theorie de la detection du signal - freeandrei.gorea.free.fr/teaching_fichiers/sdt and...theorie de...

46
THEORIE DE LA DETECTION DU SIGNAL La Théorie de la Détection du Signal (TDS) est à la fois un instrument de mesure de la performance* et un cadre théorique dans lequel cette performance est interprétée du point de vue des mécanismes sous-jacents. En tant que telle, la TDS peut être regardée comme étant à la base de la psychophysique moderne. Le cours développera les bases de la TDS, discutera sa relation avec les concepts de seuil sensoriel et de décision et exemplifiera son application dans des situations expérimentales allant depuis le sensoriel jusqu'au cognitif. *Signal Detection Theory is a computational framework that describes how to extract a signal from noise, while accounting for biases and other factors that can influence the extraction process. It has been used effectively to describe how the brain overcomes noise from both the environment and its own internal processes to perceive sensory signals (from Gold &Watanabe (2010). Perceptual learning. Current Biol., 20(2) R46-R48.

Upload: hadan

Post on 22-Apr-2018

222 views

Category:

Documents


6 download

TRANSCRIPT

THEORIE DE LA DETECTION DU SIGNAL

La Théorie de la Détection du Signal (TDS) est à la fois un instrument de

mesure de la performance* et un cadre théorique dans lequel cette

performance est interprétée du point de vue des mécanismes sous-jacents.

En tant que telle, la TDS peut être regardée comme étant à la base de la

psychophysique moderne. Le cours développera les bases de la TDS,

discutera sa relation avec les concepts de seuil sensoriel et de décision et

exemplifiera son application dans des situations expérimentales allant

depuis le sensoriel jusqu'au cognitif.

*Signal Detection Theory is a computational framework that describes how to extract a signal from noise, while

accounting for biases and other factors that can influence the extraction process. It has been used

effectively to describe how the brain overcomes noise from both the environment and its own internal processes to

perceive sensory signals (from Gold &Watanabe (2010). Perceptual learning. Current Biol., 20(2) R46-R48.

SIGNAL DETECTION THEORY AND PSYCHOPHYSICS

David M. Green & John A. Swets

1st published in 1966 by Wiley & Sons, Inc., New York

Reprint with corrections in 1974

Copyright © 1966 by Wiley & Sons, Inc.

Revision Copyright © 1988 by D.M. Green & J. A. Swets

1988 reprint edition published by Peninsula Publishing, Los Altos, CA 94023, USA

CONTINUUM SENSORIEL

PR

OB

AB

AB

ILIT

É

s1

R

FA

Hits

p(‘yes’│N) = p(RN>c)

p(‘yes’│S) = p(RS>c)

p(N) p(S)

STIMULUS

PO

NS

E

Bruit Signal

Oui FA Hit

Non CR Omiss. c

R

LE MODEL STANDARD :

THEORIE de la DETECTION du SIGNAL

CR

Miss

0

S Rd' z(Hits) z(FA)

B

c .5 z(H) z(FA) ; c z FA

s

-

xz

s

Score z

Ou « score normal » ou « score standard »

-4.0 -3.0 -2.0 -1.0 0 +1.0 +2.0 +3.0 +4.0 Z scores

LE MODEL STANDARD :

THEORIE de la DETECTION du SIGNAL

CONTINUUM SENSORIEL

f R:

PR

OB

AB

AB

ILIT

É

FA

Hits

The likelihood ratio

Le rapport de vraisemblance

c R

cf

cf

NcRp

ScRp)X(L

N

S

R

R

-4 -3 -2 -1 0 1 2 3 4 5 6

Sensory Continuum (z)

0

0,1

0,2

0,3

0,4

0,5

P(z

)

N S

d’=1

cA = c + d’/2 = 1.60 = cA

c = 1.10 c

LE MODEL STANDARD :

THEORIE de la DETECTION du SIGNAL

p(S) = .25

c

3p

p

czp

czp

S

N

N

S

pN(z

=c

)

pS (z

=c

)

-zFA

c0

= 1

p(S) = . 50

c = 0

CONTINUUM SENSORIEL

PR

OB

AB

AB

ILIT

Y

p(N)

R

c ' z FA

c’

THE STANDARD MODEL: SIGNAL DETECTION THEORY Criterion: the border between seen and not-seen

FA

s

c’ in s units!

s

Criterion setting

Observers set a criterion that attempts to minimize the total error

rate (pMiss + pFA).

For equally probable Signal and Noise, choose S and not N when

p(x|S) > p(x|N)

i.e. when the likelihood ratio

= p(x|S) / p(x|N) > 1

For unequal probabilities of S and N, p(S) and p(N), optimal

p(N) / p(S)

x

Sensory Continuum

Pro

bab

ilit

y

THE STANDARD MODEL: SIGNAL DETECTION THEORY Criterion: the border between seen and not-seen

c’

d’

opt c’ = .5d’

c’

d’

c’

d’

c’

d’ d’

c’

d’

c’

Green & Swets (1966)

Measured vs. Optimal criterion ()

Observers are close to

optimal for p(S) = p(N) but

become more and more

suboptimal with the

increasing difference

between p(S) & p(N)

z(FA)

-z

1 - p > .5 p < .5

1 - p > .5

+z

p > .5 1 - p < .5

p > .5

1 - p > .5

+z +z

z(H)

-z +z d’ = z(H) – [-z(FA)]

+z +z

d’ = z(H) – z(FA)

d’ d’

z(.5) = 0

z(p < .5) < 0

z(p > .5) > 0

z(1 - p) = -z(p)

d’ computation with Excel

d’ = LOI.NORMALE.STANDARD.INVERSE[p(H)] - LOI.NORMALE.STANDARD.INVERSE[p(FA)]

c0 = -0.5*{LOI.NORMALE.STANDARD.INVERSE[p(H)] + LOI.NORMALE.STANDARD.INVERSE[p(FA)]}

cA = -LOI.NORMALE.STANDARD.INVERSE[p(FA)]

= LOI.NORMALE(cA;d’;1;FAUX)/LOI.NORMALE(cA;0;1;FAUX)

HITS FA HITS FA HITS FA HITS FA

n 70 30 90 10 83 5 60 20

out of 100 100 100 100 100 100 100 100

N_Tot

d'

c0

ca

1.0000

0.3453 0.2941

0.5244 1.2816 1.6449 0.8416

200 200 200 200

1.0000 2.4536 1.3800

1.09502.59902.56311.0488

0.0000 0.0000

Receiving Operating Characteristics (ROC)

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d' = 0

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 0

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d' = 0

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 0

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d' = 0

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 0

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d' = 0

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 0

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d' = 0

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 0

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d' = 1

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 1

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d' = 1

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 1

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d' = 1

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 1

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d' = 1

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 1

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d' = 1

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 1

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d' = 1

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 1

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d' = 1

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 1

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 2

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 2

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 2

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 2

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 2

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 2

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 2

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 2

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 2

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 2

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 2

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 2

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 2

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 2

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 3

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 3

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 3

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 3

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 3

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 3

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 3

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 3

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 3

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 3

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 3

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 3

0

0.2

0.4

-8 -4 0 4 8

Sensory Continuum (z)

P(z

d'= 3

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0

pFA

pH

d' = 3

ROC & le Rating experiment 1. Faire le choix entre Oui et Non;

375

375

Tot.

285 90 N

157 218 S

Non Oui

2. Donner son niveau de certitude de 1 (peu sûr) à (par ex.) 3

(très sûr); l’on calcule les p pour chaque case en divisant sa

fréq. par le no. total

1.00

1.00

Tot.

N,

FA

S,

H

*

.301

.059

“3”

.301

.200

“2”

.160

.160

“1”

Non

.200 .251 .131

.120 .099 .021

“1” “2” “3”

Oui

3. Pr chaque case, l’on calcule les p cumulés de gauche à

droite, les scores z, les d’ et c

FA

H

1.00

1.00

“1”

.701

.942

“2”

.400

.742

“3”

.582 .382 .131

.240 .120 .021

“4” “5” “6”

Oui

-1.050 -0.198 0.250 0.738 1.579 c

1.046 0.902 0.913 0.874 0.916 d’

zFA

zH

0.527

1.573

-0.253

0.649 0.207 -0.301 -1.121

-0.706 -1.175 -2.037

-4 -3 -2 -1 0 1 2 3 4 5 6

Sensory Continuum (z)

0

0.1

0.2

0.3

0.4

0.5

P(z

)

N S

d’=.91

c

.202-(-.706) = .908 d’

zH-zFA

-.706

zFA

-.5(.202 - .706) =.252 c

-.5(zH + zFA)

90/375 =

.24 .202

218/375 =

.58

pFA zH pH

2. Calculer le pH, pFA; puis d’ & c.

*Notez que l’échelle « Oui/Non » ci-dessus est équivalente à une échelle

«Oui» avec 6 graduations, du plus sûr («6») au moins sûr («1»):

Tot. “1” “2” “3” “4” “5” “6”

Oui

ROC & le Rating experiment

-4 -3 -2 -1 0 1 2 3 4 5 6

Sensory Continuum (z)

0

0.1

0.2

0.3

0.4

0,5

P(z

)

N S

d’=.91

p z p z p z p z p z p z

H 0.131 -1.122 0.382 -0.300 0.582 0.207 0.742 0.650 0.942 1.572 1.000 ######

FA 0.021 -2.034 0.120 -1.175 0.240 -0.706 0.400 -0.253 0.701 0.527 1.000 ######

d'

c0

OUI NON

#NOMBRE!1.0450.9030.9130.8750.912

"2""3"

#NOMBRE!-1.050-0.1980.2500.7381.578

"3""2""1""1"

Note that a symmetrical ROC indicates that d’ is independent of c0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pFA

pH

The slope of the ROC curve at any point is equal to

the likelihood ratio criterion that generated that point.

ROC & le Rating experiment

p z p z p z p z p z p z

H 0.131 -1.122 0.382 -0.300 0.582 0.207 0.742 0.650 0.942 1.572 1.000 ######

FA 0.021 -2.034 0.120 -1.175 0.240 -0.706 0.400 -0.253 0.701 0.527 1.000 ######

d'

c0

OUI NON

#NOMBRE!1.0450.9030.9130.8750.912

"2""3"

#NOMBRE!-1.050-0.1980.2500.7381.578

"3""2""1""1"

ROC in z units

-2.5

-1.5

-0.5

0.5

1.5

-2.5 -0.5 1.5

z(FA)

z(H

)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pFA

pH

d’ with unequal variances

CONTINUUM SENSORIEL

PR

OB

AB

AB

ILIT

É

FA

Hits

c

?'d

s1

s2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pFA

pH

d’ ?

0

0.2

0.4

0.6

0.8

1

pH

d’

-2

-1

0

1

2

-2 -1 0 1 2

zFA

zH

in sN units

'

1d

'

2d in sS units

'

N/Ydd’a

d’a

-2

-1

0

1

2

zH

'

2d

in sN units

in sS units

'

1d

d’2 < d’a < d’1

d’ w

ith

un

eq

ual vari

an

ces

The index da has the properties we want.

1. It is intermediate in size between d1 and d‘2.

2. It is equivalent to d' when the ROC slope is 1,

for then the perpendicular line of length DY/N

coincides with the minor diagonal, and the two

lines of length da coincide with the d'1, and d'2

segments.

3. It turns out to be equivalent to the difference

between the means in units of the root-mean-

square (rms) standard deviation, a kind of

average equal to the square root of the mean of

the squares of the standard deviations of S1

and S2.

2

2

2

1

'

N/Y

'

a /Rd2d ss

To find da from an ROC that is linear in z coordinates, it is

easiest to first estimate d’1, d’2 and the slope s = d’1/d’2.

Because the standard deviation of the S1 distribution is s

times as large as that of S2, we can set the standard

deviation of S1 to s and that of S2 to 1.

To find da directly from one point on the ROC once s is known:

-2

-1

0

1

2

-2 -1 0 1 2

zFA

zH

in sN units

'

1d

'

2d in sS units

'

N/Ydd’a

d’a

d’ w

ith

un

eq

ual vari

an

ces

5.

'

25.

'

2'

a²s1

2d

²s15.

dd

5.

'

a²s1

2FszHzd

Sometimes a measure of performance expressed as a proportion is preferred to one

expressed as a distance. The index Az, is such a proportion and is simply DYN

transformed by the cumulative normal distribution function , i.e. (DYN):

Az is the area under the normal-model ROC curve, which increases from .5 at zero

sensitivity to 1.0 for perfect performance. It is basically equal to %Correct in a 2AFC

experiment. It is a truly nonparametric index of sensitivity.

d’ w

ith

un

eq

ual vari

an

ces

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

pFA

pH

d’

2

dDAz,ROCunderArea a

YN

High-Threshold

Sum Absolute Difference (SAD)

Max Absolute Difference (MAD)

Schematic of a single trial used for the set size and the

target number experiments. In the orientation and

spatial frequency experiments, the colored squares

were replaced with Gabor patches.

Wilken, P. & Ma, W.J (2004). A detection theory account of change detection. J. Vision 4, 1120-1135.

ROCs obtenus avec une méthode de « rating » sur une échelle de 1 à 4. Different symbols represent performance at different set sizes: set-size 2 for color,

orientation and SF – red stars; set-size 4 for color and SF, set-size 3 for orientation – green triangles; set-size 6 for color and SF, set-size 4 for orientation –

blue circles; set-size 8 for color and SF, set-size 5 for orientation – purple squares.

Hits & FA

HT

SAD

MAD

H

FA

H

FA

H

FA

LA RELATION ENTRE Y/N & 2AFC

See MacMillan & Creelman (2005, 2nd ed.) pp 166-170.

0 S

1 2

S 0

1 2

A = « 1 » - « 2 » -S

B = « 1 » - « 2 » S 22SD ss

S2BA

'

N/Y

'

AFC2 d22S

2

S2d

s

s

LA RELATION ENTRE Y/N & 2AFC

d’

d’

Réponse Correct Incorrect Droite

Incorrect Correct Gauche

Droite Gauche

Stimulus

%Correct Hits

%Incorrect FA d’ 2AFC

d’2AFC = 2d’Oui/Non

D

0

G

Yes/No

Yes/N

o

See MacMillan & Creelman (2005, 2nd ed.) pp 166-170.

So, objects may be “invisible” for only 2 + 1 reasons;

because the internal activity they yield upon presentation:

because Sj’s report on the presence/absence of the

stimulus is solicited within a time delay beyond his/her

mnemonic capacity (the case of change blindness).

is below Sj’s criterion

the objet is ignored, or 0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z

)

is undistinguishable from

noise (null sensitivity)

d' = 0, 0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z

)

0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z

)

d' = 3

c =

1.5

Reasons for “invisibility”

Failure of discriminating Signal from Noise has a triple edge:

Stimuli may be out of the standard window of visibility [] (Signal

Internal noise)

e.g. ultraviolet light, SF > 40 c/deg, TF > 50 Hz

reduced window of visibility (experimental or pathological –

e.g. blindsight)

Stimuli may be "masked" by external noise [] so that the S/N

ratio is decreased by means of:

increasing N (external noise impinges on the detecting

mechanism the classical pedestal effect, or increases

spatial/temporal uncertainty e.g. the "mud-splash effect")

decreasing S (external noise activates an inhibitory

mechanism lateral masking/metacontrast) []

Change of the transducer [](experimentally or neurologically

induced gain-control effects, normalization failure …)

SENSITIVITY 0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z)

can be manipulated in a number of ways:

probability

pay-off

can be affected by experience in general

and, possibly, by some neurological conditions

blindsight

neglect / extinction

attentional deficit syndromes

CRITERION

0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z

)

-4 -3 -2 -1 0 1 2 3 4 5 6

Criterion (zFA)

% Y

ES

d' = 3

49.4%50%

0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z

)

-4 -3 -2 -1 0 1 2 3 4 5 6

Criterion (zFA)

% Y

ES

d' = 3

98.7%

0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z

)

-4 -3 -2 -1 0 1 2 3 4 5 6

Criterion (zFA)

% Y

ES

d' = 3

91.5%

0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z

)

-4 -3 -2 -1 0 1 2 3 4 5 6

Criterion (zFA)

% Y

ES

d' = 3

73.9%

0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z

)

-4 -3 -2 -1 0 1 2 3 4 5 6

Criterion (zFA)

% Y

ES

d' = 3

56.1%

0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z

)

-4 -3 -2 -1 0 1 2 3 4 5 6

Criterion (zFA)

% Y

ES

d' = 3

49.4%50%

0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z

)

-4 -3 -2 -1 0 1 2 3 4 5 6

Criterion (zFA)

% Y

ES

d' = 3

42.5%

0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z

)

-4 -3 -2 -1 0 1 2 3 4 5 6

Criterion (zFA)

% Y

ES

d' = 3

24.1%

0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6

P(z

)

-4 -3 -2 -1 0 1 2 3 4 5 6

Criterion (zFA)

% Y

ES

d' = 3

7.3%

The response criterion can be assimilated to

response bias (and everything that goes with it,

i.e. predisposition, context effects, etc.)

AN EXAMPLE: CHANGE BLINDNESS

Dinner

Money

Airplane

CANAUX, BRUIT

et

THÉORIE DE LA DÉTECTION DU SIGNAL

« Qualité » (l) Intensité ou « qualité » du Stimulus Rép

on

se

d’u

n f

iltr

e (

s/s

ou

au

tre

) Le principe de l’UNIVARIANCE

Un Canal,

Filtre.

Chp Récep.

R V

Snn

n

max RI

IRR

s

I = stimulus intensity

R = response

Rmax = max resp.

N = max slope

S = semi-saturation cst.

Rs = spontaneous R

Un autre R

ép

on

se

d’u

n f

iltr

e

Normalization works (here) by

dividing each output

by the sum of all outputs.

Heeger, D.J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9, 181-197.

RESPONSE NORMALIZATION

Divisive

inhibition

R V

RÉPONSE

CANAUX & PROBABILITÉ DE RÉPONSE

Intensity Discrimination

p(s/s)

RE

PO

NS

E (

e.g

. s

/s)

pmin

pMax

pmin

pMax

p(s/s)

R V

RÉPONSE

CANAUX & PROBABILITÉ DE RÉPONSE

Within & Across Channels Discrimination

p(s/s)

p(s/s)

RE

PO

NS

E (

e.g

. s

/s)

pmin

pMax

pmin

pMax

CANAUX & PROBABILITÉ DE RÉPONSE

« OFF-LOOKING » CHANNEL

RÉPONSE

R V p(s/s)

RE

PO

NS

E (

e.g

. s

/s)

p(s/s)

RE

PO

NS

E (

e.g

. s

/s)

R V

I0 I1

kIR

s = cst.

kI

.)cstiff;at(kR

IR

IR

s

log (I) lo

g (

I

)

NO Weber ’s Law

I = k

k

Input

R =

kI

p(R)

II1

R

II0

R

TRANSDUCTION

Input

R =

lo

g(I

)

I0 I1

II1

R

II0

R

)Fechner()Ilog(R

s = cst.

p(R) log (I)

log

(

I )

Weber ’s Law

I = kI

)Laws'Weber(I'kI

.)cstiff;at(kR

IIR

)Fechner()Ilog(R

s

TRANSDUCTION

Input

R =

lo

g(I

)

I0 I1

)0βiffLaws'Weber(IlogkII

)Rσ;θat(RR

IIR

)Fechner(IlogR

β

θ

ββ

θ

II0

R

p(R)

R

II1

log (I) lo

g (

I

)

Weber ’s Law

I = kI

)Fechner(IlogR

Rs

TRANSDUCTION

VISUAL SEARCH

and

SIGNAL DETECTION THEORY

Tem

ps. R

éacti

on

No. Éléments

ORIENTATION

Parallèle (?!)

Tem

ps. R

éacti

on

No. Éléments

Sériel (?!)

ORI + COL

Le paradigme type

Treisman A.M. & Gelade G. (1980)

LE MODÉLE STANDARD : LA THÉORIE DE LA DÉTECTION DU SIGNAL

« COULEUR »

L

R V

RE

SP

ON

SE

l

RE

SP

ON

SE

l

CONTINUUM SENSORIEL (R-V)

PR

OB

AB

.

s

R

d’ n’est pas mesurable

« COULEUR »

L

R V

RE

SP

ON

SE

l

CONTINUUM SENSORIEL (R-V)

PR

OB

AB

.

s

R

R s d’=

Tem

ps. R

éacti

on

No. Éléments

ORIENTATION

Parallèle (?!)

Tem

ps. R

éacti

on

No. Éléments

Sériel (?!)

Tem

ps. R

éacti

on

No. Éléments

COULEUR

Parallèle (?!)

Tem

ps. R

éacti

on

No. Éléments

Sériel (?!)