

Histone

DNA

Lysine

Epigenetics: Exciting Science and Also A New Area For Drug Discovery

Modification Write Read Erase

Acetyl HAT Bromo HDAC Methyl HMT MBT DeMethyl

64  

Page 65: Stephen Friend ICR UK 2012-06-18

The Case For Epigenetics/Chromatin Biology

1.  There are epigenetic oncology drugs on the market (HDACs)

2.  A growing number of links to oncology, notably many genetic links (i.e. fusion proteins, somatic mutations)

3.  A pioneer area: More than 400 targets amenable to small molecule intervention - most of which only recently shown to be “druggable”, and only a few of which are under active investigation

4.  Open access, early-stage science is developing quickly – significant collaborative efforts (e.g. SGC, NIH) to generate proteins, structures, assays and chemical starting points

65  

Page 66: Stephen Friend ICR UK 2012-06-18

Domain Family Typical substrate class* Total Targets

Histone Lysine demethylase

Histone/Protein K/R(me)n/ (meCpG) 30  

Bromodomain Histone/Protein K(ac) 57  

R O Y A L

Tudor domain Histone Kme2/3 - Rme2s 59  

Chromodomain Histone/Protein K(me)3 34  

MBT repeat Histone K(me)3 9  

PHD finger Histone K(me)n 97  

Acetyltransferase Histone/Protein K 17  

Methyltransferase Histone/Protein K&R 60  

PARP/ADPRT Histone/Protein R&E 17  

MACRO Histone/Protein (p)-ADPribose 15  

Histone deacetylases Histone/Protein KAc 11  

395  

The Current Epigenetics Universe

Now known to be amenable to small molecule inhibition 66  

Page 67: Stephen Friend ICR UK 2012-06-18

SGC Oxford SGC Toronto

BET family chemical biology

67  

Page 68: Stephen Friend ICR UK 2012-06-18

What Are Bromodomains and How Do They Function?

68  

What Are Bromodomains: • Small highly conserved protein recognition domains (~110 residues) • Bundle of four α-helices and two loops that form a pocket with a conserved Asn residue • 56 unique human bromodomains identified: spread across 42 proteins

How Do They Function: • Selectively bind to acetylated lysine residues located on histones • Histone/BRD complex leads to transcription and gene expression • Inhibition of BRD binding to acetylated histones leads to gene silencing

Page 69: Stephen Friend ICR UK 2012-06-18

Bromodomains: Genetic Links to Cancer

Genetic abnormality

Publications

69  

Page 70: Stephen Friend ICR UK 2012-06-18

Available Reagents for Bromodomain Family

28 crystal structures 42 purified proteins

70  

Page 71: Stephen Friend ICR UK 2012-06-18

Robust Assays Available

Peptide library screen using SPR

Histone peptide

Targ

ets

  We now have a suite of assays for bromodomains •  Filippakopoulos et al Cell. 2012 149(1):214-31.

Peptide array screens using dot blots

71  

Page 72: Stephen Friend ICR UK 2012-06-18

CBP/PCAF

BET

A Series of Chemical Starting Points

72  

Page 73: Stephen Friend ICR UK 2012-06-18

Proof-of-concept JQ1: A Selective Inhibitor for BETs

Panagis  Fillipakopoulos,  Jun  Qi,  Stefan  Knapp,  Jay  Bradner 73  

Page 74: Stephen Friend ICR UK 2012-06-18

  NUT midline carcinoma (NMC) is a rare, highly lethal cancer that occurs in children and young adults.

  NMCs uniformly present in the midline, most commonly in the head, neck, or mediastinum, as poorly differentiated carcinomas

  Rearrangement of the Nuclear protein in testis (NUT) that creates a BRD4-NUT fusion gene

 Variant rearrangements, some involving the BRD3 gene

  NMC is diagnosed by fluorescence in situ hybridization and NUT antibodies.

It is unclear how common NUT rearrangements are in squamous cell carcinomas due to lack of routine diagnostic 74  

Page 75: Stephen Friend ICR UK 2012-06-18

JQ1 Inhibits NMC Tumour Growth

FDG-PET

4 days 50mg/kg IP Jay Bradner/Andrew Kung, Harvard

75  

Page 76: Stephen Friend ICR UK 2012-06-18

Potential Year 1 Aims of an Arch2POCM Bromodomain Program

1.  Select two pre-clinical candidates: Leverage SGC’s existing open access network of labs, compounds, assays and information to identify two chemotypes for medicinal chemistry optimization

2.  Develop a biomarker strategy for clinical development: opportunities for surrogate endpoints and patient stratification

3.  Implement crowdsourced research: manufacture and distribute optimized pre-clinical candidates to academic and clinical researchers

76  

Page 77: Stephen Friend ICR UK 2012-06-18

Process For Arch2POCM Target Selection

Arch2POCM creates a disease area spreadsheet of relevant information for pioneer targets such as:

1.  Novelty: Target selection should focus on addressing fundamental questions on biology and disease association

•  No clinical precedent •  Exception: advance an existing asset into a new disease area

2.  Targets should be tractable •  In vitro assay availability •  Cell-based assay availability •  Characterized protein (e.g. 3D structure; antibody, cell lines, mouse model) •  Availability of starting chemical matter

3.  Evidence of genetic linkages •  Translocations, mutations, splicing alterations specifically linked to disease •  “Peripheral” genetic linkages: •  Gene expression profiles or GWAS data indicate correlation

–  Implicated in pathway with clear genetic link (SLS, Networks)

4.  Key research contacts (academic or industry)

77

Page 78: Stephen Friend ICR UK 2012-06-18

Evidence  that  this  target  plays  an  important  role  in  tumors  (in  vitro,  in  vivo,  animal  

model  data)  

Maturity  of  the  program  

Posi;ve  evidence  of  

the  compound  

playing  a  role  in  the  given  disease  

Data  showing  a  failed  result  

of  the  compound  for  

the  given  disease  

Mouse  knockout  model    (MGI)  

SMARCA4   Expression  correlates  with  development  of  prostate  cancer    BUT  SMARCA4  in  general  acts  as  tumor  suppressor  and  is  necessary  for  genome  stability;  targeted  knockdown  of  SMARCA4  potenFates  lung  cancer  development;    

potent,  selecFve,  cell  acFve  compound  idenFfied  

NA   NA   Homozygotes  for  a  null  allele  die  in  utero  before  implantaFon.  Embryos  heterozygous  for  this  null  allele  and  an  ENU-­‐induced  allele  show  impaired  definiFve  erythropoiesis,  anemia  and  lethality  during  organogenesis.  Heterozygotes  show  cyanosis  and  cardiovascular  defects  and  are  pre-­‐disposed  to  breast  tumors  

SMARCA2A  Gastric  cancer;  mutated  in  CLL;  depleFon  of  BRM  causes  accelerated  progression  to  the  differenFaFon  phenotype  BUT  targeted  deleFon  is  causaFve  for  the  development  of  prostaFc  hyperplasia  in  mice  

potent,  selecFve,  cell  acFve  compound  idenFfied  

NA   NA   Mice  homozygous  for  a  targeted  mutaFon  in  this  gene  may  exhibit  inferFlity  and  a  slightly  increased  body  weight  in  some  geneFc  backgrounds.  

CBP   TranslocaFon  of  CBP  with  MOZ,  monocyFc  leukemia  zinc  finger  protein    cause    acute  myeloid  leukemia  ;  other  translocaFons  involve  MLL  (HRX);  Mutated  in  ALL  BUT  CBP  has  also  been    proposed  as  a  classical  tumor  suppressor    

potent,  selecFve,  cell  acFve  compound  idenFfied  

NA   NA   Homozygotes  for  null  or  altered  alleles  die  around  midgestaFon  with  defects  in  hemopoiesis,  blood  vessel  formaFon,  and  neural  tube  closure.  Heterozygotes  may  exhibit  skeletal,  cardiac,  and  hematopoieFc  defects,  retarded  growth,  and  hematologic  tumors.  

ATAD2   Correlated  with  survival  of  high-­‐grade  osteosarcoma  paFents  a{er  chemo-­‐therapy;  required  for  breast  cancer  cell  proliferaFon  ;  differenFally  expressed  in  NSCLC    

Weak  hits   NA   NA   NA  

BRD4   TranslocaFons  produce  BRD4-­‐NUT  fusion  oncogene  causing  midline  carcinoma  

JQ1   JQ1  in  BRD-­‐NUT  fusion  and  MLL  

NA   Homozygotes  for  a  gene-­‐trap  null  mutaFon  die  soon  a{er  implantaFon.  Heterozygotes  exhibit  impaired  pre-­‐  and  postnatal  growth,  head  malformaFons,  lack  of  subcutaneous  fat,  cataracts,  and  abnormal  liver  cells.      

BRD2   In  transgenic  mice,  consFtuFve  lymphoid  expression  of  Brd2  causes  a  malignancy  most  similar  to  human  diffuse  large  B  cell  lymphoma  

JQ1   JQ1  in  BRD-­‐NUT  fusion  and  MLL  

NA   Mice  homozygous  for  a  null  mutaFon  display  embryonic  lethality  during  organogenesis  with  decreased  embryo  size,  decreased  cell  proliferaFon,  a  delay  in  the  cell  cycle,  and  increased  cell  death.  Heterozygous  mice  also  display  decreased  cell  proliferaFon.  

Poten;al  Targets-­‐  Bromodomain  Family    

Page 79: Stephen Friend ICR UK 2012-06-18

Evidence  that  this  target  plays  an  important  role  in  tumors  (in  vitro,  in  vivo,  animal  model  data)  

Maturity  of  the  program  

Posi;ve  evidence  of  the  compound  

playing  a  role  in  the  given  disease  

Data  showing  a  failed  result  of  the  compound  for  the  given  

disease  

Mouse  model    (MGI)  

JMJD3   Upregulated  in  prostate  cancer;  expression  is  higher  in  metastaFc  prostate  cancer  BUT  JMJD3  contributes  to  the  acFvaFon  of  the  INK4A-­‐ARF  tumor  suppressor  locus  in  response  to  oncogene  -­‐  and  stress-­‐induced  senescence.    

potent,  selecFve,  cell  acFve  compound  idenFfied  

NA;  inhibits    TNF-­‐alpha  

producFon  in  macrophages  of  RA  paFents  

NA   Mice  homozygous  for  a  knock-­‐out  allele  exhibit  perinatal  lethality  associated  with  thick  alveolar  septum  and  absences  of  air  space  in  the  lungs.  Bone  marrow  chimera  mice  derived  from  fetal  liver  cells  exhibit  impaired  eosinophil  recruitment  and  abnormal  response  to  helminth  infecFon.  

JARID1B   High  levels  in  breast  cancer  cell  lines,  strong  expression  in  the  invasive  but  not  in  the  benign  components  of  primary  breast  carcinomas.  BUT  tumor  suppressor  in  melanoma  cells  

No  progress   NA   NA   NA  

Poten;al  Targets-­‐  Demethylases  

Page 80: Stephen Friend ICR UK 2012-06-18

Evidence  that  this  target  plays  an  important  role  in  tumors  (in  vitro,  in  vivo,  animal  model  data)  

Maturity  of  the  program  

Posi;ve  evidence  of  the  compound  playing  a  role  in  the  given  disease  

Data  showing  a  failed  result  of  the  compound  for  the  given  disease  

SETD8   Recent  data  indicates  that  SETD8  deregulates  PCNA  expression  by  degradaFon  accelerated  by  methylaFon  at  K248.    Expression  levels  of  SETD8  and  PCNA  upregulated  in  cancer  cells.    Cancer  Research  May  2012  Takawa  et  al.  

Weak  inhibitors  idenFfied  (8  microM)  in  chemistry  opFmizaFon.  

NA   NA  

EZH2  EZH2  upregulated  in  cancer  cells.    Studies  on  mutants  indicates  an  interesFng  profile  where  both  wild-­‐type  and  mutant  (Y641F)  are  required  for  malignant  phenotype.    Sneeringer  et  al.  PNAS  2012.    Compounds  idenFfied  in  GSK  patents  WO  2011/140324  and  140315  and  WO  2012/005805  and  075080.  

potent,  selecFve,  cell  acFve  compound  idenFfied.      

NA   NA  

MMSET   MMSET,  WHSC1,  NSD2  is  overexpressed  in  cancer  cells.    Hudlebusch  et  al.  Clinical  Cancer  Res  2011  

No  hits—currently  screening  

NA   NA  

DOT1L   Daigle  et  al.  Cancer  Cell  2011  elegantly  show  that  potent  DOT1L  inhibitors  kill  cells  containing  MLL  translocaFons  and  do  not  kill  cell  not  containing  the  translocaFons  

potent,  selecFve,  cell  acFve  compound  idenFfied.  

Transgenic  mouse  model  tumors  shrunk  by  SC  

dosing  of  inhibitor  

Poten;al  Targets-­‐  Histone  Methyltransferases  

Page 81: Stephen Friend ICR UK 2012-06-18

Proposed Metrics For Measuring Arch2POCM Success

Use a therapeutic product profile (TPP) with stage-gates and defined milestones to monitor project progression:

•  Small molecule screening hit rate achieved •  SAR/In vitro testing

–  Target EC50 achieved by at least XX compounds –  Selectivity target achieved by at least YY compounds –  Biological activity demonstrated for at least XX compounds in human tissue models (disease tissue, stem cells)

•  Manufacturing and Quality –  Steady and cost-effective supply of lead compound achieved –  Stability of lead compound demonstrated (sufficient to support POCM testing) –  Lead compound formulation identified to support pre-clinical and clinical studies –  Lead compound demonstrates selected quality attributes (sufficient to support pre-clinical studies and distribution to the

crowd)

•  Pre-clinical testing –  Lead compounds achieve pre-clinical safety –  Lead compound s surpass target TI –  Lead compounds demonstrate cross-reactivity sufficient to support pre-clinical tox testing

•  Clinical –  Lead compounds demonstrate Ph I safety –  Lead compounds demonstrate Ph II POCM

•  Data management –  IT database infrastructure populated with XX epigenetics investigators/grant application/publications –  Database QC and compliance defined and implemented (internal and external)

81  

Page 82: Stephen Friend ICR UK 2012-06-18

Program Activities Grid For Arch2POCM

Ac;vity     Arch2POCM  Loca;on/Inves;gator  (TBD)  

Target  Structure  

Compound  libraries  

Assay  development  for  epigeneFc  screens  and  biomarkers  

HTP  screens  for  epigeneFc  hits  

Med  Chem  SAR  To  ID  Two  Suitable  Binding  Arch2POCM  Test  Compounds  

Non-­‐GLP  scaleup  of  Arch2POCM  Test  Compounds  and  associated  analyFcs  

DistribuFon  of  Arch2POCM  Test  Compounds  

PK,  PD,  ADME,  Tox  TesFng  

GMP  Manufacturing  of  Arch2POCM  Test  Compounds  

GMP  FormulaFon  

GMP  Drug  Storage  and  DistribuFon  

IND  PreparaFon  Support  

Clinical  Assay  Development  and  QualificaFon  

Ph  I-­‐II  Clinical  Trials  

Ph  I-­‐II  Database  Management  and  CSR  ProducFon  82  

Page 83: Stephen Friend ICR UK 2012-06-18

DISCUSSION  

•  OpportuniFes  to  Review  Targets  •  OpportuniFes  to  Discuss  Approach  •  OpportuniFes  to  Consider  PotenFal  Lead  Groups  for  funding  using  this  Open  Approach  

83  

Page 84: Stephen Friend ICR UK 2012-06-18

SYNAPSE

CURATED DATA

TOOLS/ METHODS

ANALYZES/ MODELS

RAW DATA

BioMedical Information Commons

Data Generators

Data Analysts

Experimentalists

Clinicians

Patients/ Citizens

Networked Approaches

5  PRIVACY  BARRIERS  

2  REWARDS  

RECOGNITION  

3  GOVERNANCE  

1  USABLE  DATA  

4  HOW  TO  

DISTRIBUTE  TASKS